ՀԱՑԿԱԿԱՆ ՍՍՀ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՑԻ ՏԵՂԵԿԱԳԻՐ

нзвестия академии наук армянской сср Մъргабріща XL. № 2, 1987 Механика

УДК 539.376

ОБ ОДНОМ АСИМПТОТИЧЕСКОМ МЕТОДЕ РЕШЕНИЯ СВЯЗАННОЙ ЗАДАЧИ ТЕРМОВЯЗКОУПРУГОСТИ ДЛЯ ОБОЛОЧЕК ВРАЩЕНИЯ ПРИ ЦИКЛИЧЕСКИХ НАГРУЖЕНИЯХ

НОРКШЕЯН В. М.

Возрастающие масштабы практического использования полимеров и композитов привели к необходимости экспериментального исследования и теоретического обоснования физических, и частности, термомеханических процессов в средах данного типа. Особый интерес вызывает изучение гермовязкоупругих тонкостенных конструкций [1— 6].

В настоящей работе рассмотрен случай осесимметричных циклических колебании оболочек вращения с учетом связности тепловых и механических эффектов. Гипотеча термореологической простоты матернала не привлекается; при постановке краевой задачи учитывается осциллирующая составляющая температурного поля [6].

Решение исходной системы обыкновенных дифференциальных уравнений 14 норядка осуществляется разложением полей перемещений и температур на регулярную и погранслойную составляющие.

Особенность исследуемой задачи состоит в том, что при построении погранслоя принципиально невозможно ввести локальную систему координат у краев оболочки, использование которой позволило бы одновременно удовлетворить всем граничным условиям. Указанная трудность преодолевается в работе построением двух существенно различных погранслосв.

1. Постановка задачи. Рассматриовется тонкая термовязкоупругая. анизотропная, неоднородная оболочка вращения толщины h с гланными раднусами кривизны R₁ и R₂: h R₂ <∞. В качестве криволинейных координат выбираются толщинная координата z, угол x, образованный осью вращения и нормалью к средниной поверхности. н угол поворота произвольного осевого сечения оболочки

$$|z| \leq \frac{h}{2}; \quad x_0 \leq x \leq x_1; \quad 0 \leq q \leq 2\pi$$

Используемая в настоящей работе модель термовязкоупругой среды получена на основе градиционного гермодинамического анализа одного частного представления функционала свободной энергии Гельмгольца, рассмотренного в работе [7].

1 Известия АН Армянской ССР, Механика, №2

$$p\dot{\upsilon}(t) = \iiint \frac{1}{2} E^{njkl}(r, t, \tau, \eta) \frac{\partial \varepsilon_{k\ell}(\tau)}{\partial \tau} \frac{\partial \varepsilon_{k\ell}(\eta)}{\partial \eta} - \varphi^{nj}(r, t, \tau, \tau) \frac{\partial \varepsilon_{nj}(\tau)}{\partial \tau} \frac{\partial b(\eta)}{\partial \eta}$$
$$- \frac{1}{2} m(r, t, \tau, \eta) \frac{\partial \theta(\tau)}{\partial \tau} \frac{\partial \theta(\eta)}{\partial \eta} \bigg|_{disk}$$

где $f(r, t, -\tau_i) = f(r, T(r, t-\tau), \varepsilon_{nj}(r, t-\tau), T(r, t-\tau_j), \varepsilon_{kl}(r, t-\tau_j), T(r,t), \varepsilon_{mn}(r, t), t = t-\tau_j, b(t) = T(r, t) - T(r, 0); r - раднус-вектор материальных точек.$

Предлагаемая модель способна отразить ряд свойств реальных полимеров: эффекты механической и тепловой «памяти»: зависимость термомеханических характеристик материала как от предистории, так и от текущих значений деформаций и температуры. В случае гармонических колебаний около положения равновесия определяющие уравнения для тензора напряжений и энтропии, совместные со вторым законом термодинамики в форме перавенства Клаузиуса-Дюгема, имеют вид, апалогичный соотношениям Дюгамеля-Пеямана в теории термоупругости, [7]:

$$\sigma^{nj} = E^{njkl}(T, t\omega) \varepsilon_{kl} - \varphi^{nj}(T, t\omega) \delta; \quad \rho S = \sigma^{nj}(T, t\omega) \varepsilon_{nj} + m(T, t\omega) \delta$$
(1.1)

где а^{ні} комплексный тензор напряжений: S-удельная комплексная энтрония.

