HRHATO .1 .1

О ВЛИЯНИИ СРЕДНЕГО (АКУСТИЧЕСКОГО) ТЕЧЕНИЯ НА ЭВОЛЮЦИЮ ВОЛНЫ В ДИСПЕРГИРУЮЩИХ СРЕДАХ

В работе рассматриваются нелинейные задачи распространения волн огибающих монохроматических волн малой амплитуды. На примере молельного уравнения, описывающего волновое движение в различных средах, показано влияние среднего течения на характер распространения модулированной волны (волны огибающей). Выведены и решены нелинейные уравнения модулиций как для одномерного нестационарного (задача самомодуляции волны), так и для стационарного двумерного (задача самофокусировки волны) случаев. Показано, что в первой задаче учет среднего течения оказывает демодулирующее влияние, если параметр, характеризующий дисперсию среды, положителен и обратно — самомодулирующий эффект, если параметр дисперсии отрицателен. Во второй задаче в рассматриваемом приближении средним (акустическим) течением можно пренебречь и характер зволюции модулированной волим зависит дишь от знака параметра дисперсии среды.

Стационарны, уравнения модуляций в различных недиссипативных средах и их решения приведены в [1—5].

Рассмотрено влияние кривизны первоначально заданной волны и дифракционного эффекта на эволюцию волны. Показано, что в дефокусирующей среде выпуклая волна начинает сразу расплываться, в то премя как вогнутая волна до некоторого момента времени сжямается (самомодулируется) и далее начинается процесс расплывания. В фокусирующей среде, независимо от знака кривизны, эволюция водны имеет волноводный характер. Апалогичная картина распространения модулированной водны имеет место и з задаче самофокусировки пучка. Учет дифракционного эффекта препитствует заострению профиля волны и образованию фокуса.

§ 1. Уравнения модуляций. Без учета диссипативных и релаксационных эффектов полновое движение можно описать уравнением

$$\frac{\partial}{\partial x_1} \left(\frac{\partial u}{\partial t} + \tau u \frac{\partial u}{\partial x_1} + \tau \frac{\partial^2 u}{\partial x_1} \right) = -\frac{\epsilon_0}{2} \frac{\partial^2 u}{\partial y^2} \tag{1.1}$$

Здесь t — время, $x_1 = x - c_0 t$, x и y — пространственные координаты поперек и вдоль волны, c_0 — невозмущенная скорость звука, u — скорость, α и γ — коэффициенты нелинейности и дисперсии среды. Уравнение (1.1) в одномерном нестационарном случае описывает распространение воли на высрхности неглубокой жидкости, акустических воли в плавме [2, 6].

слабых ударных ноли в газожидкостной смеси [5, 7].

Решение уравнения (1.1) будем искать в виде

$$u = U_0 + U_1 e^{i\theta} : U_1 e^{-i\theta} + U_2 e^{2i\theta} = U_1 e^{-2i\theta}$$
 (1.2)

Здесь U_* — действительная функция, описывающая среднее (акустическое) течение, U_t и U_{**} — комплексные и комплексно-сопряженные функции, дифференцирование которых по независимым переменным уменьшает ворядок их величин, $\theta = kx_* - \omega t - \phi$ аза, k и ω — полновое число и частота вевозмущенной волны. Подставляя (1.2) в (1.1), приравнивая коэффициенты при одинаковых по θ степенях экспоненты и удерживая главные члены, получим систему уравнений

$$(w - \gamma k^3) + i \frac{\partial U_1}{\partial t} + i \left(-\frac{\omega}{k} - 4\gamma k^2 \right) \frac{\partial U_1}{\partial x_1} + \frac{1}{k} \frac{\partial}{\partial x_1} \left(\frac{\partial U_1}{\partial t} - 6\gamma k^2 \frac{\partial U_1}{\partial x_1} \right) +$$

$$+ \frac{c_0}{2k} \frac{\partial^2 U_1}{\partial y^2} - \alpha k U_0 U_1 - \alpha k U_1^* U_2 = 0$$

$$2U_2 (w + 4\gamma k^3) - \alpha k U_1^2 = 0$$

$$\frac{\partial}{\partial x_1} \left(\frac{\partial U_0}{\partial t} + \alpha \frac{\partial}{\partial x_1} |U_1|^2 \right) - \frac{c_0}{2} \frac{\partial^2 U_0}{\partial y^2} = 0$$

$$(1.3)$$

В анцейном приближении из (1.1) нетрудно получить дисперсионное соотношение $\omega = -\gamma k^3$. Подставляя значение ω в ураннение системы (1.3), в главном приближении получим соотношение

$$\frac{\partial}{\partial t} = 3\gamma k^2 \frac{\partial}{\partial x_*} \tag{1.4}$$

