Մհխանիկա

XL. Nº 3, 1987

Механика

УДК 539,376

ОБ ОДНОП ОБРАТНОИ ЗАДАЧЕ ТЕОРИИ ПОЛЗУЧЕСТИ цвелодуб и. ю

1. Рассмотрим односвязное тело объема v с поверхностью S, для которого полные деформации складываются из упругих, подчиняющихся закону Гука, и деформаций ползучести S

$$t_{kl} = \sigma_{klms} \sigma_{ms} + t_{ss}^{r}$$
 (k, l=1, 2, 3) (1.1)

где од — компоненты тензора напряжений, $a_{klmn} = a_{mnkl}$ — компоненты тензора упругих податливостей, суммирование по повторяющимся индексам производится от 1 до 3. Компоненты полной деформации предполагаются малыми и выражающимися через компоненты вектора перемещений известными соотношениями Коши.

Материал тела считаем неупрочняющимся в процессе ползучести, так что скорости деформаций (точка здесь и в дальнейшем обозначает дифференцирование по времени) являются функциями только напряжений

$$\eta_{kl} = \eta_{1l}(z_{mn}) \quad (k, l, m, n=1, 2, 3)$$
 (1.2)

Функции (1.2) предполагаются дифференцируемыми и для бесконечно малых приращений дам и соответствующих им приращений удовлетворяющими неравенству

$$\delta z_{at} \delta v_{At} \gg 0$$
 (1.3)

выражающему известный постулат устойчивости Друккера для вяз-ких деформаций.

Сформулируем задачу о деформировании исходного тела в заданное: какие перемещения нужно меновенно сообщить поверхности тела (считаем, что массовые силы отсутствуют) в момент времени t=0, чтобы, оставляя их фиксированными в течение времени t_{\bullet} , в момент t=t после снятия внешних нагрузок и соответствующей упругой разгрузки получить заданные значения остаточных перемещений u_k-u_{koc} , на S? При этом преднолагаем, что при t<0 тело находилось в естественном недеформированном состоянии.

Можно доказать, что если решение такой релаксационной задачи для тела, определяющие уравнения деформирования которого имеют вид (11), (12) с доволнительным ограничением (1.3), существует, то для сжимаемого при ползучести тела ($\tau_{ak}\neq 0$) оно будет единственным по напряжениям при 0 $t < t_i$; соответствующие перемещения могут

отличаться только на величину смещения тела как жесткого целого. Для несжимаемого при ползучести тела ($\tau_{kk}=0$) два решения для поля напряжений при 0 (могут отличаться голько на величину произвольного постоянного во всем объеме и во времени гидростатического давления, причем этого произволь ве будет, если на части новерхности известиы внешние нагрузки или одиа из диагональных комновент тензора напряжении (как, например, в случае плоского напряженного состояния)

Доказательство этого утверждения вполне аналогично представленным в [1, 2] для подобных падач, поэтому здесь не приводится.

2. Рассмотрим частный случай указанной релаксанновной задачи, когда тело представляет собой изотронную топкую пластинку и можно говорить о плоском напряженном состоянии. Как отмечалось выше, решение такой задачи будет единственным. Выберем прямоугольную декартову систему координат так, чтобы плоскость Оху совпала с срединной плоскостью пластинки. В качестве (1.2) возьмем общепринятые однородные степени п функции [3]. Тогла для скоростей полных деформаций будем иметь

$$\dot{z}_{x} = \frac{1}{E} \left(\dot{z}_{x} - s \dot{z}_{y} \right) + B z_{1}^{n-1} \frac{2z_{x} - z_{y}}{2}; \quad \dot{z}_{y} = \frac{1}{E} \left(z_{y} - s \dot{z}_{y} \right) + B z_{1}^{n-1} \frac{2z_{y} - z_{y}}{2}$$

$$\dot{z}_{xy} = \frac{1 + v}{E} \dot{z}_{xy} + B z_{1}^{n-1} \frac{3}{2} z_{xy}$$
(2.1)

гле E модуль Юнга, ϵ коэффициент Пуассона, B, n—константы ползучести, $\sigma \epsilon = 0$ — витенсивность напряжений. В дальнейшем считаем, что n > 1, что обеспечивает выполнимость (1.3) [1, 2].

