ЛАМИНАРНОЕ ЭЛЕКТРОГИДРОДИНАМИЧЕСКОЕ ТЕЧЕНИЕ УНИПОЛЯРНО ЗАРЯЖЕННОЙ НЕСИММЕТРИЧНОЙ ЖИДКОСТИ В ПЛОСКОЙ ТРУБЕ

ПЕТРОСЯН А. Г.

При движении жидкости со слабой униполярной электропроводимоштью в условиях внешнего электрического поля на частицы жидкости действуют кулоновские силы, которые определенным образом меняют параметры и характер течения [1]

Большое количество поляризованных молекул или атомов при их упорядоченном расположении под действием внешнего влектрического поля приводит к макроскопическому эффекту электрической поляризации макроскопических частей среды [2].

При учете влияния поляризации вещества, наблюдаемого обычно в дивлектриках, тензор напряжений становится несимметричным [3]. В этом случае необходимо рассматривать моментные напряжения, то есть учесть вектор поляризации: механические моменты, действующие на частицы [3, 4].

Обсуждение конструирования новых моделей в механике сплошных сред, в частности, жидких сред с учетом поляризации является весьма полезным и актуальным [5].

Рассмотренню модели алектрогидродинамики с несимметричным тензором напряжений посвящена работа [6]

Несимметричная электрогидродинамика представляет собой обобщение обычной классической электрогидродинамики на случай, когда тензор напряжений является несимметричным. Она отличается от классической ЭГД системы угочнением напряженного состояния, которое характеризуется несимметричным тензором силовых и моментных напряжений.

В настоящей работе приводится решение задачи об алектрогидродинамическом симметричном ламинарном течении вязкой несжимаемой структурной жидкости с моментивым напряжениями, несимметричным тензором напряжения и внутренней инерцией частиц в плоской трубе. В частности, рассматривается вектор поляризации диалектрика.

1. Уравнения движения заряженной поляривованной жидкости

Рассмотрим теченне несжимаемой поляризованной жидкости со слабой униполярной проводимостью.

Общая система уравнений несимметричной влектрогидродинамики, п случае вязкой, со слабой униполярной проводимостью, несжимаемой жидкости имеет вид [6]:

$$\nabla \cdot \mathbf{v} = 0$$

$$\frac{dv}{dt} = -\frac{1}{\rho} \nabla \rho + 2v \nabla \cdot (\nabla v)^{d} + v \nabla \times [2w - \nabla \times v] + \frac{1}{\rho} \varrho \cdot \vec{E}$$

$$1\frac{dw}{dt} = 2v_c(\nabla \times v - 2w) + c_0 \vee (\nabla \cdot w) + 2c_d \nabla \cdot (\nabla w)^d + 2c_a \nabla \cdot (\nabla w)^d + c$$

$$\nabla \cdot \vec{E} = \frac{\rho_r}{\epsilon_0 t}$$

$$\nabla \times \vec{E} \approx 0$$

$$\frac{\partial \gamma_e}{\partial t} + \nabla \cdot j = 0 \tag{1.1}$$

К этим уравнениям необходимо добавить обобщенный закон Ома [1, 8]

$$j = \rho_e (o - kE) - D \cdot \rho_e \tag{1.2}$$

Здесь р — массовая плотность, p — давление, l — среднее значение момента инерции на единицу массы частиц, составляющих систему, v — вектор скорости точки, w — нектор, характеризующий среднюю угловую скорость вращения частиц, из которых состоит точка контивуума, v — кинематическая плотоновская вязкость, v — кинематическая вращательная вязкость, c_0 , c_n , c_a — коэффициенты моментной вязкости, d(...)/dl — полная производная по времени, — пространственный градиент, $(\nabla v)^l$ и $(\nabla w)^a$ — симметричные части соответствующих динал, $(\nabla v)^a$ и $(\nabla w)^a$ — антисимметричные диады, p — плотность объемного заряда в жидкости, E — напряженность электрического поля, v — вектор массового момента, v — плотность тока, v — электрическая постоянная, v — относительная диэлектрическая проницаемость, v — коэффициент подвижности ионов, v — коэффициент диффузии ионов.

Явное значение массового момента с, учитывающего поляризацию жидкости под действием висшнего электрического поля, можно определить по формуле [9]

$$\varphi c = -\varphi p \times E \tag{1.3}$$

гае p — вектор поляризации на единицу массы.