В работе [6] из принцина Лагранжа, гипотез Кирхгоффа-Лява, допущения о линейном законе распределения температуры по толщине с учетом определяющих уравнений (1.1) получена следующая привсденная система уравнений движения и теплопроводности для осесимметричных деформаций:

$$a_{1}u'' + a_{2}u' + a_{3}u + \varepsilon a_{4}w''' + \varepsilon a_{5}w'' + a_{8}w' - a_{-}w = - + A_{2}b' + \varepsilon^{-1}A_{3}b_{+}A_{1}b_{-}$$

$$= b_{0}u''' + b_{1}u' + b_{1}u' + b_{4}u' + b_{4}w'' + b_{2}w'' + \varepsilon b_{-}w' + b_{8}w =$$

$$= Q + B_{1}b'' + \varepsilon B_{2}b'' - B_{3}b' + \varepsilon B_{3}b' + \varepsilon^{-1}B_{5}b' + B^{-1}$$
(1.2)

Граничные условия на боковых поверхностях (x=x₀, x=x₁) выбираются в одном из следующих сочетаний:

$$A(l) + B(j) + C(k) + D(n), \quad l=1, 2, 3; j, k, n=1, 2,$$

где

A 1)
$$T'|_{x_k} = T^*_{k}; \quad \theta'|_{x_k} = \theta'_{k}, \quad n, \ k = 0, \ 1$$

2) $c_a T' - c_{a+1} T' + c_a T'|_{x_k} = q^*_{ak}$

$$\begin{aligned} & + e_{n+1}b' + e_nb|_{x_k} = \overline{q}_{n,n}^{-1}, n, k=0, 1\\ 3) e_n^{n}T' + e_{n-1}T' + e_n^{-1} + g_n|_{x_k}=0\\ & e_n^{0'} + e_{n-1}b' + s_n^{0} + s_{n+1}T + g_n|_{x_k}=0\\ & e_n^{0'} + e_{n-1}b' + s_n^{0} + s_{n+1}b + \overline{g}_{n}|_{x_k}=0; n, k=0, 1\\ 8 & 1) u|_{x_k} = u_k^{+}\\ 2) p_1u' + p_2u + p_3w'' + p_3w' + p_5w + v_0^{0} + p_1^{-1} = F, k=0, 1\\ C & 1) w|_{x_k} = w_k^{+}\\ 2) e_1u' + e_1u + q_4w'' + q_5w'' + q_5w' + q_5w + q_9b' + q_9b' + q_9b' + q_1b' + q_1b_{n-1} = F_k, k=0, 1\\ D & 1) w'|_{x_k} = w_k^{+}\\ 2) e_1u' + e_2u + e_5w'' + e_4w' + e_5w + e_9^{0} + e_1b|_{x_k} = M_s^{+}, k=0, 1\\ 3accb T(x, t) = T(x) + Re[9(x)exp(int)] - accontor and remepatyps of contor and the kone formula is the kon$$

$$\begin{array}{c} \overset{k}{\longrightarrow} 0 \stackrel{0}{\longrightarrow} 0 \stackrel{0}{\longrightarrow} 0 \stackrel{k+1}{\longrightarrow} 0 \stackrel{1}{\longrightarrow} 0 \stackrel{1}{\longrightarrow$$

Здесь $E^{n/h_1}(T, T, \omega) = F_1(T, \omega) + iE_2^{n/h_1}(T, T, \omega)$ —комплексный тено 1 $ie_{2n/}$ —комплексный тензор деформаций: $\varphi^{n/}(T, T, i\omega) = \varphi^{n/h_1}(T, T, \omega)$ $(T, T, \omega) = m_1(T, T, \omega)$ комплексный тензор теплового расширения: $m(T, T, i\omega) = m_1(T, T, \omega)$ $+ im_2(T, T, \omega)$ —приведенный комплексный коэффициент теплоемкости; k = 0, 1 (T, T, ω)