Предположим, что после деформирования в течение времени t_* и последующего снятия внешних нагрузок перемещения u_{zz} u_y точек границы L должны иметь вид:

$$u_x = c[x + \delta u_{x1}(x, y) + \delta^3 u_{x2}(x, y) + \dots], \ u_v = c[y + \delta u_{x1}(x, y) + \delta^3 u_{x2}(x, y) + \dots]$$
(2.2)

где c, δ —константы, $0 < \delta < 1$, то есть могут быть представлены в виде рядов по степеням малого параметра δ . Для определенности положим c > 0.

Для решения эгой задачи может быть применен метод возмущений [4]. Так при δ = 0 условия (2.2) соответствуют однородному деформированному состоянию, вызванному равномерным растяжением по осям x и y Решение для этого нулевого приближения может быть получено в замкнутом виде.

Действительно, при положим: $u_x = c_0 x$, $u_y = c_0 y$ на L, где $c_0 > 0$ —неизвестная константа. Тогда, очевидно, в пластине будем иметь однородное напряженно-леформированное состояние: $c_x = c_y = c_0$

 $\mathbf{E}_{xy}=0$, $\sigma_x=\sigma_y=\sigma_0(t)$, $\sigma_{xy}=0$ при 0 причем при t=0 $\sigma_0(0)=\frac{E}{1-v}c_0$. Функцию $\sigma_0=\sigma_0(t)$ определяем из условия: $\mathbf{E}_x=\mathbf{E}_y=0$, то есть, как следует из (2.1). $\frac{1-v}{L}\sigma_0+\frac{B}{2}\sigma_0^n=0$, откуда с учетом начального условия получим

$$a_0(t) = \frac{E}{1-v} \left[c_0^{1-n} + \frac{B(n-1)}{2} \left(\frac{E}{1-v} \right)^n t \right] i$$
 (2.3)

При $t=t_*$ после снятия внешних нагрузок для остаточных деформаций будем иметь $\epsilon_{met}=\epsilon_{ymet}=\epsilon_0-\frac{1}{2}$ $\sigma_0(t_*)$. Эта величина в силу граничных условий (2.2) для нулевого приближения должна равняться ϵ_* следовательно, из (2.3) найдем

$$c_0 - \left[c_0^{1-n} + \frac{B(n-1)}{2} \left(\frac{F}{1-\nu} \right)^n t_{\bullet} \right]^{\frac{1}{1-n}} = c \tag{2.4}$$

Легко видеть, что уравнение (2.4) относительно c_0 имеет только один корень, причем $c < c_0 < c + \left\lceil \frac{B(n-1)}{2} \binom{E}{1-\nu} \right\rceil^n t_* \right\rceil_{1-n}^{1}$.

Для нахождения последующих приближений все напряжения, перемещения и деформации при представляем в виде рядов по стереням в. Используя обычную метолику [4], из (2.1) для скоростей полных деформаций k-ого приближения получим

$$\frac{\partial u_{xk}}{\partial x} = \frac{1}{E} \left(z_{xk} - v z_{yk} \right) + \frac{Bz}{4} - (n-3) \left(z_{1k} - z_{yk} \right) + \gamma_{x0k}$$

$$z_{yk} = \frac{\partial u_{yk}}{\partial y} - \frac{1}{E} \left(z_{2k} - z_{yk} \right) + \frac{Bz^{n-1}}{4} \left(z_{2k} - z_{yk} \right) + \gamma_{20k}$$

$$\varepsilon_{xyk} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} \right) - \frac{1}{E} - z_{xyk} + \frac{Bz^{n-1}}{4} (n+3) \left(1 + z_1 \right) z_{2k} + z_{xy0k}$$

