20.3540.500 002 95505693055565 05005605036 5605604 ССР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Մհխանիկա

XL, Nº 5, 1987

Механяка

УДК 539.3

110

ОБ УПРУГО-ПЛАСТИЧЕСКОЙ УСТОЙЧИВОСТИ СТЕРЖНЯ И ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ПРОДОЛЬНЫХ ИНТЕНСИВНЫХ НАГРУЖЕНИЯХ

АРАКЕЛЯН А. Е. МОВСИСЯН Л. А.

Упругая устойчивость стержия и цилиндрической оболочки при ударе в различных постановках рассматривалась многими авторами [1]. Работ же в упруго-пластической постановке очень мало. В [2, 3] изучается упруго-пластическая устойчивсеть стержия (оболочки) введением приведенного модуля упругости (модуль Кармана) или касательного модуля для той части объекта, где прошла волна сжатия. В [4] для всей длины стержия принимается приведенный модуль и однородное сжатие по всей длине. В [5] помимо неоднородности сжимающей силы изучается возмущенное движение всего стержия и принимается приведенный модуль там, где имеется пластическое сжатие, и упругий модуль там, где еще не прошла волна сжатия. Критерий потери устойчивости такой же, как и в [и др.] В настоящей работе в постановке [5] пселедуются другие задачи для стержия и цилиндрической оболочки. Принимается, что материал характеризуется линейлым упрочнением.

1. Пусть имеется илеально прямой стержень постоянного сечения, один конец которого заделан (в продольном направлении), а к другому концу мгновенно прикладывается постоянное – напряжение, превышающее динамический предел пропорциональности. Решение уравнения продольных колебаний известно [8]. Физическая картина напряженного состояния такова: от ударяющего копца распространяется упругая волна со скоростью $a = \gamma$ с напряжением за фронтом, равным напряжению динамического предела вропорциональности σ_n , и пластическая волна со скоростью $a = \gamma E_n/\rho$ с напряжением за фронтом.

При рассмотренни возмущенного движения (уравнения устойчивости) для каждого момента времени (начальное напряжение и модуль материала определяются формулами

$$E = \begin{cases} z_0, E_p & \text{ipn } 0 \le x \le b, \ 0 < t \le t_1 \\ z_0, E_p & \text{ipn } b < x \le b + c, \ 0 \le t \le t_1 \\ 0, E & \text{ipn } b + c < x \le t_1 \ 0 < t \le t_1 \\ z_1, E_p & \text{ipn } b + c < x \le t_1 \ t_1 < t \le t_2 \\ b = a_i t_i \ c = \begin{cases} (a - a_1)t & \text{ipn } 0 \le t \le t_1 \\ 1 - a_1(2t - t/a) & \text{ipn } t_1 < t \le t_2 \end{cases}, \ t_1 = t/a, \ t_2 = t(a + t_1) \end{cases}$$

$$(1.1)$$

 $(1+a_1)/2aa_1$ время встречи отраженной волны с пластической волной с напряжением $a_1 = a_1(1+a_1/a)$ значение напряжения в отражении ной части.

Мы будем изучать устойчивость стержня вплоть до t_2 . Для можения для э. Е будут другие, но решение можно построить совершенно аналогичным образом.

Уравнение возмущенного движения имеет вид

$$\frac{\partial^2}{\partial x^2} \left(\bar{E}I \frac{\partial^2 \omega}{\partial x^2} \right) + \frac{\partial}{\partial x} \left(z \bar{F} \frac{\partial \omega}{\partial x} \right) + \rho \bar{F} \frac{\partial^2 \omega}{\partial t^2} = 0$$
(1.2)

гле Е обобщенный модуль, принимающий значения (1.1).

В качестве критического нараметра берем критическое нремя (критическая длина $l_{xp} = at_{xp}$) потери устойчивости. Его можно получить из уравнения (1.2) путем пренебрежения членом поперечной инерции [5—7 и т. д.], так что уравнение устойчивости примет вид

$$\frac{d^2}{dx^2} \left(\overline{E} I \frac{d^2 w}{dx^2} \right) - \frac{d}{dx} \left(\circ F \frac{d w}{dx} \right) = 0$$
(1.3)

