

Մեխանիկա

XXXIX, No 3, 1986

Механнка

УДК 539.3

О ПОДКРЕПЛЕНИИ ПЬЕЗОКЕРАМИЧЕСКОЙ МАТРИЦЫ, ОСЛАБЛЕННОЙ РАЗРЕЗАМИ, РЕГУЛЯРНОЙ СИСТЕМОЙ ТОНКИХ УПРУГИХ ВКЛЮЧЕНИЙ

ИВАНЕНКО О. А., ФИЛЬШТИНСКИР Л. А.

Решение ряда задач о подкреплении анизотропных пластии упругими ребрами или накладками и обзор рябот в этом направлении можно найти в книге [1].

Подкреиление анизотропных и изотропных пластии регулярной системой включений рассмотрено в [2]. Аналогичные вадачи для пьезокерамической полуплоскости содержатся в [3].

Постановка электрических и механических граничных условий на трешине в ньезоэлектрике обсуждалась в работе [4].

В настоящей статье рассматривается модель кусочно-однородной среды, представляющей собой пьезокерамическую матрицу, армированвую регулярной системой ленточных включений. При этом допускается наличие в матрице дефектов типа трещии. На основе решения указанной задачи электроупругости проводится осреднение пьезоупругих свойств такой регулярной структуры.

Приволятся результаты расчетов контактных усилий и усилий во включения, а также коэффициентов интенсивности напряжений и осредненных пьезомодулей.

1. Модель пьезокерамической матрицы с регулярчой системой оключений. Рассмотрим отнесенную к кристаллофизическим осям координат xyz неограниченную пьезокерамическую матрину (керамика PZT = PZT - 5 [5]), предварительно поляризованную вдоль оси z и армированную двоякопериодической системой одинаковых ленточных включении. Предположим, что включения непрерывно скреплены с матрицей, выполнены из упругого диэлектрика и работают лишь на растяжение-сжатие, а в среде имсют место средние механические напряжения $\langle \gamma_{13} \rangle_1$ и электрическое поле, характеризуемое компонентами среднего вектора напряженности

В этом случае в матрице возникают сопряженные сингулярные поля электрических и механических величин, которые можно выразить в терминах функции комплексного переменного [3, 4] по формулам

$$\sigma_{z} = 2\operatorname{Re}\sum_{k=1}^{3} \operatorname{Te} \Phi_{k}(z_{k}); \quad \overline{\gamma} = -2\operatorname{Re}\sum_{k=1}^{3} \operatorname{Te} \Phi_{k}(z_{k});$$
$$\sigma_{z} = 2\operatorname{Re}\sum_{k=1}^{3} \operatorname{Te} \Phi_{k}(z_{k}); \quad \Phi_{k}(z_{k}) = d\Phi_{k}(z_{k})/dz_{k}$$

$$\tau_{xz} = -2\operatorname{Re} \sum_{k=1}^{3} \tau_{(k)} \mu_{k} \Phi_{k}^{\dagger}(z_{k}); \quad z_{k} = x + \mu_{k} z_{k} \qquad (1.1)$$

$$U = 2\operatorname{Re} \sum_{k=1}^{3} \rho_{k} \Phi_{k}(z_{k}); \quad W = 2\operatorname{Re} \sum_{k=1}^{3} q_{k} \Phi_{k}(z_{k})$$

$$E_{z} = 2\operatorname{Re} \sum_{k=1}^{3} h_{k} \Phi_{k}^{\dagger}(z_{k}); \quad E_{z} = 2\operatorname{Re} \sum_{k=1}^{3} h_{k} \mu_{k} \Phi_{k}(z_{k})$$

$$D_{x} = 2\operatorname{Re} \sum_{k=1}^{3} r_{k} \mu_{k} \Phi_{k}(z_{k}); \quad D_{z} = -2\operatorname{Re} \sum_{k=1}^{3} r_{k} \Phi_{k}(z_{k})$$

Здесь γ_k , γ_k , p_k , q_k , r_k определены в [3, 4], $\Phi_k(z_k)$ -искомые аналитические функции комплексного переменного z_k .

Условия совместности деформаций системы матрица-включения имеют вид

$$0,5(e^{+}+e_{x}^{-})=e_{x}^{0}, \quad e_{x}^{0}=\frac{(1+\mu_{0})(1-2\mu_{0})}{(1-\mu_{0})E_{x}^{0}}, \quad (1.2)$$

где N—внутреннее погонное усилие в сечении ленты, пернендикулярном оси Ох; Е₀, µ₀, δ₀—соответственно модуль упругости, козффициент Пуассона и толщина включения.