$$(2.5)$$

тде $\gamma = \frac{3-n}{3+n} \left(-1 < \gamma_1 < \frac{1}{2}\right)$ η_{x0k} , η_{y0k} , η_{xy0k} —функции координат и времени, зависящие от компонент напряжений не выше k-1 приближения. Так для первого приближения $\eta_{x0} = \eta_{xy01} = 0$, для второго

$$\eta_{x02} = \frac{1}{1!} (n-1)[(n+9)z_{x1}^2 - (n-3)z_{y1}(z_{y1} - 2z_{y1}) - 12z_{y1}^2]
\tau_{x02} = \frac{Bz_0^{-2}}{1!} (n-1)[(n+9)z_{y1}^2 + (n-3)z_{x1}(z_{x1} + 2z_{y1}) + 12z_{y1}^2]
\tau_{xy02} = \frac{2R_0n^{-2}}{1!} (n-1)z_{xy1}(z_{x1} - z_{y1})$$

В дальнейшем индексы $_{a}k^{*}$ в (2.5) всюду опустим, считая функции η_{10} , η_{30} , η_{390} известными для каждого рассматриваемого приближения.

Получим общие выражения для напряжений и перемещений при $0 \le t < t_*$. Для этого введем функцию напряжений $\Phi = \Phi(x, y, t)$, так что [5];

$$= -\frac{\partial^2 \Phi}{\partial y^2}. \qquad z_y = \frac{\partial^2 \Phi}{\partial x^2}. \qquad z_y = -\frac{\partial^2 \Phi}{\partial x \partial y}$$
 (2.6)

Подставляя (2.5), (2.6) в известное уравнение совместности скоростей деформаций и учитывая (2.3), получим

$$\Delta \Delta \Phi - (a + bt)^{-1} \Delta \Delta \Phi = F_0(x, y, t) \tag{2.7}$$

где $\Delta\Delta$ —бигармонический оператор, $a=\frac{4c_0^{1-n}(1-v)^{n-1}}{BE^n(n-1)}, \ b=\frac{2(n-1)}{(1-v)(n+3)},$ $F=E\left(2\frac{\partial^2 \eta_{10}}{\partial x \partial v}-\frac{\partial^2 \eta_{10}}{\partial x^2}-\frac{\partial^2 \eta_{10}}{\partial v^2}\right)$

Интегрируя обыкновенное дифференциальное уравнение (2.7) (относительно $\Delta\Delta\Phi$) по времени и учитывая, что при $t{=}0$ $\Delta\Delta\Phi$ 0 (что соответствует упругому распределению напряжений), найдем

$$\Delta \Delta \Phi = (a + bt)^{-1/b} \int_{0}^{t} (a + bt)^{1/b} F_{0} dt$$
 (2.8)

Предполагая, что функции η_{x0} , η_{y0} , η_{xy0} при любом 0 (яв-ляются аналитическими в занятой пластиной области плоскости и переходя к комплексиым переменным z=x+iy, z=x+iy, (2.8) можно представить в форме

$$16\frac{\partial^{4}V}{\partial z^{2}\partial z^{2}} = -E(a+bt)^{-1/b} \int (a-bt)^{1/b} \left(\frac{\partial^{2}\epsilon}{\partial z^{2}} - \frac{\partial^{2}\epsilon}{\partial z^{2}} + 2\frac{\partial^{4}I}{\partial z\partial z}\right) dt \qquad (2.9)$$

rae
$$V(z, \overline{z}, t) = \Phi\left(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2t}, t\right)$$
 $= \int_{0}^{t} (\eta_{y0} - \eta_{z0} + 2i\eta_{xy0}) dt$, $\overline{z} = \int_{0}^{t} (\eta_{y0} - \eta_{z0} + 2i\eta_{xy0}) dt$

$$=\int\limits_{0}^{t}(\eta_{y0}+\eta_{x0}-2i\eta_{xy0})dt,\ I-\int\limits_{0}^{t}(\eta_{x0}+\eta_{y0})dt.$$
 (При указанной замене все

аналитические функции переменных x и у аналитически продолжаются в область комплексных значений при подстановке: $x = \frac{1}{2}$

 $y = \frac{1}{2i}$ при этом z и z считаются независимыми комплексными переменными. Законность такой замены и соответствующих операций доказана в [6]).