Компоненты тензора деформаций имеют вид

$$\varepsilon_{11} = \varepsilon_{11} + z\varepsilon_{11} = \frac{u' + w}{r_1} - \frac{z}{r_1} \left(\frac{w' - u}{r_1}\right)'$$

$$\varepsilon_{12} = \varepsilon_{12} + z\varepsilon_{22} = \frac{u \operatorname{ctg} x + w}{r_1} - z \frac{\operatorname{ctg} x}{r_2} \frac{w' - u}{r_1}$$
(1.4)

 $\mathbf{s}_{33} = \mathbf{s}_{33} + z\mathbf{s}_{33} = \frac{\varphi^{33}}{E^{3333}} \theta - \frac{E^{333a}}{E^{3333}} \mathbf{s}_{aa} + z \left[\frac{\varphi^{33}}{E^{3323}} \theta - \frac{E^{33aa}}{E^{3323}} \mathbf{s}_{aa} + \left(\frac{\varphi^{33}}{E^{3333}} \right)_{T}^{'0} \theta - \left(\frac{E^{33aa}}{E^{33}a} \right)_{T}^{'0} \right]$

2. Выбор разрешающих функций. Пе нарушая общности, положим, что Q-0(в) и зяданы следующие граничные услобия:

rae $f = (T, 0); k, j = 0, 1; p_0 = -\frac{1}{2}; p_1 = -1.$

Решение системы (1.2) строится в виде

$$Z = Z^{(1)}(z_1) + Z^{(1)}(z_1) - Z^{(1)}(z_1) + Z^{(1)}(z_2) + Z^{(1)}(z_2)$$

где

$$Z = (g_1, g_2, u, w); \quad g_1 = (\tilde{T}, \tilde{\theta}); \quad g_2 = (\tilde{T}, \tilde{\theta})$$

$$x = x_0 + \varepsilon^{1/2} \varepsilon_2 = x_0 + \cdots - \varepsilon^{1/2} \varepsilon_1 = x_1 - \varepsilon^$$

$$u^{1}(x) = \varepsilon^{-1}(u_{0}^{1} - \varepsilon^{1/2}u_{1}^{1} + \varepsilon u_{2}^{1} + \dots), \quad w^{1}(x) = \varepsilon^{-1}(w_{0}^{1} - \varepsilon^{1/2}w_{1}^{1} - \varepsilon u_{2}^{1} + \dots)$$

$$g^{1}(\xi_{1}) = \varepsilon^{-1}(u_{0}^{1} + \varepsilon^{1/2}u_{1}^{1} - \varepsilon u_{2}^{1} + \dots), \quad u^{n}(\xi_{1}) = \varepsilon^{-1}(u_{0}^{1} + \varepsilon^{1/2}u_{1}^{1} - \varepsilon u_{2}^{1} + \dots)$$

$$w^{11}(\xi_{1}) = \varepsilon^{-1}(w_{0}^{1} + \varepsilon w_{2}^{1} + \dots), \quad (2.3)$$

$$g_{11}^{(1)} = g_{12}^{(1)} + e^{ig_{12}^{(1)}} + e^{ig_{12}^{(1)}} + \dots \quad g_{2}^{(1)}(\zeta_{1}) = e^{-i}(g_{22}^{(1)} + e^{ig_{22}^{(1)}} + g_{22}^{(1)} + \dots)$$
(2.4)

 $u^{(i)}(\cdot,) = u_0^{(i)} + s^{ij} u^{(i)} + z u_2^{(i)} + \dots \quad w^{(i)}(\cdot,) = w_0^{(i)} + s^{ij^2} w_1^{(i)} + z w_2^{(i)} + \dots$

 $Z^{(1)}(\mathfrak{l}_{\mathfrak{s}})$ и $Z^{(1)}(\mathfrak{l}_{\mathfrak{s}})$ имеют такой же вид.

Повышение (или понижение) порядка малости по е краевых условий и нагрузки Q приводит к повышению (или понижению) порядка малости значений разрешающих функций (2.2)—(2.4), но не изменяет общей схемы решения задачи.

В настоящей работе при реализации первого и второго итерационных процессов ограничимся определением главных членов в разложениях (2.2)—(2.4), поскольку все последующие находятся виалогично.

В дальнейшем в очевидных случаях индексы ()¹, ()¹¹, ()¹¹, ()¹¹ опускаем.