Решение поставленной задачи (1.2) разыскиваем в виде

$$\Phi_{k}(z_{k}) = B_{k} + \frac{b_{k}}{2\pi i} \int_{-1}^{1} g(x)^{*}(x - z_{k}) dx$$
(1.3)

Здесь g(x)-интенсивность контактных усилий, (z_k) -дзетафункция Вейерштрасса [6], построенная на периодах $\omega_{1k} = \omega_1$, $\omega_{|k|} = \text{Re} \, \omega_2 + \omega_k \text{Im} \, \omega_2$; $\omega_k \ (k = 1, 2)$ —основные периоды структуры (фиг. 1). Константы b_k определены в [3] при $\omega = 0, \ \mu = 0, \ P = 2^-, A = 5$, определяются из условий, чтобы представления (1.3) обеспечивали

существование в структуре заданных средних компонент электрических и механических величин.

Условие равновесня включения имеет вид

$$\int_{-\infty}^{1} g(x)dx = 0 \tag{1.4}$$

С учетом (1.4) и свойств дзетафункции Вейерштрасса, можно во-

казать, что представления (1.3) обеспечинают квазипериодичность перемещений и потенциала электрического поля в структурс. Следовательно, условия совместности деформаций (1.2) достаточно выполнить лишь на включении, находящемся в основном параллелограмме периодов.

Можно показать также, что представления (1.3) обеспечинают непрерывную продолжимость через включение перемещений, касательной компоненты вектора напряженности и нормальной составляющей вектора электрической индукции. Касательные напряжения ты терият скачок, определяемый формулой

$$f_{1,-1} = -g(x) \tag{1.5}$$

Подставляя предельные значения функций (1.3) в условие совместности деформаций (1.2), приходим « сингулярному интегро-дифференциальному уравнению

$$\int_{-1}^{1} \frac{\mu(x)dx}{x-x_{0}} + \int_{-1}^{1} g(x)H(x,x_{0})dx + \int_{-1}^{1} g(x)dx = M$$

$$aH(x,x_{0}) = 2\operatorname{Re}\sum_{k=1}^{n} \frac{b_{k}}{2\pi i} \left[p_{k}^{*}(x-x_{0}) - \frac{\mu_{k}}{x-x_{0}} + xQ_{k} \right]$$

$$aH = \frac{(1+\mu)(1-\mu_{0})}{(1-\mu_{0})E_{0}v_{0}}; \quad a = 2\operatorname{Re}\sum_{k=1}^{n} \frac{\mu_{0}b_{k}}{2\pi i} \qquad (1.6)$$

$$aH = -a_{16} < z_{1} > -\frac{a_{1}-S_{1}}{2} < z_{2} > + a_{20} < E_{2} >$$

$$Q_{k} = \frac{2\pi i(a_{1}-a_{2}-a_{1})}{w_{1}|w_{2}|\sin 2} - \mu_{0} \frac{c_{1}}{w_{1}}$$

$$a = \operatorname{arg} w_{2}; \quad v_{1k} = 2; \left(\frac{a_{1}}{2}\right)$$

Здесь ан. S44 определены в [3].

Для фиксации однозначного решения (1.6) в классе [7] к нему необходимо присоединить зополнительное условие (1.4). На этом построение алгоритма закончено.

2 Учет дефектов типа трещик в матрице. Предположим теперь, что матрица ослаблена двоякопериодической системой олинаковых тунислыных вдоль оси Оу разрезов I. (фиг. 1), на берегах которых заданы комноненты вектора напряжений Z[±], одинаковые в конгруситных точках. И также, что главный вектор этих усилий, действующих на обоих берегах разреза, равен нулю

Кроме условий (1.2) необходимо выполнить красвые условия на берегах разрезов

$$2\operatorname{Re}\sum_{k=1}^{n} \alpha_{nk} [\Phi_{k}(t_{k})]^{\pm} - [\Phi_{k}(t_{k})]^{-} = 0 \quad (n = 3, 4)$$

$$2\operatorname{Re}\sum_{k=1}^{n} \alpha_{nk} \{ [\Phi_{k}(t_{k})]^{\pm} - [\Phi_{k}(t_{k})]^{-} \} = 0 \quad (n = 3, 4)$$

$$(2.1)$$

где $W \doteq (n - 1, 2)$, a_{nh} (n - 1, 2, 3, 4) определены в [4], послелние два условия в (2.1) вытекают из непрерывной продолжимости каса-