Для каждой части отдельно занишем уравнение устойчивости

$$E_{p}I\frac{d^{4}w_{1}}{dx^{4}}+Fz_{0}\frac{d^{2}w_{1}}{dx^{2}}=0 \quad \text{при} \quad 0 \le x \le b, \quad 0 \le t \le t_{1} \quad (1.4)$$

$$E_{\mu} I \frac{d^4 w_2}{dx^4} + F a_{\mu} \frac{d^2 w_2}{dx^2} = 0 \text{ при } b < x \le b + c, \quad 0 \le t \le t_2$$
(1.5)

$$EI\frac{d^4w_1}{dx^4} = 0 \qquad \text{npn} \quad b + c < x \leq l, \quad 0 \leq t < t_1 \qquad (1.6)$$

$$E_{\mu} I \frac{d^{4}w_{1}}{dx^{4}} + Fa_{1} \frac{d^{2}w_{1}}{dx^{2}} = 0 \quad \text{при} \quad b + c < x \le l, \quad l_{1} < l \le l_{1}$$
(1.7)

При совместном решения уравнений (1.4) (1.6) получим решение, приголное до отражения упругой волим, а при совместном решении уравнений (1.4), (1.5) и (1.7) — до момента встречи отраженной и пластической воли.

Уравнения устойчивости (1.4) - (1.7) должны быть решены совместно с граничными условнями на концах x=0 для w_1 и x=l для w_3 , а также должны быть удовлетворсны условия сопряжения на x=b и x=b+c

$$w_1 = w_1, w_1 = w_1, w_1 = w_2, E_p I w_1 + F z_0 w_1 = E_p I w_2 + F z_0 w_2$$

$$nph x = b, \quad 0 \le t \le t, \tag{1.8}$$

$$w_1 = w_1, w_2 = w_1, w_2 = w_2, E_p I w_2 - F \sigma_n w_2 =$$
 (1.9)

$$= \begin{pmatrix} EIw, & \text{при } x=b+c, & 0 < t < t, \\ E_p/w_3 + s_1Fw, & \text{при } x=b-c, & t_1 < t < t, \end{cases}$$

Перейдем к безразмерным координатам x,=(b-x)/b при 0 ≤ x ≤ b.

 $x_{a} = (x-b)/c$ при $b < x \le b-c$, $x_{a} = (x-(b-c))/d$ при $b-c < x \le l$, где d = l - (b-c).

При этих обозначениях решения уравнений (1.4)—(1.7), соответственно, имеют вид

$$w_{1}(x_{1}) = A_{1} \sin k_{1} x_{1} + B_{1} \cos k_{1} x_{1} + C_{1} x_{1} - D_{1}$$

$$w_{0}(x_{2}) = A_{3} \sin k_{2} x_{2} + B_{2} \cos k_{2} x_{2} - C_{2} x_{2} - D_{2}$$

$$w_{0}(x_{3}) = A_{3} x_{3}^{3} - B_{3} x^{2} - C_{3} x_{3} - D_{3}$$

$$w_{0}(x_{3}) = A_{3} \sin k_{2} x_{3} + B_{3} \cos k_{3} x_{3} - C_{3} x_{3} - D_{3}$$
rme $k_{1}^{2} = a_{0} F b^{2} / E_{0} I_{1} - k_{2}^{2} = a_{0} F c^{2} / E_{0} I_{1} - k_{2}^{2} = a_{0} F c^{2} / E_{0} I_{1} - k_{2}^{2}$

Удовлетноряя условиям сопряжения (1.8) п (1.9) и выражая $A_i, B_i, C_i, D_i, (i=1, 3)$ через A_i, B_i, C_i, D_a , получим