Общее решение (2.9) запишем в виде

$$V = V_0(z, \overline{z}, t) + V_1(z, z, t) + V_2(z, \overline{z}, t)$$
 (2.10)

rge
$$V_0 = -\frac{E}{16} (a+bt)^{-1} I^n \int_0^1 (a+bt)^{1/2} (F+F+2a) dt$$
, $F = \int_0^x \left(\int_0^x e dz \right) dz$

$$\overline{F} = \int_{0}^{\overline{z}} (\int_{0}^{\overline{z}} \overline{dz}) d\overline{z}, \quad Q = \int_{0}^{\overline{z}} (\int_{0}^{\overline{z}} \overline{dz}) d\overline{z}, \quad a \text{ функции } V_1 \text{ и } V_2$$
—бигармо-

инчиы, то есть
$$V_i=rac{1}{2}\left[zarphi_i(z,t)+zarphi_i(\overline{z},t)+\chi_i(z,t)+\overline{\chi_i(z,t)}
ight]$$
 $(i=1,2)$

[5], причем последние выбираются таким образом, что сумма V_0+V_1 соответствует решению, дающему нулевые нагрузки на L в любой момент t: 0 — t а V_2 решению задачи теории упругости с заданными граничными условними, записящими от времени Введем обозначает дифференцирование по z.

Компоненты напряжений определяются из соотношений (2.6), которые в переменных z, z можно записать как

$$z_x + z_y = 4 \frac{\partial^2 V}{\partial z \partial z}, \quad \alpha_y - \alpha_x + 2i\alpha_{xy} = 4 \frac{\partial^2 V}{\partial z^2}$$
 (2.11)

Определим компоненты перемещений и их скоростей при для чего из первого уравнения (2.5) вычтем второе и прибавим третье, умноженное на 2i. Получившееся равенство с введением комплексного перемещения w u, iu, и с учетом (2.3), (2.11) можно представить в ниде

$$2\frac{\partial w}{\partial z} = -\frac{4(1+v)}{E} \frac{\partial^2 V}{\partial z^2} - \frac{4(1+v_1)}{E(a+bt)} \frac{\partial^2 V}{\partial z^2} - \frac{1}{E(a+bt)}$$

откуди

$$\overline{z} = -\frac{2(1+\epsilon)}{E} \frac{\partial V}{\partial \overline{z}} - \frac{2(1+\epsilon)}{E(a+bt)} \frac{\partial V}{\partial \overline{z}} - \frac{1}{2} \int_{0}^{\overline{z}} \overline{z} d\overline{z} + f_1(z,t)$$
 (2.12)

Неизвестную функцию $f_1 = f_1(z, t)$, входящую в (2.12), определим из условия удовлетворения сумме первых двух уравнений (2.5), которую можно записать в форме

$$\frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} = \frac{4(1-v)}{E} \frac{\partial^{2}V}{\partial z\partial z} + \frac{4(1-v_{1})}{E(a-bt)} \frac{\partial^{2}V}{\partial z\partial z} + I$$
 (2.13)

Подставляя (2.12) и аналогичное представление для ω в (2.13) и учитывая выражение (2.10) для V, получим $f(-\frac{4}{E}(\phi-\frac{\phi'}{a-bt})=$

 $=-\frac{1}{a-bt}=ic_1(t), \quad c_1(t)$ —действительная функция, откуда $f_1(z,t)=\frac{4}{E}\Big(\dot{q}+\frac{\varphi}{a-bt}\Big)+c_1(t)=-c_2(t), \quad c_2(t)$ -комплексияя функция. Отбрасывая в выражении для f_1 члены $c_1=c_2$, дающие только жесткое сме-

щение, и учитывая (2.10), (2.12), после некоторых упрощений найдем

Интегрируя (2.14) по времени от 0 до 1 и приводя некоторые выкладки, получим

$$w = \frac{\sqrt{1-a}}{8} (a+bt)^{-1/b} \frac{\partial}{\partial \overline{z}} \int_{0}^{t} (a+bt)^{1/b-1} (F+\overline{F}+2a)dt - \frac{1-a}{8} \frac{\partial}{\partial \overline{z}} \times$$

$$\times (F - xF - 2Q) = \frac{1+x}{E} \left(x - xF - y - z\right) + \frac{1+x}{E} \int_{0}^{t} \frac{x - xF - z}{a - bt} dt \qquad (2.15)$$

В (2.15) учтено, что при t=0 F=F=Q=0.