тельной составляющей вектора напряженности и нормальной компоненты вектора инлукции электрического поля через 💪

Искомые функции представим в виде

$$\Phi_{h}(z_{h}) = B_{h} + \frac{b}{2\pi l} \int_{-l}^{l} g(x) (x - z_{h}) dx + \frac{1}{2\pi l} \int_{l}^{t} \omega_{h}(t) (t_{h} - z_{h}) dt_{h}$$

$$t_{h} = \operatorname{Re} t + \mu_{h} \operatorname{Im} t; \quad (2.2)$$

Здесь первые ява слагаемых соответствуют наличию включений, а последнее— наличию разрезов, g(x), $\omega_k(t)$ — искомые функции.

Подставляя предельные значения функций (2.2) в краевые условия (2.1) и равенство (1.2), приходим к смешанной системе интегральных и алгебранческих уравнений

$$\int_{-1}^{1} \frac{g(x)dx}{x - x_{0}} + \int_{-1}^{1} g(x)H(x, x_{0})dx + 2\operatorname{Re} \sum_{k=1}^{3} \int_{2\pi k}^{\infty} g(x)dt_{k} + i \int_{x_{0}}^{1} g(x)dx - M$$

$$\int_{-1}^{1} g(x)H_{n}^{*}(x, t_{k0})dx + 2\operatorname{Re} \sum_{k=1}^{3} \frac{2\pi k}{2\pi k} \int_{L}^{\infty} \frac{w_{0}(t)dt_{k}}{t_{k} - t_{k0}} + \frac{1}{2\operatorname{Re}} \sum_{k=1}^{3} \int_{L}^{\infty} w_{0}(t)G(t, t_{0})dt = F_{0}(t_{0}) \quad (n=1, 2)$$

$$2\operatorname{Re} \sum_{k=1}^{3} \int_{-1}^{\infty} w_{0}(t_{0}) - W_{n}(t_{0}) \quad (n=1, 2, 3, 4)$$

$$aG(t_{k}, x_{0}) = \frac{1}{2\pi t} |p_{k}(t_{k} - x_{n}) + Q_{k}t_{k}|$$

$$H_{n}^{*}(x, t_{k0}) = 2\operatorname{Re} \sum_{k=1}^{3} \frac{2\pi t}{2\pi t} |s_{0}^{*}(x - t_{0}) - s_{nk}^{*}x|$$

$$G_{0}^{*}(x, t_{k0}) = 2\operatorname{Re} \sum_{k=1}^{3} \frac{2\pi t}{2\pi t} |z_{0}^{*}(x - t_{0}) - s_{nk}^{*}x|$$

$$W_{1}(t) = X_{n}^{+} + X_{n}^{-}; \quad W_{3}(t) = 0 \quad (2.3)$$

$$W_{3}(t) = -(Z_{n}^{+} + Z_{n}^{-}); \quad W_{4}(t) = 0$$

$$F_{1}(t) = 0.5(X_{n} - X_{n}) - (<\tau_{1} > \cos t + <\tau_{2} > \sin^{t})$$

Здесь $a_{nh}^{0} = a_{nh} (\gamma_0); \gamma_1 \gamma_0 - углы наклона положительной норма$ ли к левому берегу разреза в точках <math>l и l_0 соответственно к оси $Ox; \gamma_n^1$ - символ Кронекера. К системе (2.3) добавляем статическое условие на ребре (1.4) и условия однозначности перемещений

$$2\operatorname{Re}\sum_{l}^{3} p_{nk} \int_{l} w_{k}(l) dl_{k} = 0 \quad (n = 1, 2)$$

$$p_{1k} = p_{k}, \quad p_{2k} = q_{k} \quad (k = 1, 2, 3) \quad (2.4)$$

Условня (1.4). (2.4) одпозначно фиксируют решение системы (2.3) $w_h(t)$, g(x) (k = 1, 2, 3) в классе h_0 функций, неограниченных на колцах линии интегрирования.

З. Осреднение пьсзоэлектрических снойств регулярной пьезокерамической структуры. Следуя работе [2], ностронм макромодель рассматриваемой структуры. Под этим будем понимать однородную пьеюэлектрическую среду, уравнения состоячия которой соцпадают с законом связи средних компонент механических напряжений и напряженности электрического поля со средними значениями деформаций и компонент вектора индукции в структуре.

В силу того, что представления (2.2) обеспечивают квазинернодичность полей механических перемещений и потенциала электрического поля в структуре, проблему осреднения заданной структуры можно решить точно.