$$\begin{split} w_{1}(x_{1}) &= -A_{2}\sqrt{a_{0}/z_{0}}\sin k_{1}x_{1} - B_{2}(z_{0}/z_{0}(\cos k_{1}x_{1}-1)-1) - \\ -C_{2} - \frac{1}{(a-a_{1})}(\sin - \frac{1-z_{0}/z_{0}}{(1-z_{0}/z_{0})/k} + -\frac{z_{0}x_{1}}{(a-a_{1})}) + \\ w_{2}(x_{2}) &= A_{2}\sin k_{2}x_{2} + B_{2}\cos k_{2}x_{2} + C_{2}x_{2} + D_{2} \\ w_{2}(x_{3}) &= A_{3}\left(-\frac{z_{0}F(1-at)}{2E}\right) + B_{2}\left(-\frac{F(1-at)}{2E\pi}\right) + (1-at)\sqrt{z_{0}F/E_{p}}\right) \cos k_{2}x_{3} + \\ \sin k_{2}\right) + B_{2}\left(-\frac{F(1-at)}{2E\pi}\right) \cos k_{2}x_{3}^{2} - (1-at)\sqrt{z_{0}F/E_{p}}\right) \sin k_{2}x_{3} + \\ \cos k_{1}\right) + C_{2}\left(\frac{\sigma_{0}F(1-at)^{3}}{6EI(a-a_{1})t}x + \frac{1-at}{(a-a_{1})t}x_{3} + 1\right) + D_{2} \\ w_{3}(x_{3}) &= A_{3}\sqrt{a}\sqrt{a}(a_{1}+a)\cos k_{2}\sin k_{3}x_{3} - \sin k_{3} - a(a-a_{1}) \\ \times \sin k_{4}(\cos k_{3}x_{3} - 1)\right) + B_{2}(-1)\overline{a}(a-a_{1})\sin k_{3}\cos k_{4} - \cos k_{8} + \\ + a/(a+a_{1})\cos k_{2}(\cos k_{3}x_{3} - 1)\right) + C\left(-\frac{(1-a_{1})}{1-a_{1}(2t-t_{1})} - \frac{\sin k_{3}x_{3}}{k} + 1 - \\ -\frac{(1-a_{1})(2t-t_{1})}{a(a+a_{1})}\cos k_{2}(\cos k_{3}x_{3} - 1)\right) + D_{2} \end{split}$$

Удовлетворяя граничным условиям $x_1 = 1$ (x = 0) для $w_1(x_1)$ и $x_2 = 1$ (x = l) для $w_3(x_3)$, получим трансцендентное уравнение для определения критического параметра.

Для шарнирно опертого стержня имеем

$$\begin{bmatrix} \frac{\sin k_{s}}{k_{s}} \left(\frac{s_{n}}{s_{0}}-1\right) - \frac{E_{\mu}}{E} \frac{l-at}{(a-a_{1})t} \end{bmatrix} \left[\left(\sqrt{\frac{s_{n}F}{E_{\rho}I}}(l-at)\cos k_{s} + \sin k_{s}\right) \times \sqrt{\frac{s_{n}}{s_{0}}} \cos k_{s} - \sqrt{\frac{s_{n}F}{E_{\rho}I}}(l-at)\sin k_{s} + \cos k_{s} + \frac{s_{n}}{s_{0}} - 1 \right] - \left[\sqrt{\frac{s_{n}}{s_{0}}} \cos k_{s}\sin k_{s} + \cos k_{s} \right] \left[\frac{1}{k_{s}} \left(\frac{s_{n}}{s_{0}}-1\right) \left(\sqrt{\frac{s_{n}F}{E_{\rho}I}}\cos k_{s}(l-at) + \sin k_{s}\right) - \right] \right]$$

$$-\frac{1}{3} \frac{\sigma_{n}F}{EI} \frac{(l-at)^{3}}{(a-a_{1})t} + \frac{d-a_{1}t}{(a-a_{1})t} + \frac{a_{1}}{a-a_{1}} \frac{\sigma_{n}}{\sigma_{0}} \right] = 0 \text{ при } 0 \leq t \leq t, \quad (1.10)$$

$$\left| \operatorname{sink}_{2} \frac{a_{1}}{a+a_{1}} \sqrt{\frac{z_{n}}{\sigma_{0}}} \operatorname{ctg}k_{1} + \frac{a_{1}}{a+a_{1}} \operatorname{cosk}_{2} + \frac{z_{n}}{\sigma_{0}} - 1 \right] \times \\ \times \left[\left(\operatorname{cosk}_{2} \operatorname{sink}_{2} + \sqrt{\frac{a}{a+a_{1}}} \operatorname{sink}_{2} \operatorname{cosk}_{3} \right) \frac{1}{k_{2}} \left(\frac{\sigma_{n}}{\sigma_{0}} - 1 \right) + \frac{\operatorname{sink}_{4}}{k_{2}} \times \\ \times \left(1 - \frac{a_{1}(t-t_{1})}{t-a_{1}(2t-t_{1})} - \frac{a}{a+a_{1}} \right) \right] - \left[\left(\operatorname{cosk}_{2} \operatorname{sink}_{3} - \sqrt{\frac{a}{a+a_{1}}} \operatorname{sink}_{2} \operatorname{cosk}_{3} \right) \times \\ \times \sqrt{\frac{z_{n}}{z_{0}}} \operatorname{ctgk}_{1} - \operatorname{sink}_{2} \operatorname{sink}_{3} - \sqrt{\frac{a}{a+a_{1}}} \operatorname{cosk}_{2} \operatorname{cosk}_{3} \right] \left[\frac{\operatorname{sink}_{1}}{k_{1}} - \frac{a_{1}}{a+a_{1}} \times \\ \times \left(\frac{a_{n}}{\sigma_{0}} - 1 \right) + 1 + \frac{a_{1}(t-t_{1})}{t-a_{1}(2t-t_{1})} - \frac{a}{a+a_{1}} + \frac{a_{1}t}{t-a_{1}(2t-t_{1})} - \frac{z_{n}}{\sigma_{0}} \right] = 0$$