В случае постоянного влектрического поля для плотности поляризации имеем [9]

$$\varrho p = [\varepsilon'(0) + \varepsilon''(0) \circ \times] E \tag{1.4}$$

где

$$\xi''(0) = \lim_{\omega_0 \to 0} \epsilon''(\omega_0)/\omega_0 \tag{1.3}$$

Здесь ω_{o} — угловая скорость вращения алектрического поля, ϵ' (ω_{o}) в ϵ'' (ω_{o}) — комплекс диалектрической восприимчивости.

Согласно модели Дебая [9, 10]

$$\xi''(0) = \varepsilon'(\infty) - \varepsilon'(0) \tag{1.6}$$

Рассмотрим подобия влектрогидродинамического течения,

Приведем систему уравнений (1.1)—(1.2) к безразмерному виду. В качестве характерной длины возьмем L, характерной скорости— V_{\circ} , характерной угловой скорости— V_{\circ} , в качестве характерного электрического поля— E_{\circ} , объемного заряда— V_{\circ} а механического момента, действующего на поляризованную диалектрическую жидкость в электрическом поле,— C_{\circ} . Тогда для плотности электрического тока из выражения

для j (1.2) получаем характерную величину $j_0=k_0$

В качестве масштабов времени и давления примем соответственно $T=L/V_0$ и $P=V_0$

Уравнения (1.1) и (1.2) в безразмерном виде запишутся так:

$$\nabla \cdot \vec{v}^* = 0 \tag{1.7}$$

$$\frac{dv}{dt^*} = -\nabla p^* + \frac{2}{R} \nabla \cdot (\nabla \vec{v}^*)^d + \frac{1}{R_r} \nabla \times [2\vec{\omega}^* - \nabla \times v^*] + \mathcal{S} E \qquad (1.8)$$

$$\frac{d^{\alpha *}}{dt^{*}} = \frac{2E_{E}}{R_{e}} (\nabla \times \overrightarrow{v} - 2\overrightarrow{w}) - \frac{E_{F}}{R_{0}} \nabla (\nabla \cdot \overrightarrow{w}^{*}) + \frac{2E_{E}}{R_{d}} \nabla \cdot (\nabla \overrightarrow{w}^{*})^{d} + \frac{2E_{F}}{R_{e}} \nabla \cdot (\nabla \overrightarrow{w}) + \frac{E_{F}}{R_{d}} \nabla \cdot (\nabla \overrightarrow{w})^{d} + \frac{2E_{F}}{R_{e}} \nabla \cdot (\nabla \overrightarrow{w}) + \frac{E_{F}}{R_{d}} \nabla \cdot (\nabla \overrightarrow{w})^{d} + \frac{2E_{F}}{R_{d}} \nabla \cdot (\nabla \overrightarrow{w})^{d} + \frac{2E_{F}}{R$$

$$\nabla \cdot \vec{E}^{\bullet} = Q \epsilon_{s}^{\bullet} \tag{1.10}$$

$$\nabla \times E^* = 0 \tag{1.11}$$

$$R_{p_s} \frac{\partial p_s}{\partial I^*} + \nabla \cdot \hat{J}^* = 0$$
 (1.12)

$$\tilde{j}^* = \rho_s^* (R_{\rho_s} v^o + \tilde{E}^*) - D^* \nabla \rho_s^*$$
 (1.13)

Здесь

$$R = \frac{V_0 L}{V_0}$$
, $R_r = \frac{V_0 L}{V_0}$, $S = \frac{P_0 E_0 L}{V_0^2}$, $E_E = \frac{L^2}{I}$, $R_0 = \frac{V_0 L^2}{C_0}$

$$R_{d} = \frac{V_{0}L^{3}}{c_{d}}, \quad R_{u} = \frac{V_{0}L^{3}}{c_{u}}, \quad M = \frac{V_{0}^{2}}{C_{0}}, \quad Q = \frac{Lj_{0}}{k\varepsilon_{0}\varepsilon E_{0}}$$

$$D^{*} = \frac{D}{kE_{0}L}, \quad R_{g_{u}} = \frac{V_{0}}{kE_{0}}$$
(1.14)

Заметим, что при $R_*=\infty$ имеет место «вмороженность» заряженных частиц в среду, то есть отсутствует проскальзывание заряженных частиц относительно нейтральных [8]. В магнитной гидродинамике при магнитных числах Рейнольдса $R = \infty$ имеет место вмороженность магнитных силовых линий в вещество. В силу этой аналогии параметр 🔧 называют электрическим числом Рейнольдса [11].