3. Первый итерационный процесс. Переходня к построенню регулярного решения. После подстановки (2.2) в (1.2) с учетом разложения коэффициентов

$$(a_{j}, A_{j}, b_{j}, B_{j}, c_{j}, d_{j}) (T, T) = Y(T, T) = Y(T_{0}, T_{0}) + \varepsilon^{1/2} Y(T_{0}, T_{0}) + \dots$$

получаем последовательность систем обыкновенных дифференциаль-

ных уравнений относительно $T_{j}, T_{j}, \sigma_{j}, \theta_{j}, u_{l}, w_{l}, j=0, 1, \dots$ Введем обозначения

$$f=(I, b); c_{I}=(c_{1}, c_{2}); d_{I}=(d_{1}, d_{2})$$

На первом этапе имеем

$$f_0(x) = -\frac{c_f}{c_0}, \quad f_0(x) = -\frac{d_0f}{d_0} - \frac{d_0f}{d_0} -$$

Перемещения и и прогибы и определяются из следующих уравнений:

$$F_{1}(x)u_{0}^{*}+F_{4}(x)u_{0}^{*}+F_{4}(x)u_{0}=F_{4}(x), \quad \varpi_{0}(x)=\frac{b_{0}-b_{0}u_{0}-b_{0}u_{0}}{b_{0}} \quad (3.1)$$

3 geol. $F_1(x) = a_1 - a_2$; $F_2(x) = a_2 - a_3 \left(\frac{b_1}{b_1}\right) - a_3 \frac{b_2}{b_2} - a_3 \frac{b_3}{b_1}$

CI

$$F_{4}(x) = a_{1} - a_{4}\left(\frac{b_{3}}{b_{3}}\right) - \frac{a_{4}}{b_{5}} \qquad F_{4}(x) = a_{5} - a_{4}\left(\frac{b_{5}}{b_{5}}\right) - a_{5}\frac{b_{6}}{b_{6}}$$

Выбор метода решения уравнения (3.1) связян, в основном, с геометрией оболочки. Для оболочек, замкнутых в полюсе, коэффициенты $F_k(x)$, k=1, 2, 3 имеют особенность при x=0; в этом случае ограниченное решение уравнения определяется с точностью до одной константы O^i .

Анализ последующих систем позволяет получить регулярное решение, удовлетворяющее исходной системе (1.2) с любой заданной точностью по г.

4. Второй итерационный процесс. Для нахождения первого погравслоя у крям x=x, вводится локальная координата = x=x₁--

Как и при построении регулярного решения, первый погранслой паходится из последовательности систем полученных подстановкой (2.3) в однородную систему (1.2) с заменей х на

Главные члены разложения (2.3), удовлетворяющие условию убывания при ∞ , определяются с точностью до четырех постоянных G_{i}^{μ} , j=1, 2, 3, 4

$${}^{0}_{0} = G^{11} \exp(kz), \quad {}^{1}_{0} = \frac{d}{d} G^{11} \exp(kz), \quad {}^{0}_{0} = G^{11}_{1} \exp(kz), \quad {}^{1}_{0} = \frac{d}{d} G^{11} \exp(kz)$$
(4.1)

$$u_{0} = H_{1} \exp(i_{1}\xi) + H_{2} \exp(i_{2}\xi) + H_{4} \exp(i_{3}\xi)$$

$$w_{0} = G_{1}^{11} \exp(i_{1}\xi) + G_{1}^{11} \exp(i_{2}\xi) + HG_{4}^{11} \exp(i_{3}\xi)$$

rae $p_1 A^4 + p_2 A^2 + p_3 = 0$, $\operatorname{Re}(i_{12}) < 0$; $H = B_1 - B_3 - \left(\frac{b_3}{ka_1} + \frac{b_3}{a_1}\right) A_1$

$$H_{k} = \left(\frac{a_{k}}{a_{1}} \cdot k + \frac{a_{k}}{a_{1}} \cdot \frac{1}{a_{2}}\right) \tilde{G}_{k}^{11}, \ k = 0, \ 1$$

$$H_{\mathbf{s}} = \left(\frac{a_{1}}{a_{1}} + \frac{a_{2}}{a_{1}} + \frac{1}{k} + \frac{1}{a_{1}}\right) G_{i}^{(1)}; \ p_{1} = b_{1} - \frac{a_{2}}{a_{1}} + a_{3}; \ p_{2} = b_{4} - \frac{b_{2}}{a_{2}} + a_{6} - \frac{a_{4}}{a_{1}} + b_{6} - \frac{a_{6}}{a_{1}} + b_{6} -$$