$$\text{при } t_{1} \leq t \leq t_{1}$$

Приведем результаты вычислений для стержня из дюралюминия D167 с данными $\varepsilon_n = 0.002667$, $\alpha = 0.496$ и 0.109 ($E_p = \alpha E$). В табл. 1 помещены значения σ_0/σ_n ($\sigma = 1/\pi$) в зависимости от отношения $\tau_{\rm sp} = a t_{\rm Rp}/l$ при двух значениях параметра гибкости

Ταΰ	AL	ца	1
-----	----	----	---

Y	μ	54P 60	0,1	0.2	0,3	0+4	0.5	0,6	0.7	0,8	019	LiO
120	0-496	0+ 002667	2,612	1,638	1-377	15282	1+224	1+148	1+038	0.903	0.762	0+625
		0+001	2+ 5 60	1,603	1,359	1,278	1+222	1+134	1+001	-	_	
	0 - 109	0.002667	1.374	0,944	1+146	0,566	0+405	-	-	-		_
		0+084	17137	0,813	0,695	0.636		_	-	-	_	
240	01496	0-002667	2+508	1,567	1-341	1.273	1.221	1+120	0,9 64	-	-	-
		0.004	2,402	1+494	15303	1 / 263	1,217	1.089			-	
	0+109	0.002687	0,887	0,662	-			_		_	_	
		0,001	_	-			-	_	a	-		_

Как известно, динамический предел пропорциональности не совпадает со статическим и зависит от скорости деформации. Для выяснения как влияет этот факт на значение критического параметра помимо вышеприведенного с_п были пропаведены вычисления и для с₀ = 0,004, который в волтора раза больше, чем данный (иторые строчки в каждом блоке таблицы).

Из табл. 1 видно, что изменение критичеокой длины в зависимости от изменяемости предела пропорциональности незначительное.

Если судить об устойчивости стержия, исходя из допускаемых перемещений, нужно искать решение (1.2) в виде ряда [5, 7]

$$w = \sum_{k=1}^{n} f_k(t) \sin \frac{-k}{l} x$$
 (1.12)

Тогда для f_k(t) получится бесконечная система обыкновенных дифференциальных уравнений, которая решается как задача с начальными условиями.

На фиг. 1 приведены формы возрастания и видоизменения начального прогиба в занисимости от безразмерного времени для $\sigma_0/\sigma_s = 1.3$ ($\sigma_0 = 4.06\sigma$) и Y = 120. Сплошными линиями показан случай, когда начальное отклонение имеет вид одной синусондальной полуволны по всей длине стержня ($w = w_0 \sin^2 x/l$, $\partial w/\partial t = 0$ при t = 0), а пунктирными, когда сипусоидальная полуволна находится на 0.3 части стержня ($w = w_0 (H(x) - H(x - 0.3l)) \sin \pi x/0.3l$. dw/dt = 0 при t = 0, H(x)-единичная функция Хевисайда).

Вычисления проводились по схеме Рунге-Кута для систем из девяти и десяти уравнений. Результаты вычислений мало отличались друг от друга (менее, чем на 1%).