одстановка которого в члены более высокого порядка малости приводит систему (1.3) к виду

$$i\left(\frac{\partial U_1}{\partial t} - 3\gamma k^2 \frac{\partial U_1}{\partial x_1}\right) - 3\gamma k \frac{\partial^2 U_1}{\partial x_1} - \frac{z^2}{6\gamma k} |U_1|^2 U_1 - z k U_2 U_1 + \frac{c_0}{2k} \frac{\partial^2 U_1}{\partial y^2} = 0$$

$$\frac{\partial}{\partial x_1} \left(\frac{\partial U_0}{\partial t} + z \frac{\partial}{\partial x_1} |U_1|^2\right) + \frac{c_0}{2} \frac{\partial^2 U_0}{\partial y^2} = 0$$

$$(1.5)$$

Полученная система в рассматриваемом приближении полностью описырает вволюцию огибающей води (модулированной волиы).

§ 2. Самомолуляция волны. В одномерном нестационарном варианте уравнений (1.5) предположим [1], что среднее течение, характеризуемое функцией $U_{\rm o}$, обусловлено основным, то есть имеет место соотношение (1.4). Тогда система (1.5) сведется к одному уравнению

$$I\left(\frac{\partial U_1}{\partial t} - 3\gamma k^2 \frac{\partial U_1}{\partial x_1}\right) - 3\gamma k \frac{\partial^2 U_1}{\partial x_1^2} + \beta [U_1]^2 U_1 = 0, \quad \beta = \frac{1}{6\gamma k}$$
 (2.1)

Эффект влияния среднего течения на вид уравнения (2.1) проявляется, согласно (1.5), через коэффициент р : $\beta>0$ при $\gamma>0$ и $\beta<0$ при $\gamma<0$. При отсутствии среднего течения $\beta<0$ при $\gamma>0$ и $\beta>0$ при $\gamma<0$.

1) Пусть $\gamma>0$ (дефокусирующая среда). Если в уравнении (2.1) перейти к координате $\mu=(x_1-3\,\gamma k^2l)$ (6 γk) и решение искать в виде $U_i=a(\mu,\,l)\exp\left[i\phi\left(u,\,l\right)\right]$, где a и $\phi=0$ амплитуда и фаза волны, то после отделения действительной и мнимой частей, получим систему уравнений

$$\frac{\partial \mathbf{a}}{\partial t} = \frac{\mathbf{a}}{2} \frac{\partial^{2} \mathbf{c}}{\partial \mathbf{a}^{2}} = \frac{\partial \mathbf{a}}{\partial \mathbf{a}} \frac{\partial \mathbf{c}}{\partial \mathbf{a}} = 0$$

$$\frac{\partial \mathbf{c}}{\partial t} + \frac{1}{2a} \frac{\partial^{2} \mathbf{a}}{\partial \mathbf{a}^{2}} - \frac{1}{2} \left(\frac{\partial \mathbf{c}}{\partial \mathbf{a}} \right)^{2} - \beta \mathbf{a}^{2} = 0$$
(2.2)

Рассмотрим задачу с начальными условиями

при
$$t = 0$$
 $a = a_0 \exp\left(-\frac{\mu^2}{2}\right)$ $\phi := \sigma_0 - \frac{\mu^2}{2K_0}$ (2.3)

где a_n , σ_n — начальные амплитуда и фаза при n=0, μ_n и — $1/R_n$ — начальные ширина профиля и «кривизна» волны в пространстве времени. Решение системы (2.2) будем искать в виде

$$\alpha = \frac{\alpha_0}{L^2} \exp\left(-\frac{\mu}{2R(t)}\right) \qquad \varphi = \varepsilon(t) - \frac{\mu}{2R(t)} \tag{2.4}$$

Здесь функция [(1) характеризует степень сжатия профиля волны, причем

$$\frac{1}{R(t)} = \frac{1}{f} \frac{df}{dt} \quad \text{при } t = 0, \quad f(0) = 1, \quad \frac{df(0)}{dt} = \frac{1}{R_0} \tag{2.5}$$