После разгрузки при $t=t_*$ будем иметь выражения для остаточных напряжений и перемещений, получающиеся из (2.10), (2.11), (2.15) путем вычитания членов, соответствующих значениям функций $\varphi_2 = \varphi_2(z,t)$ и этот момент времени. Так для остаточных перемещений пайдем

$$w_{xx} = x_1(z, \overline{z}) + \frac{1+v_1}{E} \int_{E}^{v_1v_1 - v_2 - v_3} dt$$
 (2.16)

$$g_1(z,\overline{z}) = \frac{1}{8} (a+bt_*)^{-1/2} \int_0^1 (a-bt)^{1/b-1} \frac{\partial}{\partial \overline{z}} (F+F+2Q) dt + \frac{1+\nu}{8} \frac{\partial}{\partial \overline{z}} \times$$

$$\times (F - zF + 2Q)|_{t=t_{\bullet}} + \frac{1+v}{E} \left(v_{\bullet} - z\overline{\varphi}_{1}^{*} - \overline{v}_{1} \right) = + \frac{1+v}{E} \int_{0}^{t} \frac{v_{\bullet}\varphi - \overline{\varphi}_{1}^{*} - \overline{v}_{1}}{a+bt} dt$$

На общих соотношений (2.10), (2.14), (2.16) очевидна последовательность решения исходной релаксационной задачи для любого приближения. По известным значениям (z,t), $\varepsilon = \varepsilon(z,z,t)$, I = I(z,z,t) находятся F,F,Q. Q, являющиеся функциями тех

же переменных z, z и t, а следовательно, из (2.10) и $V_0 = V_0(z,z,t)$. Затем на L вычисляется значение $f = \frac{\partial V_0}{\partial x} + t \frac{\partial V}{\partial y} = 2 \frac{\partial V_0}{\partial z}$, которое компенсируется выбором функций $z_1 = \varphi_1(z,t)$ и $z_2 = t$. Эта задача рассмотрена в [5]. После того, как наидены φ_1 и φ_1 , для функций

$$\varphi_{a}(z) = \int_{0}^{z} \frac{\varphi_{a}(z)}{a+bt} dt \qquad \varphi_{a}(z) = \int_{0}^{z} \frac{\varphi_{a}(z)}{a+bt} dt \qquad (2.17)$$

из (2.16) получим на $L: \frac{1+v_1}{E}(\mathbf{x}_1 \varphi_3 + z \overline{\varphi}_3 + \overline{\varphi}_3) = w_{ort} - g_1$, где правая часть этого равенства известна. Подобная задача нахождения φ_2 и также рассмотрена в [5].

Кроме того, поскольку при $0 \leqslant t < t_*$ w = 0 на L, из (2.14) найдем:

$$z_{2}-z_{2}-\bar{z}_{2}+\frac{A}{a+bt}(z_{2}-z_{3})=z_{3}(z_{2}-z_{3})|_{L}$$

$$g_{3}(z,\bar{z},t)=\frac{2(z_{3}-z_{3})}{1+\nu}(a+bt)^{-1}\frac{\partial V_{0}}{\partial z}-\frac{B}{8}\frac{\partial}{\partial \bar{z}}(F-z\bar{F}+2Q)-\frac{A}{a+bt}(z_{3}-z_{3}-\bar{\psi}_{1})-\frac{A}{a+bt}(z_{3}-z_{3}-\bar{\psi}_{1})$$

$$A=\frac{1+\nu_{1}}{1+\nu} \qquad (2.18)$$

Граничное условие (2.18) с дополнительными соотношениями (2.17) служит для нахождения функций $\varphi_2 = \varphi_2(z, t)$ и $\psi_2 = \psi_2(z, t)$.