 Теперь рассмотрим другой случай нагружения. Пусть на краю стержия действует сжимающая сила, равномерно возрастающая во времени

$$P = C^* EFt \tag{2.1}$$

Будем предполагать C^* настолько большим, что уже при первом прохождении волны на конце напряжение достигает a_n ($t_n = a_n EC^*$, $t_n < t_1$). Задача устойчивости в упругой постановке изучена в [7]. После времени t_n напряжение и модуль материала в каждом сечении x и в момент времени t будут иметь вид

$$\sigma, E = \begin{bmatrix} EC^*(t-x/a), & E_p & \text{при} & 0 \le x \le b', & t \le t \le t' \\ EC^*t_n, & E_p & \text{при} & t' < x \le c', & t \le t \le t' \\ EC^*(t-x/a), & E & \text{при} & c' < x \le d', & t \le t \le t' \\ 0, & E & \text{при} & d' < x \le t, & t \le t \le t' \\ 2EC^*(t-t_1), & E & \text{при} & d' < x \le t, & t \le t \le t' \end{bmatrix}$$

где

$$b' = a_1(t-t_n), \quad c' = a(t-t_n), \quad d' = \begin{cases} l-at, & t_n \leq t \leq t_n \\ 2l-at & t_n \leq t < t' \end{cases}$$

t'=t₁+t_n/2 — время встречи отраженной волны с упругой волной с напряжением ∞_n.

Будем изучать устойчивость стержия вилоть до /'.

Уравнение возмущенного движения берем в виде (1.3). Решение его ишем в виде ряда (1.12), который удовлетворяет граничным условиям.

Представим Е и о также в виде рядов по косниусам

$$\overline{E} = \sum_{k \to 0} b_k(t) \cos t_k x, \quad \epsilon = \sum_{k \to 0} c_k(t) \cos t_k x \tag{2.2}$$

где

Cal

$$b_{k}(t) = -(E - E_{p})a(t - t_{n})/l - E$$

$$b_{k}(t) = -\frac{2}{-k}(E - E_{p})\sin t_{k}a(t - t_{1}), \ k = 1, \ 2, \ \dots$$

$$c_{0}(t) = C^{*}(at^{3} - (a - a_{1})(t - t_{n})^{*})/2t$$

$$t) = 2C^{*}l/(\pi k)^{2}((1 - \cos t_{k}a_{1}(t - t_{n}))/a_{1} - (\cos t_{k}a(t - t_{n}) - \cos t_{k}at)/a),$$

$$k = 1, \ 2, \ \dots,$$

$$(2.4)$$

Подставляя (2.2) в (1.3) и производя некоторые преобразования, для неизвестных $f_m(t)$ получим бесконечную систему обыкновенных дифференциальных уравнений

$$\frac{d^2 f_m}{dt^2} + \sum_{k=1}^{\infty} a_{mk}(t) f_k = 0, \quad m = 1, 2, \dots$$
 (2.5)

адесь 8

$$25Fa_{m,k} = \begin{bmatrix} D_{m}^{2}(2b_{m}-b_{m}) - F(2c_{m}-c_{m}) \end{bmatrix}, \quad m = k$$

$$(2.6)$$

$$(2.6)$$

$$(2.6)$$

Согласно критерню равенства нулю мгновенной частоты возмущающего движения [5--7], критический параметр определяется как наименьший корень уравнения

$$\det \|a_{mk}(t)\| = 0 \tag{2.7}$$

Для численного анализа взят пример предыдущего пункта. В табл. 2 принедены значения $\sigma_{0} = EC^{\alpha}t_{\alpha\rho}$) в зависимости от для значения Y=120, $\alpha=0.496$. Взяты определители восьмого и десятого порядков. Точность такая же, как и в предыдущем пункте.

Таблица 2

Txp	Q, i	0,2	0.3	0,4	0.5	0.6	0.7	0,8	0,9	1.0	1-1
0+002667	8,299	3.907	2,648	2,071	1.730	1-514	1,355	1,229	1.121	1.025	0.936

На фиг. 2. изображены кривые возраставия прогибов балки при (ссли решение уравнения (1.2) искать в форме (1.12)) скорости нагружения $C^* = 10 z_n$ и гибкости) = 120 для различных моментов времени т. Сплошные и пулктирные линии имеют смысл предыдущего пункта (метод интегрирования и точность, как и в предыдущем пункте).

3. Рассмотрим тенерь цилиндрическую оболочку длиной *l*, радиусом *R*, на конце которой прилагается напряжение о, которое мгновенно достигает своего максимального значения и поддерживается. При лом оно превосходит предел пропорциональности материала.

