2ЦЗИЦИЦЬ UU2 ФРОПРАННЫЕР ЦИЦТВИРЦЭР БОДЬИЦФРР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Մհիսանիկա

XXXIX, Nº 1, 1986

Механика

УДК 539.374

ЧИСЛЕННАЯ МОДЕЛЬ ПРОНИКАНИЯ В ГРУНТ КИРИЛЕНКО Г. А., САГОМОНЯН А. Я.

Проникание заостренных тел вращения по нормали к поверхности сухого слабосвязного грунта рассмотрено в работах [1], [2].

В работе [3] численные расчеты в задаче проникания использовались для проверки точности приближенной теории расширения цилиндрической полости в туфе. Одно- и днумерные расчеты проведены как для гидродинамической модели грунта, так и с учетом его прочности.

Известно, что многие грунты при нагружении деформируются исобратимым образом [2]. При этом в слабосвязных грунтах при достаточно больших нагрузках можно пренебречь влиянием касательных составляющих напряжений на процесс деформирования по сравнению с влиянием среднего давления.

Предположим, что в условиях высокоскоростного проникания иблизи поверхности тела применима модель изсальной пластически сжимаемой среды.

Динамическая система уравнений для описания поступательного лвижения жесткого тела и вызванного им движения грунта в указанвых предположениях имеет вид

$$\rho \frac{dV}{dt} = -\operatorname{grad} P, \quad \frac{\partial \rho}{\partial t} - \operatorname{dtv} \rho \, \overline{V} = 0$$

$$m_{\tau} \frac{dV_{\tau}}{dt} = -\int_{S_{k}(0)} P n_{\tau} ds$$

$$P = \begin{cases} f_{n}(\rho), \quad \frac{d\rho}{dt} > 0, \quad \rho^{*} = \rho \\ f_{p}(\rho, \rho^{*}), \quad \frac{d\rho}{dt} < 0, \quad \frac{d\rho^{*}}{dt} = 0 \\ f_{p}(\rho, \rho^{*}), \quad \frac{d\rho}{dt} > 0, \quad \rho < \rho^{*} \\ \frac{d\rho^{*}}{dt} = 0 \end{cases}$$

гле $\rho = \rho(t, x)$, V = V(t, x), P = P(t, x), $\rho^* = \rho^*(t, x)$; $\rho^* = - максималь$ ная плотность частицы среды, полученная ею в процессе предшествующего нагруження и сохраняющаяся в дальнейшем при разгрузке и повторной нагрузке до p^* ; f_n —функция нагружения; f_p —функция разгрузки; m_* —масса тела; V_{τ} —скорость движения тела; $S_{\kappa}(t)$ —поверхность контакта среды и тела; n_z —осевая компонента внешней к поверхности S_{κ} нормали.

На свободной поверхности, совнадающей и начальный момент с границей инжнего полупространства, занятого грунтом, имеем

$$P_{\rm cu}(t, z, r) = 0$$

На оси симметрии вынолнено

$$V_t(t, z, 0) = 0$$

На поверхности тела

$$V_n$$
; v_n , $+$ v_n ;

гле (v, v)-компоненты скорости среды.

Рассмотрим для определенности нормальное проникание конуса конечного раствора: $r = z \lg \frac{T}{2}$, $z \ll h_{\text{кон}}$, $z \ge 0$, t = 0, где γ — угол раствора конуса, $h_{\text{кон}}$ — высота конуса.

В начальный момент времени известна скорость $V_1(0)$ подхода тела к поверхности грунта. Грунт однороден: g_0 const. Нет остаточных деформаций: $s^*_{i_2-0} - g_0$. Всюду P - 0 и $\vec{V} = 0$. Для решения задачи от системы ураннений, приведенной выше, перейдем к интегральным соотношениям, записанным с помощью обобщенной эйлеровой формулировки законов сохранения. Это дает возможность пользоваться комбинированными лагранжево-эйлеровыми подвижными сетками.

Для расчета значений параметров не промежуточном слое янной разностной схемы используется алгоритм решения задачи о раснале произвольного разрыва в идеальной иластически сжимаемой среде на границе между двумя соседними ячейками в предноложения локальной автомодельности.