Параметры (1.14) являются критернем подобия электрических течеянй.

2. Симметричное ламинарное течение заряженной жилкости в плоской трибе

Рассмотрим установившееся ламинарное движение несжимаемой униполярно заряженной жидкости под действием виешнего электрического поля в плоской с непроводящими стенками трубе высотой 2L. Пусть напояженность электрического поля, нараллельная стенкам трубы, имеет вели-

чину E_0 . Проводя ось х в плоскости симметрии трубы (фиг. 1).

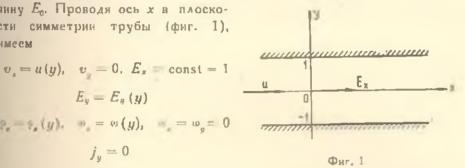
$$v_x = u(y), \quad v_y = 0, \quad E_x = \text{const} = 1$$

$$E_y = E_y (y)$$

$$w_y = w(y), \quad w_y = 0$$

$$f_y = 0$$

$$w_y = 0$$



(Обозначения для безразмерных величин сохраняем те же, что и для размерных).

Все искомые функции в системе (1.7)—(1.13), кроме давления р. в случае плоскопараллельных движений жидкости зависят только от координаты у. Допустим, что граднент давления по оси в постоянен и тогда

$$p = \frac{\sigma_P}{\sigma_X} x + f(y) \tag{2.1}$$

Система уравнений (1.7)—(1.13) примет вид (для простоты обозначения для безразмерных величин сохраняем те же, что и для размерных)

$$\frac{\partial p}{\partial x} = \left(\frac{1}{R} + \frac{1}{R_c}\right) \frac{d^3 u}{dy^3} + \frac{2}{R_c} \frac{d\omega}{dy} = S, \tag{2.2}$$

$$\frac{\partial p}{\partial u} = So_e E_u \tag{2.3}$$

$$\left(\frac{1}{R_s} + \frac{1}{R_s}\right) \frac{d^2\omega}{du^2} - \frac{4}{R_s} \omega^{-1} - \frac{1}{M} c = \frac{2}{R_s} \frac{du}{du}$$
 (2.4)

$$\frac{dE_g}{dy} = Q_{P_g} \tag{2.5}$$

$${}^{\prime} \rho_{\epsilon} E_g = D \frac{d \gamma_{\epsilon}}{d \eta} \tag{2.6}$$

$$j_s = \rho_s (R_{\rho_s} u + 1) \tag{2.7}$$

Параметры E_g и в электрического поля рассматриваемой системы определяются уравнениями (2.5) и (2.6). Распределение скорости по поперечному сечению u, а также распределение скоростей вращения частице могут быть найдены путем совместного решения уравнений (2.2) и (2.4) при известном решении предыдущей системы. Уравнение (2.3) определит функцию f(y) из соотношения (1.16), и, наконец, при помощи соотношения (2.7) становится возможным вычислить плотность тока f(y).

Нз (2.5) и (2.6) найдем первый интеграл

$$E_y = 2D\frac{dE_y}{du} + C \tag{2.8}$$

Вид второго интеграла зависит от знака постоянной интегрирования С [1].

При C < 0

$$E_y(y) = \sqrt{-C} \operatorname{tg}\left(C_1 + \sqrt{-C} \frac{y}{2D}\right) \tag{2.9}$$

 ${\rm H}_3$ (2.5) и (2.9) находим величину заряда при C < 0

$$P_{s}(y) = \frac{2}{2DQ} \frac{-C}{\cos^{2}\left(C_{1} + \sqrt{-C_{2D}}\right)}$$

Из (2.6) следует, что Е. — нечетная функция и, следовательно, на оси грубы

$$E_y(0) = 0 (2.10)$$

Из уравнений (2.8) и (2.5) с учетом (2.10) имеем

$$C = -2DQ_{?}^{0}$$

где $ho_*^0 =
ho_*(0)$ — значение объемного заряда на оси трубы.