При переходе от произвольной точки структуры к конгруситной сй механические перемещения получают постоянное прирашение, которое, с одной стороны, выражается через средние значения механических леформаций, а с тругой через приращения аналитических функций Ф_h (*z_k*). На основании этого имеем

$$\langle z_{1} \rangle = -2\operatorname{Re} \sum_{k=1}^{n} p_{k} \left[-\Phi_{k}(z_{1}) - \frac{h}{H} - \Phi_{k}(z_{2}) \right]$$

$$\langle z_{1} \rangle = \frac{1}{H} 2\operatorname{Re} \sum_{k=1}^{n} p_{k} \left[-\Phi_{k}(z_{1}) - \frac{h}{H} - \Phi_{k}(z_{2}) \right] + \frac{1}{\omega_{2}} 2\operatorname{Re} \sum_{k=1}^{n} q_{k} \Delta_{1} \Phi_{k}(z_{n})$$

$$(3.1)$$

$$\Delta_n \Phi_h(z_k) = \Phi_h(z_k - \Phi_h(z_k)) - \Phi_h(z_k) \quad (n = 1, 2)$$

$$H = |w_2| \sin 2; \quad h = |w_3| \cos 2$$

Здесь <*1>, <*2>, <112>-средние леформации регулярной структуры.

Введем средние значения вектора индукции электрического поля по формулам

$$\langle D_{2} \rangle = \frac{1}{\omega_{1}} \int_{x}^{x+\omega_{1}} D_{x} dx$$
 (3.2)

$$< D_n > = < D_1 > \sin n = < D_2 > \cos n = \frac{1}{|\omega_1|} \int_{A}^{A + \omega_1} (D_x \sin n - D_x \cos n) dS$$

- Используя (1-1), получим

$$\langle D_1 \rangle = \frac{1}{n} 2\operatorname{Re} \sum_{k=1}^{3} \left[\Delta_2 \Phi_k(z_k) - \frac{h}{\omega_1} \Delta_1 \Phi_k(z_k) \right]$$
$$\langle D_3 \rangle = -\frac{1}{\omega_1} 2\operatorname{Re} \sum_{k=1}^{3} r_k \Delta_1 \Phi_k(z_k)$$
(3.3)

С другой стороны, приращения функцей $\Phi_k(z_k)$ находим из (2.2) с учетом свойств сигма-функции Вейерштрасса

$$\Delta_n \Phi_k(z_k) = B_k \omega_{nk} + \Lambda_k \delta_{nk} \quad (n = 1, 2)$$

$$\Lambda_k = \frac{b_k}{2\pi i} \int_{-1}^{1} x g(x) dx + \frac{1}{2\pi i} \int_{1}^{1} t_k \omega_k(t) dt_k \quad (3.4)$$

Здесь функционалы A_k построены на решениях уравнений (2.3). Подставляя (3.4) в (3.1) и (3.3), приходим к соотношениям

$$\langle \epsilon_{1} \rangle = 2\operatorname{Re} \sum_{k=1}^{4} p_{k} \beta_{k} + 2\operatorname{Re} \sum_{k=1}^{3} \frac{i_{1}}{\omega_{k}} p_{k} \lambda_{k}$$

$$\langle \epsilon_{1} \rangle = 2\operatorname{Re} \sum_{k=1}^{4} q_{k} a_{k} \beta_{k} + 2\operatorname{Re} \sum_{k=1}^{3} \frac{i_{1}}{\omega_{k}} \frac{H - 2\pi i}{H\omega_{1}} q_{k} \lambda_{k}$$

$$\gamma_{12} \rangle = 2\operatorname{Re} \sum_{k=1}^{5} (p_{k} a_{k} - q_{k}) \beta_{k} + 2\operatorname{Re} \sum_{k=1}^{3} \left(\frac{i_{1}}{\omega_{1}} q_{k} + \frac{i_{1}}{H\omega_{1}} \frac{H - 2\pi i}{H\omega_{1}} \rho_{k} \right) \lambda_{k}$$

$$\langle D_{1} \rangle = 2\operatorname{Re} \sum_{k=1}^{5} r_{k} a_{k} \beta_{k} - 2\operatorname{Re} \sum_{k=1}^{3} \frac{i_{1} a_{k} a_{k} H - 2\pi i}{H\omega_{1}} r_{k} \lambda_{k}$$

$$\langle D_{3} \rangle = -2\operatorname{Re} \sum_{k=1}^{5} r_{k} \beta_{k} - 2\operatorname{Re} \sum_{k=1}^{3} \frac{a_{1k}}{\omega_{1}} r_{k} \lambda_{k}$$

$$\langle D_{3} \rangle = -2\operatorname{Re} \sum_{k=1}^{5} r_{k} \beta_{k} - 2\operatorname{Re} \sum_{k=1}^{3} \frac{a_{1k}}{\omega_{1}} r_{k} \lambda_{k}$$