Будем предполагать, что начальное состояние оболочки характеризуется стержневым приближением, как это обычно делается, то есть примем спранедливость (1.1) и для оболочки.

Уравнение возмущенного состояния берется в виде [10] с добавлением инерционного члена

$$\frac{\partial^{\mathbf{a}}}{\partial x^{\mathbf{a}}} \left((D_{\mathbf{a}} - D_{\mathbf{a}}) \frac{\partial^{2} w}{\partial x^{\mathbf{a}}} \right) + \frac{\partial}{\partial x} \left(\left(\frac{B_{\mathbf{a}}}{2R} + \sigma_{\mathbf{i}} \delta \right) \frac{\partial w}{\partial x} \right) + (1 - v^{\mathbf{a}}) \frac{B_{\mathbf{a}}}{R^{2}} w + \wp \delta \frac{\partial^{2} w}{\partial t^{\mathbf{a}}} = 0 \quad (3,1)$$

где коэффициенты уравнений (3.1) определяются по [2,9], то есть

$$D_{2} = \frac{E\hat{c}^{3}}{24(1-z^{3})} (2-\omega(1+z_{0}^{3})), \quad D_{3} = \frac{E\hat{c}^{3}}{64(1-z^{3})} (2-\omega)(1+z_{0})^{2} (2-z_{0})$$
(3.2)

$$B_2 = \frac{3E\lambda^3}{32(1-\nu^2)} (\lambda-\omega) \left(1+\bar{z}_0\right)^2, \quad B_1 = \frac{E\lambda}{2(1-\nu^4)} \left(2-\omega(1+\bar{z}_0)\right)$$

где $h = 1 - E_{\kappa}/E$, $\omega = 1 - E_{c}/E$, E_{κ} -касательный модуль, E_{c} -секущий модуль, z_{0} -относительная координата, определяющая толщину слоя разгрузки.

При первом прохождении волны первая и вторая зоны будут из-

гибаться как пластическая среда, а третья зона—как упругая, следовательно, при разыскании критических параметров в первом и втором участках будем принимать $z_0 = 1$, v=0.5, а в третьем участке $-z_0=0$, v=v. При таких предположениях коэффициенты (3.2) примут вид

$$D_{2}-D_{3} = \begin{cases} \frac{1+3\alpha}{36} E_{s}^{33} & \text{при } 0 \leqslant x \leqslant a_{1}t \\ \frac{1-3\alpha}{36} E^{33} & \text{при } a_{1}t \leqslant x \leqslant at \\ \frac{1}{12(1-x^{2})} E^{33} & \text{при } at \leqslant x \leqslant t \end{cases}$$
(3.3)

rne $a = E_s | E$

$$B_{1}, B_{2} = \begin{cases} \frac{4}{3} E_{c} a_{c} \frac{2^{n}}{2} E_{c}(1-2) & \text{при } 0 < x \leq a_{1}t \\ \frac{4}{3} E b_{c}, \frac{b^{2}}{2} E(1-2) & \text{при } a_{1}t < x \leq at \\ \frac{1}{1-2^{2}} E b_{c}, & 0 & \text{при } at < x \leq t \end{cases}$$

$$(3.4)$$

Предположим, что оболочка на краях шарнирно оперта. Тогда решение уравнения возмущенного движения ищем в виде (1.12) и коэффициенты (3.3) и (3.4) также представляем в виде рядов по косинусам

$$(D_2 - D_k) = \sum_{k=0}^{\infty} d_k \cos \lambda_k x, \quad \left(\frac{B_2}{R} + \varepsilon_i \delta\right) = \sum_{k=0}^{\infty} b_k \cos \lambda_k x \tag{3.5}$$
$$(1 - \tau^2) \frac{B_1}{R^2} = \sum_{k=0}^{\infty} c_k \cos \lambda_k x$$