Для определенности можно считать заряды положительными, и, следовательно, C < 0. Исходя из решения (2.9) при отрицательном значеним постоянной C. для обеспечения нечетности функции E (у) следует положить $C_1 = 0$, тогда

$$E_y(y) = \sqrt{2DQ_y^0} \operatorname{tg} \sqrt{\frac{p_y^2 Q}{2D}} y \tag{2.11}$$

$$\rho_{s}(y) = \frac{y^{0}}{\cos^{2} \sqrt{\frac{y^{0}Q}{2D}y}}$$

$$(2.12)$$

Изменение давления в потоке, исходя из (2.3), (2.5) и (2.1), запишется в виде

$$p = \frac{\partial p}{\partial x} x + \frac{S}{2Q} E_{\tau}^{2}$$

или с учетом (2.11)

$$p = \frac{\partial p}{\partial x} x + SD \varepsilon_e^0 \operatorname{tg}^2 \sqrt{\frac{r_e^0 Q}{2D}} y \qquad (2.13)$$

Выражения для и и и находим из (2.2) и (2.4) с учетом (2.12) при следующих граничных условиях [12]:

$$u = 0, \quad \omega = 0 \quad \text{при} \quad y = \pm 1$$
 (2.14)

В случае симметричного течения заряженной жидкости под действием влектрического поля в плоской трубе уравнение (2.4) с учетом вектора поляризации примет следующий вид:

$$\frac{R_{s}}{2} \frac{R_{a} + R_{d}}{R_{a} R_{d}} \frac{d^{2}v_{s}}{dy^{2}} - \left(2 - \frac{R_{s} \Phi}{2}\right) v_{s} = \frac{du}{dy}$$
 (2.15)

rie

$$\Phi = \frac{c}{M} = \xi^*(0) \frac{E_0^2}{9 V_0 L}$$

Совместное решение (2.2) и (2.15), при граничных условиях (2.14), дает следующее выражение для скорости потока u:

$$u = -\frac{R}{2} \frac{4 - R, \Phi}{4 - (R + R, \Phi)} \frac{\partial p}{\partial x} (1 - y^{2}) + \frac{4R}{R + R, A} \frac{R}{4 - (R + R, \Phi)} \frac{\partial p}{\partial x} \frac{1}{\lambda} \frac{\cosh i - \cosh \lambda y}{\sinh \lambda} + \frac{2D\frac{RS}{Q} \frac{R}{R + R}}{R + R} \ln \left(\cos \sqrt{\frac{Q\rho_{e}^{0}}{2D}} y \middle| \cos \sqrt{\frac{Q\rho_{e}^{0}}{2D}} \right) + \frac{2R}{R + R} \frac{RS}{4 - (R + R, \Phi)} \sqrt{\frac{2D\rho_{e}^{0}}{Q}} \left[(a_{1} \exp(\lambda) - a_{2} \exp(-i)) \times \frac{\cosh \lambda - \cosh \lambda y}{\sinh \lambda} - (a_{1} \exp(\lambda) + a_{2} \exp(-i)) - \frac{\cosh \lambda - \cosh \lambda y}{\sinh \lambda} \right]$$

$$-\int_{L} \exp(-\lambda y) \left(\int \exp(\lambda y) \operatorname{tg} \sqrt{\frac{Q \rho_{e}^{0}}{2D}} y dy \right) dy +$$

$$+ \int_{L} \exp(\lambda y) \left(\int \exp(-\lambda y) \operatorname{tg} \sqrt{\frac{Q \rho_{e}^{0}}{2D}} y dy \right) dy -$$

$$-\frac{2}{\sqrt{\frac{Q \rho_{e}^{0}}{2D}}} \ln \cos \sqrt{\frac{Q \rho_{e}^{0}}{2D}} \right]$$
(2.16)

Здесь

$$\frac{R_a R_d [4 - (R + R_r) \Phi]}{(R + R_r) (R_a + R_d)}$$

$$a_1 = \int_0^1 \exp(-iy) \operatorname{tg} \left(\frac{\overline{Q_{\ell}}}{2D} y dy \right)$$

$$a_2 = \int_0^1 \exp(iy) \operatorname{tg} \left(\frac{\overline{Q_{\ell}}}{2D} y dy \right)$$

Решение (2.16) переходит в классическое при $v_r = 0$ (то есть $R_r = \infty$) [1]

$$u = -\frac{R}{2} \frac{\partial p}{\partial x} (1 - y^2) + 2D \frac{SR}{Q} \ln \left(\cos \sqrt{\frac{Q x^2}{2D}} y \middle| \cos \sqrt{\frac{Q x^2}{2D}} \right)$$