Для получения второго погранслоя у края x=x, вволится локальная координата

$$x = x_1 - \varepsilon \mathbf{1}, \ldots, \mathbf{1}$$

После замены x на и подстановки (2.4) в однородную систему (1.2) получаем последовательность систем для определения (T₁, T₁, 9₁, 9₁, и₁,

Убывающее при → ∞ решени перной системы находится с точностью до двух постоянных G₁ и G¹⁰:

где

$$t_1 = t_2 + t_3 = 0$$
, Re(1)<0: $M = \frac{c_2}{c_1} - \frac{1}{1} \frac{c_4}{c_1}$, $A = A_1 M - A_2$, $B = -B_1 M + B_2$

$$l_1 = d_2 - d_1 \frac{c_1}{c_1}, \quad l_1 = d_1 \frac{c_1}{c_1} + d_2 \frac{c_2}{c_1} - d_4, \quad l_2 = d_1 - d_2 \frac{c_1}{c_1}, \quad a_j = a_{j0}, \quad b_j = b_{j0}$$

$$c_j = c_{j0}, \quad d_j = d_{j0}, \quad B_j = B_j, \quad A_j = A_j, \quad f_{j0} = f_j(x = x_1) = f_j(x = 0)$$

Построеннем второго погранслоя завершается решение задачи: иаличие семи произвольных констант позволяет удовлетворить всем граничным условиям при $x = x_1$.

Погранслон при x=x₀ строятся аналогичным образом.

В заключение коротко воспроизведем схему построения решения. 1) Выбором констант $(G_{i}^{(1)})_0$ и $(G_{i}^{(1)})_0$ однозначно определяется вектор $f_{sh}^{(1)}$ удовлетворяющий краевым условиям

$$\hat{f}_{k0}^{1}(\xi_{k}=0) = \hat{f}_{k0}$$

2) Выбором констант ($G_1^{(1)}$), и ($G_2^{(1)}$), определяется вектор $\hat{f}_{k0}^{(1)}$ такой, что

$$f_{k0}(z_{k}=0) + f_{k0}^{11}(z_{k}=0) = f_{k0}$$

3) И снова, выбором констант (G¹¹), и (G¹¹), определяется f_{k1}^{111} - вектор из условий

$$\int_{k1}^{0} (\xi_k = 0) + \int_{k1}^{0} (\xi_k = 0) + \int_{k0}^{0} (x = x_k) = \int_{k1}^{0} (x = x_k$$

н т. д.

Перемещения и и прогибы w строятся по следующей схеме.

 Используя (G¹¹)₀ и (G¹¹)₀, находим прогиб ш¹¹, удовлетворяющий вместе со своей производной краевым условиям

 $w_{k0}(z_k=0) = w_{k0}, \quad (w_{k0}^{(1)})'(z_k=0) = w_{k0}$

2) Выбором константы (G¹_k)_о определяются и

$$u_{k0}^{I}(x=x_{k})+u^{II}(1_{k}=0)=u_{k0}^{\bullet}$$

н т. д.

5. Некоторые выводы и замечания. Проведенный анализ правомочен, если выполнено следующее условие:

$$\max\left\{|P_{i}|\right\}$$
(5.1)

то есть для сравнительно слабых нагружений, малых частот колебаний и тонких оболочек. Очевидно, что при этом не приходится ожидать значительного теплообразования в оболочке. Это обстоятельство позволяет пренсбречь в исходных уравнениях нелинейностью, которая

обусловлена зависимостью Р от Т и Т. А именно, полагаем

$$P(\stackrel{0}{T}, \stackrel{1}{T}) = \frac{P(\stackrel{0}{T}, \stackrel{1}{T}), \quad x \in D}{P(\stackrel{0}{T}, \stackrel{1}{T}), \quad x \in D}$$

где $D = \{x | x_0 + \delta < x < x_1 - \delta\}, \quad D = \{x | x_0 < x < x_0 + \delta \land x_1 - \delta < x < x_1\}, \quad 0 < \delta < \frac{x_1 - x_2}{x_1}.$