где

$$d_{\theta} = \frac{\delta^{3}E}{12l} \left(\frac{1+3\pi}{3^{2}} \mu a_{1} l + \frac{1+3\mu}{3} (a-a_{1})l + \frac{1}{1-\nu^{2}} (l-al) \right)$$

$$d_{k} = \frac{\delta^{3}E}{6\pi k} \left(\frac{1+3\pi}{3^{2}} \mu \sin \lambda_{k} a_{1} l + \frac{1+3\mu}{3} (\sin \lambda_{k} al - \sin \lambda_{k} a_{1} l) - \frac{1}{1-\nu^{2}} \sin \lambda_{k} al \right)$$

$$b_{\theta} = \frac{\delta E}{l} \left(\left(\frac{\delta}{4R} \mu - \frac{1-\pi}{\pi} + \frac{\pi}{E} \right) a_{1} l + \left(\frac{\delta(1-\mu)}{4R} + \frac{\pi}{E} \right) (a-a_{1}) l \right)$$

$$p_{k} = \frac{2\delta E}{\pi k} \left(\left(\frac{\delta}{4R} \mu - \frac{1-\pi}{\pi} + \frac{\pi}{E} \right) \sin \lambda_{k} a_{1} l + \left(\frac{\delta}{4R} (1-\mu) + \frac{\pi}{E} \right) (\sin \lambda_{k} al - \sin \lambda_{k} a_{1} l) \right)$$

$$q = \frac{\delta E}{l D^{2}} \left(\pi - \frac{a_{1} l}{\pi} + \frac{a_{0}}{E} \right) \sin \lambda_{k} a_{1} l + \left(\frac{\delta}{4R} (1-\mu) + \frac{\pi}{E} \right) (\sin \lambda_{k} a_{1} l - \sin \lambda_{k} a_{1} l) \right)$$

Подставляя (1.12) и (3.5) в (3.1), после некоторых преобразований для $f_k(t)$ получим бесконечную систему сбыкновенных лифференциальных уравнений вида (2.5), где $a_{mk}(t)$ определяются так:

$$2sca_{mk}(t) = \frac{[\lambda_m^4(2d_0 - d_{2m}) - \lambda_m(b_0 - b_{2m}) - 2c_0 - c_{2m} \quad \text{при} \quad m = k}{[\lambda_m^4(d_0 - k - d_{m+k}) - \lambda_m \lambda_k(b_{m-k} + b_{m+k}) - c_{m-k} - c_{m-k} \quad \text{при} \quad m = k}$$
(3.6)

Критический параметр будем определять как наименьший корень уравнения (2.7), где $a_{mk}(t)$ определяется из (3.6).

В табл. З приводятся значения $\sigma_0^{12} n$ при некоторых значениях параметров R/l и 2 R в зависимости от τ_{sp} для вышеуказанного материала. Вычисления проводились следующим образом: сначала для данного т определяется главная гармоника, а потом критическое значение вычисляется из определителя десятого порядка, который содержит и главную гармонику. Для µ взято значение 0,496. В скобках цифры показывают главную гармонику (гармонику, наиболее близкую к истинной форме потери устойчивости).

На фиг. З приведены формы потеря устойчивости для двух моментов времени. По оси ординат отложен безразмерный прогиб (*fra*коэффициент при главной гармонике для данных моментов премени. см. табл. 3).

Таблица 3

R/I	a R	0.1	0.2	0.3	0.1	0.5	0,6	0.7	0.8	0,9	1.0
0,5	0+01 0+005	2,305 (14) 2,013 (17)	1.747 (10)	1+481 (11)	1+424 (11)	1,397 (12)	1+382 (12) —	1,370 (12)	1+361 (12) 	1 -351 (12)	1.343 (12) —
0.75	0+01 0+005	3.600 (5) 1.241 (14)	1.837 (8)	1+541 (7) —	1+463 (8)	1,425 (7) —	1,404 (8)	1.386 (8) —	(8)	1 - 363 (8)	1.352 (8)

На фиг. 4 приведены формы возрастания прогиба оболочки, которой сообщено начальное напряжение $z_0 = 1.3 z_0$ и начальное отклонение $w|_{t=0} = w_0 \sin 9 = x/l_1 \ \partial w/\partial t|_{t=0} = 0$ для некоторых можентов времени.

При интегрировании системы типа (2.5) было взято десять уравнений от 9-ого до 18-ого включительно.

Все расчеты проводились на ЭВМ ЕС-1022 по программе, составленной на языке Фортран-IV.

На основании приведенных расчетов и сопоставления с упругими задачами можно отметить следующее:

1. Сильное видоизменение форм потери устойчивости как для различных моментов времени, так и в зависемости от упругой или упругопластической постановок.

 Незначительное изменение значения критических напряжений в зависимости от изменения предела пропорциональности (от скорости деформации).

3. Невозможность однозначного ответя на вопрос уменьшается или унеличивается критический момент потери устойчивости при упругоиластической постановке по сравнению с упругой.