Учитывая механические и электрические условия на сторонах нараллелограмма периодов и вводя стандартные решения системы (2.3) во формулам

$$g(x) = g_{1}(x) < \sigma_{1} > + g_{2}(x) < \sigma_{3} > + g_{3}(x) < \tau_{13} > + g_{4}(x) < E_{1} > + g_{3}(x) < E_{3} >$$

$$w_{k}(t) = w_{k}^{(1)}(t) < \sigma_{1} > + w_{k}^{(2)}(t) < \sigma_{3} > + w_{k}^{(3)}(t) < \tau_{13} >$$

$$(3.6)$$

$$w_{k}(t) < E_{2} > + w_{k}^{(0)}(t) < E_{2} >$$

получаем уравнения состояния макромодели

$$\begin{split} \langle \varepsilon \rangle &= \langle S \rangle \langle \sigma \rangle; \quad \langle S \rangle = \| \langle S_{ij} \rangle \| \quad (i, j = 1, 2, \dots, 5) \\ \langle \varepsilon \rangle &= \begin{bmatrix} \langle \varepsilon_1 \rangle \\ \langle \varepsilon_3 \rangle \\ \langle \gamma_{13} \rangle \\ \langle E_1 \rangle \\ \langle E_1 \rangle \\ \langle E_3 \rangle \end{bmatrix}; \quad \langle \sigma \rangle = \begin{bmatrix} \langle \sigma_1 \rangle \\ \langle \sigma_3 \rangle \\ \langle \sigma_3 \rangle \\ \langle \sigma_1 \rangle \\ \langle D_1 \rangle \end{bmatrix} \\ \langle S_{ij} \rangle &= S_{ij}^* - \frac{1}{H\omega_1} 2 \operatorname{Re} \sum_{k=1}^3 B_{ik} \Lambda_k^{(j)} \end{aligned}$$

$$B_{1k} = a_{13}t_{k} - a_{14}t_{k}t_{k}$$

$$\int_{-t} xg_{1}(x)dx - \int_{L} t_{b}\omega_{k}^{(i)}(t)dt_{k}$$

$$S_{11} = S_{11} - S_{12}S_{11}^{-1}; \quad S_{12}^{*} = S_{13} - S_{12}S_{13}S_{11}^{-1}$$

$$S_{13}^{*} = S_{14}^{*} - S_{23}^{*} = S_{24}^{*} = S_{33}^{*} = S_{45}^{*} = 0$$

$$S_{13} - d_{21}S_{22}S_{11}^{-1}; \quad S_{22}^{*} = S_{43}^{*} = 1_{12}S_{11}^{-1}$$

$$S_{21}^{*} = d_{31} - d_{11}S_{11}S_{11}^{-1}; \quad S_{32}^{*} = S_{44}^{*}; \quad S_{34}^{*} - d_{13}$$

$$S_{44}^{*} = \epsilon_{11}; \quad S_{45}^{*} = S_{45}^{*}$$

Результаты счета Система уравнении (2.3), (1.4), (2.4) была реализована численно по схеме гипа Мультоппа. В качестве примера рассматривалась коадратизя решетка с периолами $w_1 = 2, w_1 = 2l$, с системой прямолинейных включений шириной 2l, когда в пределах каждой ячейки имеется одна трещина с поперечным сечением в виле дуги окружности $x = 10\cos\frac{1+2}{2} = 9$, $z = 10\sin\frac{1+8}{2} = -1 \le \beta \le 1$.