Нелинейность уравнений (1.2) связана также со структурой функций \hat{C} и \hat{D} . При построении решения осуществляется следующее разложение:

$$S(\mathfrak{e}_{jn}^{k},\mathfrak{e}_{jn}^{k},\mathfrak{e}_{jn}^{k},\mathfrak{g}_{1}^{k},\mathfrak{g}_{1}^{k},\mathfrak{g}_{1}^{k},\mathfrak{g}_{1}^{k},\mathfrak{g}_{1}^{k},\mathfrak{f}_{1}^{k},\mathfrak{f}_{1}^{k},\mathfrak{f}_{1}^{k},\mathfrak{f}_{1}^{k})-S(-S(++S)))$$

где $S = (\overset{k}{C}, \overset{k}{D})$; вектор $S = S (\overset{k}{\theta_{1}}, \overset{k}{T_{1}})$ определяет регулярную часть; вектор $S^{11} = S^{11}(\varepsilon_{fn}^{11}, \overset{k}{\theta_{1}}), \overset{k}{T_{11}} -$ перзый погранслой; $S^{11} = S^{11}(\varepsilon_{fn}^{1}, \varepsilon_{fn}^{11}, \varepsilon_{fn}^{$

Из проведенного исследования системы уравнений (1.2) при сделанных предположениях малости (5.1) следует, что в подавляющей части оболочки температурное поле определяется тепловыми условиями на лицевых понерхностих.

В качестве примера рассмотрим оболочку, с лицевых поверхностей которой осуществляется теплообмен с насшиными средами по закону Ньютона. Температурное поле вдали от краев оболочки определяется регулярной составляющей и имеет следующий вид;

$$\overset{0}{T}_{0}(x) = \frac{\overset{0}{\gamma} \cdot T^{*} + \overset{0}{\gamma} \cdot T^{-}}{\overset{0}{+}} - o(\varepsilon), \quad \overset{1}{T}_{0}(x) = -\frac{\overset{0}{\Lambda}_{33}}{\overset{0}{\Lambda}_{33}} \frac{\overset{0}{\gamma} \cdot \overset{0}{\gamma} - \overset{0}{\gamma} + \overset{0}{\Lambda}_{33}}{\overset{0}{-}} + \frac{\overset{0}{\gamma} \cdot \overset{0}{\gamma} \cdot \overset{0}{\gamma}_{33}}{\overset{0}{\Lambda}_{33}} + \frac{\overset{0}{\tau} \cdot \overset{0}{\gamma} \cdot \overset{0}{\gamma} \cdot \overset{0}{\gamma} + \overset{0}{\gamma} \cdot \overset{0}{\gamma} \cdot \overset{0}{\gamma} \cdot \overset{0}{\gamma} + \overset{0}{\gamma} \cdot \overset$$

Здесь τ^{\pm} — коэффициенты теплообмена с лицевых поверхностей; Λ^{nj} тензор коэффициентов теплопроводности; $T = \mathbb{R}_{+}(f^{*}\exp(i\omega t) - \tau enne$ ратура внешних сред.

Если T = - const. то с точностью o(-) в оболочке устанавливается однородное по x и лицейное по z температурное поле. В случае $\theta^{\pm}=0$ указаниное температурное поле также и стационарио с точностью $o(\epsilon^{3/2})$.

Что же касается приграничных областей оболочки, то здесь ос циллирующие температурные поля, задаваемые на боковых ло 55 верхностях, самым сушественным образом меняют картину напряженно-деформированного состояния в оболочке

Последнее утверждение проиллюстрируем на примере тонкого сферического купола, подверженного внешнему гармоническому нагружению. Боковая поверхность оболочки жестко защемлена и поддерживается при заданной температуре: с лицевых поверхностей осуществляется теплообмен с внешней средой по закону Ньютона.

Численный расчет проведен для купола, изготовленного из капрона-Б, термомеханические молули которого приведены в работе [8] Остальные нараметры принямаются следующими

w=0,1 pan/cex; R=0,1 m; $h=10^{-4}$ m; $x_1 = -/2$; $Q=10^{4}$ m/m²; T'=40 C;

 $T^{-}=20^{\circ}C; T^{\circ}=30^{\circ}C$

На фиг. 1 приведено распределение действительной и минмой составляющих окружных напряжений в зависимости от амплитуды температурных осцилляций на крвях оболочки (1): 0(11); 1(111).