Подставляя (2.4) в (2.2) и в нелинейном слагаемом взяв первых два члена из разложения экспоненты по малым µ, после интегрирования и учета начальных условий (2.4) получим

$$\left(\frac{df}{dt}\right)^{2} = m + \frac{m}{f} - \frac{n}{f^{2}} \quad \frac{dz}{dt} \quad \frac{1}{2c_{0}^{2}f^{2}} \quad \frac{m\mu_{0}}{4f}$$

$$m = \frac{2z^{2}a_{0}^{2}}{2z^{2}} - \frac{4a_{0}}{z^{2}}\beta, \qquad n = \frac{1}{z^{2}} \qquad r = \frac{1}{rc^{2}}$$
(2.6)

1) $\beta > 0$ (влияние акустического течения), тогда m>0. Не выписывая эдесь решений урависиия (2.6), записываемых через элементарные функции, опишем вкратце эволюцию полны.

Если первоначально ваданная волна выпуклая (R>0), то сразу начинается процесс демодуляции (расплывания) волны. Если же первоначальная волна вогнутая ($R_0<0$), то до момента времени

$$t_{n} = \frac{1}{m+n+r} \frac{m}{2(m+n-r)^{\frac{n}{2}}} \ln \frac{1}{2\sqrt{r(m+n-r)+m+2n+2r}}$$

вачинается процесс самомодуляции (сжатия) волны, потом она становитси плоской и далее выгибается в сторону выпуклости и начинается процесс вемодуляции.

2) $\beta < 0$ (отсутствие акустического течения), тогда m < 0, а уравнение (2.6) перепишем в виде

$$\left(\frac{df}{dt}\right)^2 = n + r - m + \frac{m}{f} - \frac{n}{f^2}, \qquad \frac{d^2}{dt} = \frac{1}{2f^2\mu_0^2} - \frac{m\mu_0^2}{4f}$$
 (2.7)

Покажем, что при отсутствии и уравнениях (2.2) дифракционных членов (вторых производных) происходит заострение гауссопа профиля волны. Действительно, для простоты принимая первоначально заданную полну плоской и интегрируя уравнение (2.7), в котором положено $n=\ell=0$, находим

$$\ell = (\arcsin (\overline{1-f} + |\overline{f-f}|)(m)^{-1}$$

В момент $t=t_0=-\mu_0 (3\gamma k/2)^{1/2}/(2a_0)$ получаем f=0 и $a\to\infty$. Если же волна неплоская, то для псех и k>0, удоплетворяющих условию k>1/m, имеет место аналогичная картина.

Для физически верного описания картины распространения необхедию в (2.7) учесть дифракционные члены, которые в окрестности $t=t_0$ начинают играть важную роль. Для общности примем, что первоначально ваданная волна неплоская. Поведение решений уравнения для t из (2.7) во многом определяется выбором корней t_0 , соответствующих выбору внаков t_0 и t_0 в решении уравнения t_0 соответствующих выбору внаков t_0 и t_0 в решении уравнения t_0 соответствующих выбору внаков t_0 и t_0 в решении уравнения t_0 соответствующих выбору внаков t_0 и t_0 в решении уравнения t_0 соответствующих выбору внаков t_0 и t_0 в решении уравнения t_0 соответствующих выбору внаков t_0 и t_0 в решении уравнения t_0 каждого конкретного случая.

2а) Пусть n+r-m>0, то есть r>m-n, что приводит к условию 0< l, < 1, l<0. Решая с учетом (2.5) уравнение (2.7) и исследуя получаемое решение, приходим к выводу, что если перионачальная волна выпуклая $(R_*>0)$, то независимо от «радиуса кривизны», имеет место ее демодуляция. Если же начальная волна вогнутая $(R_*<0)$, то она начинает самомодулироваться до момента

$$4 = \frac{Vr}{n+r-m} + \frac{m}{(n+r-m)^{10}} \ln \frac{2n-m+2r-2Vr(n-m+r)}{2n-m-2r+2Vr(n-m+r)}$$

При $t=t_1$ волна становится плоской, а при $t>t_1$ — выпуклой и начивается процесс демодуляции.

26) Пусть n-1-r-m < 0, то есть r < m-n, что приводит к условию $0 < I_1 < 1$, $I_2 > 1$.