Формула (2.16) может быть переписана в несколько ином виде. Из условия u (0) = 1 (при v = 0) получим*

$$u_1 + u_2 = 1$$

гле

$$u_1 = -\frac{R}{2} \frac{\partial p}{\partial x}$$

$$u_2 = -2D \frac{RS}{Q} \ln \cos \left(\frac{Q_{\zeta_p^0}}{2D} \right)$$

Гогда выражение (2.16) переписывается в виде

$$u = u_1 \left[(1 - y_1) - \frac{2R}{R - R_2} \frac{1}{1 - \ln \cos \left(\frac{2R}{2D} y / \ln \cos \left(\frac{2R}{2D} y \right) \right) \right] +$$

$$+ u_2 \left\{ \frac{R_2}{R + R_2} \left(1 - \ln \cos \left(\frac{2R}{2D} y / \ln \cos \left(\frac{2R}{2D} y \right) \right) - \frac{R_2}{2D} \right) \right\}$$

^{*} Для простоты примем () = 0.

$$-\frac{R}{2(R+R_s)}\sqrt{\frac{Q\rho_s^0}{2D}}\ln\cos\sqrt{\frac{Q\rho_s^0}{2D}}\left[(a_1\exp(\lambda) - a_2\exp(-\lambda)) - \frac{\cosh\lambda - \cosh\lambda y}{h} - (a_1\exp(\lambda) + a_2\exp(-\lambda)) - \frac{\cosh\lambda - \cosh\lambda y}{h} - (a_1\exp(\lambda) + a_2\exp(-\lambda)) - \frac{\cosh\lambda - \cosh\lambda y}{h} - \frac{\cosh\lambda y}{h} + \frac{Q\rho_s^0}{2D}ydy\right]dy + \left[\ln\exp(\lambda y)\left(\int\exp(-\lambda y) + \frac{Q\rho_s^0}{2D}ydy\right)dy\right] - \frac{2}{\sqrt{\frac{Q\rho_s^0}{2D}}}\ln\cos\sqrt{\frac{Q\rho_s^0}{2D}}\right\}$$
(2.17)

Из (2.17) следует, что рассматриваемое электрогидродинамическое течение складывается из обычного градиентного течения несимметричных жидкостей [12], а также течения, вызванного пондеромоторными силами.

Значение ? объемного заряда из оси трубы может быть определено из условия, что средняя плотность тока в сечении трубы равна единице. что вквивалентно выбору характерной плотности тока в виде [1]

$$j_0 = \frac{J}{2L}$$

где I — сила тока, проходящего через трубы на сдиницу ее глубины. 2l — расстояние между стенками трубы.

Для простоты при определении 🕍 будем учитывать только ток проводимости и тогда

$$j_{ep} = \frac{1}{2} \int_{-1}^{1} \rho_e dy = 1$$

Учитывая (2.5), получим

$$E_{g}\left(1\right)-E_{g}\left(-1\right)=2Q$$

Отсюда, используя (2.11), получим выражение для определения 🥀

$$\operatorname{tg} \sqrt{\frac{Q_{r_{\bullet}^{0}}}{2D}} = \sqrt{\frac{Q}{2D_{r_{\bullet}^{0}}}} \tag{2.18}$$

Из условия непрерывности $E_{\nu}\left(y\right)$ следует, что

$$0 < \sqrt{\frac{Q_{P_s^*}}{2D}} < \frac{\pi}{2}$$

$$A = \frac{Q}{2\pi D} = \frac{\int L}{4\pi \varepsilon \varepsilon_0 E_0 D}$$

н рассмотрим решения уравнения (2.18) при достаточно больших и достагочно малых значениях A.

При больших значениях А для определения (имеем [1]

$$\sqrt{\pi A \rho_e^0} = \frac{\pi}{2} - \frac{1}{2A}$$

что позволяет рассчитать функции, входящие в (2.11), (2.12), (2.13), (2.16).

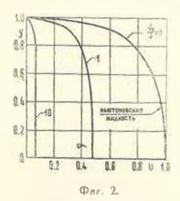
При малых значениях А для (имеем [1]

$$p_{c}^{0} = 1$$

Распределения скоростей потока и величии заряда при чисто пондеромоторном течении заряженной жидкости в плоской трубе (u, -0) в зависимости от значений величины A для классических жидкостей подробио изучены в [1].