Не останавливаясь на простых, но громоздких выкладках, основанных на использовании полученных выше зависимостей и общих ириемов [5], и качестве примера приведем решение задачи о круглой пластинке единичного радиуса, которая в момент $t = t_{\rm s}$ после снятия внешних нагрузок должна иметь остаточные радиальное и окружное перемещения на границе $L: u_t = c = 6 \cos 3\theta$, $u_0 = 63 \sin 3\theta$,

Решение для нулевого приближения дается формулами (2.3), (2.4), то есть при t следует задать на L неремещения: $u_t - c_0$, $u_t = 0$, при этом радиальное напражение $z_t - z_0(t)$.

Для первого приближения будем иметь:

$$V_{0} = \varphi_{1} = \psi_{1} = 0, \quad \varphi_{2}(z, t) = \frac{D}{1 + \sqrt{2}} (a - bt)^{-\frac{A}{b} \cdot \frac{\lambda_{1}}{2}} z^{4}, \quad \psi_{2}(z, t) = \frac{E}{1 + \sqrt{2}} \left[\frac{4D}{2} (a - bt)^{-\frac{A}{b} \cdot \frac{\lambda_{1}}{2}} + D_{2}(a + bt)^{-\frac{A}{b}} \right] z^{2}$$

$$D_{1} = \frac{2}{2} \left[a - \frac{A}{b} - (a + bt)^{-\frac{A}{b}} \right] z^{2}$$

Отсюда следует, что на границе до момента разгрузки при надо фиксировать перемещения $u_1+u_2=a^{-\frac{A}{b}}=D_1+a^{-\frac{A}{b}}D_2$ о,

при этом внешние нагрузки на L при 0 определяются следующим образом: $z_r = \iota a_{rq} = \frac{E}{1+\nu} \left[\frac{4D_1}{z} (a+bt)^{-\frac{A}{E}} z^{-3} - 2D_2(a-bt)^{-\frac{A}{E}} z^{-3} \right],$ $z=e^{i\theta}$.

Получение второго и последующих приближений не вызывает никаких принципиальных затруднений, однако соответствующие выражения очень громоздки, поэтому здесь не приводятся,

ON AN INVERSE PROBLEM IN THE CREEP THEORY 1. Ym. TSVELODUB

ՍՈՂՔԻ ՏԵՍՈՒԹՅԱՆ ՄԻ ՀԱԿԱԳԱՐՉ ԽՆԳՐԻ ՄԱՍԻՆ

Haidendine of

Ապացուցված է սողջի տեսության Հակադարձ ռելակսացիայի խնգրի լուծման միակության քեորեմը։ Գրգռումների մեթոդով բաբակ սալի Համար ստացված է այդ խնդրի ընդ:անուր լուծումը, երբ սալի վերջնական վիճակը "իչ է տարբերվում Համասեռ դեֆորմացվածջից։

ЛИТЕРАТУРА

- Ивалодуб Н Ю Обратиля задача теории ползучести для пеупрочиношегося тела. — Динамика силошиой среды: Сб. статей Новосибирск: Ин-т гидродиначики СО АН СССР, 1981, вып. 66. с. 126—137.
- Ивеледуб И. Ю. Пекоторые обратные задачи изгиба пластии при ползучести.
 Нав. АН СССР. МТТ, 1985. № 5. с. 126—134.
- 3 Работнов Ю. Н. Ползущеть жементов конструкции М.: Наука, 1966-752 с.
- 4 Иолев Д. Д., Ершов Л. В. Метод возмущений в теории упругопластического тела, М. Наука, 1978. 208 с.
- Мускелишвили Н. И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966, 707 с.
- 6 Вежуа И. И. Повые методы решения эллиптических уравнений, М.—Л.: ОГИЗ 1948, 296 с.

Институт гидродинамики им М. А. Лаврентьева СО АН СССР

> Поступила в редакцию 17,1X.1984