Первоначально заданная волна выпуклая $(R_0>0)$. Примем m=2n>0, то есть нелинейный эффект больше дифракционного, при втом, как будет показано инже, $l_1<\tilde{l}<\tilde{l}_2$. Взян в уравнении (2.7) знак 4+ и интегрируя его с учетом (2.5), получим (яствь IC, фиг. 1)

$$t = \frac{1 - 1 \cdot (n + r - m)f^{2} + mf - n}{m - n - r}$$

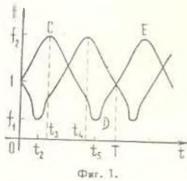
$$= \frac{m}{2(m - n - r)} [\arcsin F(t) - \arcsin B]$$

$$F(t) = \frac{2(n + r - m)f + m}{1 \cdot (m - 2n)^{2} + 4nr} \quad B = \frac{2n - m + 2r}{1 \cdot (m - 2n)^{2} + 4nr}$$

Для того, чтобы подкоренное выражение было больше пуля, необходими имполнение условия $I_1 < l < 1$ При $l = l_2$ находим

$$t_2 = \frac{Vr}{m-n-r} + \frac{m}{2(m-n-r)^{3/2}} \left(\frac{\pi}{2} + \arcsin B\right)$$

Вниду того, что, начиная с момента t>t t t t0, следует при интегриропации уравнения (2.7) брать инак «—», при втом постоянная интегрирования определяется из условия: при t t t t Решение запишется виде (ветвь СД)



$$t = \frac{\sqrt{r} + \sqrt{(n+r-m)f^2 + mf - n}}{m - n - r} + \frac{m}{2(m-n-r)^{3/2}} \left[\arcsin F(t) + \frac{m}{4\arcsin B + \pi}\right]$$

$$\downarrow \int_{\mathbb{R}^2} \left[\operatorname{Impn} f = \int_{\mathbb{R}^2} \operatorname{monywaem} \right]$$

$$\downarrow \int_{\mathbb{R}^2} \left[\operatorname{monywaem} \right]$$

$$+\frac{m}{2(m-n-e)^{3/2}}\left(\frac{3\pi}{2}+\arcsin B\right)$$

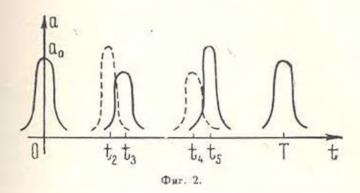
Начиная с момента t > t, f'(t) > 0, повтому в (2.7) следует брать знак «+» и постоянную интегрирования определять из условия; при t = t, t = t, откуда находим решение (ветвь AE)

$$t = \frac{\sqrt{r - V(m - n - r)f^2 + mf - n}}{m - n - r}$$

$$-\frac{m}{2(m - n - r)^{2}} \left[\arcsin F(t) - \arcsin B - 2\right]$$

При l=1 получаем T лm (m=n-r) , налиощееся перходом функции l(t), так как картина изменения l периодически повториется. Таким образом, начальная выпуклая волна начинает демодулироваться до момента $t=t_1$, при котором она, превращаясь в плоскую, далее ныгибается в сторону вогнутости; при этом начинается процесс самомодуляции, продолжающийся до момента $t=t_2$ В момент $t=t_3$ вогнутая волна, превра-

щаясь в плоскую, далее становится выпуклой и начинается процесс демодуляции, причем описанный процесс эволюции волны огибающей периодически повторяется (фиг. 2). Первоначально заданная волна вогнутая ($R_o < 0$). Примем m = 2n > 0, при этом $j_+ < l < l_2$. Не выписывая здесь решений, получаемых аналогично вышеприведенному исследованию, опишем картину эволюции волны огибающей (фиг. 1).



Начальная вогнутая волна начинает самомодулироваться до момента

$$t_2 = \frac{Vr}{n+r} + \frac{m}{2(m-n-r)^{\frac{n}{2}}} \left(\frac{\pi}{2} - \arcsin B\right)$$

при котором она, превращаясь в плоскую, далее выгибается в сторону выпуклости и начинается процесс демодуляции, продолжающийся до момента

$$t_4 = -\frac{1}{m-n-r} + \frac{m}{2(m-n-r)} \left(\frac{\pi}{2} - \arcsin B\right)$$

При $t=t_{\rm c}$ выпуклая волна, препращаясь в плоскую, далее становится вогнугой и начинается процесс самомодуляции. Такая каргина распространения волны периодически повторяется с периодом $T=\pi m$ (m-n-r)

Пусть теперь m=2n<0, то есть пелинейный аффект меньше дифракционного, что приводит к условию 1,<1<1. Картина распространения волны огибающей аналогична описанию, приведенному в пункте 26), лишь выпуклая и воснутая волны меняются ролями.