Решение получено для конуса с параметрами [2]:

 $\gamma = -1/3$, $m_{\tau} = 10 \text{ Kr}$, $h_{\text{KOM}} = 0, 13 \text{ M}$, $V_{\tau}(0) = -600 \text{ M/c}$

Параметры грунта (суглинок воздушной влажности):

$$f_{11}(\varepsilon) = \frac{1}{3-\varepsilon}, \quad \varepsilon = 1 - \nu_0/\rho$$

$$f_{11}(\varepsilon, \varepsilon^*) = P^* [(\varepsilon - \varepsilon_0)/(\varepsilon^* - \varepsilon_0)]^{m}$$

$$\alpha = 10^8 \text{ H/M}^2, \quad \beta = 0.5; \quad \nu_0 = 1529 \text{ Kr} \text{ M}^2$$

где $\epsilon_0 = q\epsilon^*$ — остаточная деформация; q = 0.6; $\epsilon^* = 1 - p_0 \epsilon$ — максимальная деформация: m = 5

$$P^{+}=\frac{\alpha \epsilon^{+}}{\beta-\epsilon^{+}}$$

48

На фиг. 1 приведено поле давлений и вид свободной поверхности для момента времени t=1, 53, когда конус полностью погрузился в грунт. Здесь: $\tilde{t} = tC_0/r_{\text{кон}}, r_{\text{кон}} = h_{\text{кон}} \log \gamma 2, C_0 - \text{скорость}$ звука в невозмущенной среде, $z = z/r_{\text{кон}}, \tilde{r} = r/r_{\text{кон}}, \tilde{P} = P/(o_0 C_0^2)$.

Изобары имеют характерную чечевицеподобную форму. Заштрихована область пластичности. Для нее выполнено: *р*<*р**. Характерной особенностью решения является наличне на поверхности конуса лвух максимумов давления. На наш изгляд, это является результатом специфической формы ударной волны и двумерности течения групта. Второй максимум давлений вблизи свободной поверхности постепенно исчезает по мере развития волны пластической разгрузки и увеличения глубины проникания.

Вид поля скоростей (фиг. 2) $\tilde{V} = v/C_n$ вблизи поверхности тела (нифры в скобках значения компонент) примерно соответствует гиtотезе пормального движения среды [1].

Фиг. 1

На фиг. З сплощной линией изображен профиль давления вдоль поверхности конуса в момент времени $\bar{t} = 1,01$, когда он ногружен на глубниу $z = -h_{\text{кон}}$. Здесь штриховая динил—решение по одномерной теория [1]. Существенное различие решений имеется вблизи свободной новерхности. Однако, его плияние докализовано довольно узкой зоной, что позволяет сделать вывод об обоснованности гипотезы [1].

Зависимость силы сопротивления F = F ((то Core.)) от глубины

4 Известия АН Армянской ССР. Механика, №1.

49

проникания — z изображена на фиг. 4. Максимум достигается в момент, когда z = - 1,73.

Следует отметить высокие сглаживающие свойства разностной схемы вследствие использования задачи о распаде разрывов. Это, т сочетании с подвижными перестраиваемыми по ходу решения сетками, нозволяет ограничиться предельно малым числом счетных ячеек, что делает метод весьма экономичным.

ԳԵՏՆԱՀՈՂՈՒՄ ՆԵՐԹԱՓԱՆՑՄԱՆ ԹՎԱՅԻՆ ՄՈԳԵԼ

Դ. Ա. ԿԻԲԻԼԵՆԿ<mark>Ո. Ա. ՑԱ</mark> ՍԱԳՈՄՈՆՅԱՆ

Ամփոփում

Թվային մենեղներով լուծված է դերբարձր արագունյամը մարմիններ) ներնափանցման խնդիրը, բերված են զիմագրունյան ուժի անլափ ժամա նակից կախման գրաֆիկները։

THE NUMERICAL MODEL OF PENETRATION INTO THE SOIL

G. A. KIRILENKO, A. Y. SAGOMONIAN

Summary

The problem of high velocity penetration in an ideal plastic medium is solved by means of numerical methods. The graphs of drag force from dimensionless time are given.

ЛИТЕРАТУРА

1. Согожонян А. Я. Проникание. М.: изл. МГУ, 1974.

- 2 Разматулин Х. А., Сагомонян А. Я. Алексеев Н. А. Вопросы динамики грунтов. М изд. МГУ, 1964.
- 3 Hicks D. H., Norwood F. R., Trucano T. G. Toody-Wandy calculations of penetration events. Shock Waves condens. Matter. Con. Meulo Park. Calif., 23-25 June, 1981*, New Jork: 1982, p. 544-547.

Механико-математический факультет МГУ им. М. В. Ломоносова

Поступила в редакцию 28. VI. 1934