Ил фиг. 2 принедены графики меридианального перемещения *и - и*, +*iu*, и прогиба *w = w*, *- iw*, для случая 5° = 0.

Проведенный численный анализ показывает, что для адекватного описания термонапряженного состояния вязкоупругих оболочек необходимо учитывать осцилляции тепловых полей.

8ԽՎԻԿ ԲԵՌՆԱՎՈԲՈՒՄՆԵՐԻ ԳԵԳՔՈՒՄ ՊՏՏՄԱՆ ԹԱՎԱՆԹԻ ՀԱՄԱՐ ՀԵՐՄԱԱՌԱՉԳԱՄԱԾՈՒՑԻԿՈՒԹՅԱՆ ԿԱՊԱԿՑՎԱԾ ԽԴԻՐՆԵՐԻ ԼՈՒԾՄԱՆ ՄԻ ԱՍԻՄՊՏՈՏԻԿ ՄՆԹՈԳԻ ՄԱՍԻՆ

Վ. Մ. ՊՈԲԿՇԵՑԱՆ

Ամփոփում

Ուսումնասիրվում է ասիմպառաիկ մեխոդի կիրառությունը ցիկրի բեռնավորումների դեպրում պատման բաղաներերի ջերմաառաձգամածուցիկության կապակցված ինդիրների անալիդի ճամար։ Ստացված է տեղափոխությունների ռեզուլյար և սաճմանային շնրահրի բաղագրիլների ճկվածրների և ջերմաստիճանների կառուցման օրևման։

Ցուլց է տրված երկու տարբեր սա:մահային շերահրի գոյությունը, որոնցից առաջինը պայմանավորված է թաղան¤ի յարժման Տավաստրումներով, իսկ երկրորդը ջերմաչադորդականության ՝ավաստրումներով։

AN ASYMPTOTIC METHOD OF SOLUTION OF COUPLED PROBLEM OF THERMOVISCOELASTICITY FOR SHELLS OF REVOLUTION UNDER PERIODIC LOADING

V. M. PORKSHEYAN

Summary

Asymptotic analysis of the coupled problem of thermoviscoelasticity for the shells of revolution under periodic loading has been studied. The expressions for the regular and boundary-layer solutions of displacements, flexures and temperatures are obtained. The existence of two types of boundary-layer solution has been shown, first of which is caused by the equations of motion, second—by the heat conduction equations.

ЛИТЕРАТУРА

- Ворович И. И., Сафроненко В. Г. О применении вяриационных принципов в связанных зядачах термовязкоупругих оболочек. -Изв АН СССР, МТТ, 1980. № 4. с. 166—173.
- Гуменюк Б. И., Карманхов В. Г., Киричок И. Ф. Сиязанные динамические задачи термовязкоупругости для пластии и оболочек - В ки.: Тр. Х Всесоюз, конф. по теории оболочек и пластии. Тбилиси: Менинереба, 1975, т. I, с. 374-382.
- Киричок И. Ф., Карниухов В. Г. Термомеханическое поледение гибких вязкаунрусих пластии и оболочек при инклических нагрузках.—Проблемы прочноста, 1979, № 3, с. 10—14.
- Колтунов М. А., Мирсанов М., Трояновский И. Я. Выпужденные колебания аяккоупругих осесняметричных оболочек.—В Динамика оснований, фундаментов и подзем. сооружений. Ташкент: 1977, с. 148—150.
- Недорезов П. Ф. К определению температурного поля в полимерной инлиндряческой оболочке при циклаческом погружении (техническая теория) —Прикладная теория упругости, Саратов, 1980. с. 28—33.

- 6. Поркшеян В. М. О постановке крачной задачи связанной термовязкоувругости Рук. деп. ВИНИТИ, № 3000—83 ДЕП, 1982–12 с.
- Поркшелк В. М. Об одном представлении функционала свябодной энертни в термовязкоупругости.—Рук. деп. ВИНИТИ, № 5095—82 ДЕП, 1982. 8 с.
 Степаненко Ю. П. К вопросу об уравнениях состоящия изотропного полимерного
- Степаненко Ю. П. К вопросу об уравнениях состоящия изотропного полимерного матеряала.— В ки. Механика сплошной среды. Ростов-на-Дону: Изд. РГУ, 1981. с. 115—133.

НИН мехавики и прикладной математики РГУ

Поступила в редакцию 15.VIII.1984