ON ELASTIC – PLASTIC STABILITY OF ROD AND CYLINDRICAL SHELL UNDER LONGITUDINAL INTENSIVE LOADS A. E. ARAKELIAN, L. A. MOVSISIAN

ԵՐԿԱՅՆԱԿԱՆ ԻՆՏԵՆՍԵՎ ԲԵՌԻԱՎՈՐՄՑՆ ԵՆԹԱՐԿՎԱԾ ԱՌԱՁԳԱՊԼԱՍՏԻԿ ՉՈՂԻ ԵՎ ԳԼԱՆԱՅԵՆ ԹԱՂԱՆԹԻ ԿԱՅՈՒՆՈՒԹՅԱՆ ՄԱՍԻՆ

Ա. Ե. ՍՌԱՔԵԼՅԱՆ, Լ. Ա. ՄՈՎՍԻՍՑԱՆ

Ամփոփում

Գիտարկվում է ձողի և գլանային թաղանքի առաձղապլաստիկ կայու-Նությունը, որի մի հղրում տեղի է ունենում Տարված կամ ազդում է ժամանակին գծային Տամեմատական բեռւ Ենթադրվում է, որ առաջացած լարումները դերազանցում են դինամիկական Տամեմատականության սահմանը։ Հայվի է առնվում հրկայնական այիջների տարածվելը (սկզընական լարվածային վիճակի անհամասեռությունը) և դրգոված վիճակի շարժման հավա. սարժան մեջ տարբեր կտրվածըներում նլունի տարբեր վարզը (գծային ամրակցման)։

Տրված ընտի և ընտնավորման արագությանը համապատասխանող կայունությունը կորցնելու կրիտիկական երկարությունը կամ կրիտիկական ժա-Swamp apayins & blacked dependant dadabahaswadadh Sadar hajarնության կրիտերիայից։

Քննարկվում է, դեֆորմացիայի արագությունից կախված, Համեմատականունյան սահմանի մեծայլման աղդերությունը կրիտիկական երկարության mudhoh stows

Ուսումնասիրվում է նաև ժամանակի ընթացրում արված սկդրնական Shiludeh zwiedswie Sch ihnihnfuitiffinien

ЛНТЕРАТУРА

- 1 Вольмир А. С. Устойчивость дифференцируемых систем М. Наука, 1967 984с.
- 2. Терегулов Н. Г., Шигабутдиков Ф. Г. Исследование полубесконечных упругопластических инлиндрических оболочек при продольном уларе.--- 30 научная конференция. Тезисы докладов на 30 научной конференции КИСИ и Татарского републиканского правлевия НТО. Казань: Стройиндустрия, 1978.
- 3. Терегулов И. Г., Шигобутдинов Ф. Г. Устойчивость упругопластического стержия при динамическом нагружения.-В сб.: Прочность и жесткость тонкостенных конструкций, Казань: 1977, вып. 2. с. 77-86.
- 4. Корнев В. П., Маркан А. В., Яковлев И В. Развитие динамических форм выпучивания упруголастических стержией.-ЖПМТФ 1980, №3, с. 121-126.
- 5. Мовсисям Л. А. К устойчивости упругопластических стержней при ударных изгрузках.—Изв. АН Арм ССР, Механика, 1986, т. 39, № 2, с. 15-23.
- б. Мовсисян Л. А. Об устойчивости упругой балки при продольном ударс-Док . АН Арм. ССР, 1969. т. 49, № 3, с. 124-130.
- Мовсисян Л. А. Устойч пость упругой балки при быстрых нагружениях. Изв АН Арм. ССР. Механика, 1971. т. 14, № 1. с. 38-50.
 Рахматилин Х. А., Демьянов Ю. А. Прочность при интенсивных кратковремен-
- ных нагрузках. М.: Физматгиз, 1961. 369 с.
- 9. Ильющин А. Л. Пластичность. М.: Гостехиздат, 1948, 376 с.
- 10. Королев В. И. Упругопластическая деформация обслочек. М.: Машиностроение 1971. 304 c.
- 11 Горденко Б. А., Экспериментильное исследование оболочен при уларе.-Тр VII всес. конф. по теории оболочек и пластии. М.: Наука, 1970. с. 190-193

Институт механики АН Армянской ССР

Поступила в редакцию 23.X.1985