На фиг. 2 представлены результаты расчетов относительных усилий в ребре $< =N/(< \circ_1 > l)$ (кривая 1 соответствует L=0,2,гривая 2-L=0.8, 2L-длина трещины) и относительного контактного усилия $+g(x)/< \circ_1 >$ (кривая 3 соответствует L=0,2,кривая 4-L=0,8) при $< \circ_1 > -0,$ 0,L=0, l=0,4; x=d, 1

Графики на фиг. З иллюстрируют изменение относительных величин $\langle \sigma_s \rangle = \frac{\sigma_0}{\langle \sigma_1 \rangle} \sqrt{\frac{2\rho}{L}}$ (кривая 1). $\langle \sigma_s \rangle = \frac{\sigma_0}{\langle \sigma_1 \rangle} \sqrt{\frac{2\rho}{L}}$ (кривая 2). $\langle t \rangle = \frac{\sigma_1}{\langle \sigma_1 \rangle} \sqrt{\frac{2\rho}{L}}$ (кривая 3)

на продолжении за вершину трещины b в функции от параметра Видно, что при увеличении длины трещины, когда перемычка между конгруентными трещинами уменьшается, относительный коэффициент интенсивности $< a_n >$ существенно растет. кроме того, кривые на фиг. 3 подтверждают явление разгрузки, обычно имеющее место при азвимном влиянии трещин.

На фиг. 4 представлены результаты расчетов осредненных параметров структуры. Графики 1, 2 иллюстрируют изменение макропараметра $\langle S_{11} \rangle / S_{11}^*$, графики 3, $4 - \langle S_{33} \rangle / S_{33}^*$. Графики 1, 3, и 2, 4 построены при l = 0,2 и 0,8 соответственно. Остальные макропараметры практически не изменяются. Из результатов видно, что увеличение длины разреза существенно уменьшает жесткость структуры в паправлении осн *Ох.* Это объясняется тем, что при выбранных параметрах разрезы приблизительно прямолинейны и ориентированы вдоль осн *Ог.*

ՔԱՐԱԿ ԱՌԱՉԳԱԿԱՆ ՆԵՐԴՐԱԿՆԵՐԻ ՌԵԳՈՒԼՅԱՐ ՀԱՄԱԿԱՐԳԸ ՃԵՎՔԵՐՈՎ ԹՈՒԼԱՑՎԱԾ ՊՅԵՉՈԿԵՐԱՄԻԿԱԿԱՆ ՄԱՏՐԻՑԱՑԻՆ ՄԻԱՑՆԵԼՈՒ ԲԱՍԻՆ

0. Ա. ԻՎԱՆԵՆԿՈ, Լ. Ա. ՖԻԼՇՏԻՆՍԿԻՅ

Ամփոփում

Կառուցված է թունելային ճարերի ակայի դեֆեկաներով քուլացված պլեղոկերամիկական մատրիդայով կոմպոդիցիոն նյութի ժապավենի մողելը։ Լուծված են այդպիսի կառուցվածրով պյեղուսոաձդական հատկությունների միջինացման մասին նոր խնդիրներ։ Բերված են հաշվարկի արդյունըներ։

THE REINFORCEMENT OF PIEZOCERAMIC MATRIX SLACKENED BY SECTIONS' BY A REGULAR SYSTEM OF THIN ELASTIC INCLUSIONS

O. A. IVANENKO, L. A. FILSHTINSKY

Summary

A model has been created for a tape-shaped composite material with a matrix attached, the latter being slackened by tunnel crack type defects.

New problems of smoothing the plezoelastic properties of such a structure have been solved and calculation results surveyed.

ЛИТЕРАТУРА

- 1 Соркисян В. С. Некоторые задачи математической теорин упругости анизотронного теля. Ереван: Изд-во Ереванского госуниверситета, 1976. 536 г.
- 2. Долгих В. П., Фильштинский Л. А. Модель винзотропной среды, армированной тонкими лентами.—ПМ, 1979. т. 15, № 4. с. 24—30.
- 3. Белокопытова Л. В., Иваненко О. А., Фильштинский Л. А. Передача нагрузки от упругого ребра к полубесконечной пьезоксрамической пластинке.—Изв. АЦ Арм. ССР, Механика, 1981. т. 34, № 5, с. 41—50.
- Белокопытова Л. В., Иваненко О. А., Фильштинский Л. А. Сопряженные электрические и механические поля в пьезоупругих телах с разрезами или включениями. Харьков: Динамика и прочность машии, 1981 выл. 34, с. 16—21.
- Методы и приборы ультразвуковых исследований Физическая акустика (Под ред У. Мезона, ч. А. 1). М.: Мир, 1966. 592 с.
- Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного М.: Наука, 1973, 736 с.
- Мускелищации И. И. Сингулярные интегральные уравнения. Граничные задачи теории функций и некоторые их приложения к математической физике. М.: Наука, 1968. 511 с.

Сумский филиал Харьковского политехнического института им. В. И. Леяниа

Поступила в редакцию 10.VI. 1983.