Как показали исследования, при достаточно больших значениях А заихд почти полностью сосредотачивается в тонком пристеночном слое [1]. В связи с этим пондеромоторные силы становятся особенно большими в испосредственной близости от стенки, что приводит к резкому нарастанию скорости в окрестности стенки. Отсюда по мере роста силы тока этнора скоростей все более отличается от профиля распределения скоростей в отсутствие электрического поля, в сторону ее большего заполнения [1].

Так как v_i, v_j, c_{a^i}, c_d не отрицательны, то i действительное число.



На фиг. 2 приводятся рассчитанные по вышеприведенной формуле эпюры распределения скоростей для различных значений v_{μ}/v_{μ} (при $\lambda=1$, $A=10^2$). Как видно, скорость здесь меньше скорости для классических жидкостей, где внутреннее вращение не учитывается.

ՈՒՆԻՊՈԼՅԱՐ ԼԻՑՔԱՎՈՐՎԱԾ ՈՉ ՍԻՄԵՏՐԻԿ ՀԵՂՈՒԿԻ ԼԱՄԻՆԱՐ ԷԼԵԿՏՐՈՀԻԳՐՈԳԻՆԱՄԻԿԱԿԱՆ ՀՈՍՔԸ ՀԱՐԹ ԽՈՂՈՎԱԿՈՒՄ

L. S. Abstraustiv

Ամփոփում

Լուծված հե ոչ սիմետրիկ Հլեկտրուիդրոդինամիկայի Հավասարումները Տարք խողովակում անսեղմելի բևեռացած Քույլ ունիպոլյար՝ Հաղորդականու-Սյամը Տեղուկի սիմետրիկ լամինար Տոսքի դեպքում։

LAMINAR ELECTROHYDRODYNAMIC FLOW OF UNIPOLAR CHARGED ASYMMETRICAL FLUID IN A FLAT CHANNEL

L. G. PETROSIAN

Summary

The equations of asymmetrical electrohydrodynamics in the case of symmetrical laminar flow of incompressible polarized fluid with weak unipolar conductivity in a flat channel have been solved. It is shown that the velocity of a stream for an asymmetrical fluid is less than the velocity of classical fluids.

AHTEPATYPA

- Кольдол Г. Н. Ламинариот течение заряженной жидкости в плоской трубе под действием впешиего влектростатического поля.— ЖТФ, 1963, 33. № 11. с. 1290—1300.
- 2. Селов Л. И. Механика сплотной среды. 1. М. Изл. Наука, 1970, 492 с.
- з Фомин В. Л. Механина континутма для инженеров. Л.: Изд. ЛГУ, 1975. 118 с.
- 4. Эриксен Дж. Исследования по механике сплошных сред. М.: Изд. Мир. 1977. 246 с.
- 5. Селов Л. И Математические методы построения новых моделей сплошных сред.— УМН, 1965, 20, вып. 5, с. 121—180.
- 6. Петросян А. Г. О модели электрогилродинамики с иссимметричным тензором папряжений.— ЖТФ, 1979, 49, вып. 3, с. 481—487.
- 7. Петросян .4. Г. К построению изпротермической молели электрогилродинамики с изсимметричным тенвором напряжений ПМ, 1980, 16, № 4, с. 108—114.
- 8. Голосов В. В., Полянский В. А., Семенова И. П., Якубенко А. Е. Уравнения влектрогидродинамики и можффицискты перепоса в сильном электрическом поле.— Изв. АН СССР. МЖГ, 1969, № 2, с. 31—45.
- 9. Condiff D. W., Dahler J. S. Fluid Mechanical Aspects of Antisymmetric Stress. The Physics of Fluids, 1964, vol. 7, No. 6, p. 842-854
- 10. Дебий П. Полвоние моленулы. М. А.: ГНТ 1 1931. 247 с.
- 11. Stuatzer O. Magnotohydrodynamics and electrohydrodynamics. The Physics of Fluids, 1962, vol. 5, No. 5, p. 534 -544.
- 12. Патриени Л. Г. Об одной задаче асимметрической магнитной сидродинамихи Иви. АН Арм. ССР, Меданика, 1974, 27, № 6, с. 44—55.

Поступила и редакцию 31. V. 1982