Таким образом, из проведенного исследования следует, что в дефокусирующей среде ($\gamma > 0$) учет среднего (акустического) течения приводит к демодуляции (расплыванию) полны огибающей.

3) Пусть $\gamma < 0$ (фокусирующая среда). Заменяя в уравнении (2.1) γ на $(-\gamma)$ и переходя к координате $\mu = (x_1 + 3k)$ (бүк) ... получим для амплитуды и фазы систему уравнений

$$\frac{\partial a}{\partial t} + \frac{a}{2} \frac{\partial^2 x}{\partial \mu^2} + \frac{\partial a}{\partial \mu} \frac{\partial x}{\partial \mu} = 0$$

$$\frac{\partial x}{\partial t} - \frac{1}{2a} \frac{\partial^2 a}{\partial \mu^2} + \frac{1}{2} \left(\frac{\partial x}{\partial \mu}\right)^2 + \beta \alpha^2 = 0$$

Здесь и ниже обозначения те же, что и в п. 1. Рассмотрим задачу об эволюции волны, первоначально заданной в виде гауссова профиля:

при
$$t=0$$
 $a=a_0\exp{\left(-rac{\mu^2}{2\mu_0^2}
ight)}, \qquad \phi=\sigma_0+rac{\mu^2}{2R_0}$

Если решение рассматриваемой системы искать в виде

$$a = \frac{a_0}{f^{1/2}} \exp\left(-\frac{\mu^2}{2\mu_0^2 f^2}\right), \qquad \varphi = \sigma(t) + \frac{\mu^2}{2R(t)}$$

то, аналогично выводу (2.6), получим систему уравнений

$$\left(\frac{df}{dt}\right)^2 = m + n + r - \frac{m}{f} - \frac{n}{f^2}, \quad \frac{dz}{dt} = -\frac{1}{2ia_0^2} f^2 - \frac{mia_0^2}{4f}$$
 (2.8)

3а) $\beta < 0$ (влияние акустического течения), тогда m < 0 и уравнение для функции f(t) из (2.8) совпадает с (2.7). Таким образом, учет среднего течения в фокусирующей среде приводит к самомодуляции волны огибающей.

36) $\beta > 0$ (отсутствие акустического течения), тогда m>0 и уравнение для функции f(t) совпадает с (2.6), то есть для волны огибающей имеет место процесс демодуляции (расплывание профиля волны).

§ 3. Узкие пучки. В задачах об узких пучках изменения параметров течения по касательной к волне превосходят их изменения поперек волны, поэтому в уравнениях (1.5) второй производной по х, можно пренебречь в сравнении с у. Перейдем в (1.5) от подвижной (х, у, t) к неподвижной (х, у, t) системс координат и стационарный двумерный вариант полученных уравнений запишем в виде

$$i \left(c_0 - 3 \cdot k^2 \right) \frac{\partial U_1}{\partial x} - \frac{a^2}{6 \cdot k} |U_1|^2 U_1 - ak U_0 U_1 + \frac{c_0 - 3 \cdot k^2}{2k} \frac{\partial^2 U_1}{\partial y^2} = 0$$

$$= \frac{\partial^2}{\partial x^2} |U_1|^2 - \frac{c_2}{2k} \frac{\partial^2 U_0}{\partial y^2} = 0$$
(3.1)

В системе (3.1) $U_1 = x \sim 1$, $y \sim \varepsilon^{1/2}$, $\gamma \sim \varepsilon^{1/2}$, $k \sim \varepsilon$ где $\varepsilon = 6e3$ -размерный малый параметр, поэтому из нторого уравнения нетрудно заметить, что $U_0 \sim 1$ Таким образом, в рассматриваемом приближении среднее (акустическое) течение не влияет на распространение волны огибающей, и система (3.1) сведется к уравнению

$$i\frac{\partial U_1}{\partial x} - \frac{\alpha^2}{6\pi k c_0} \left[U_1 \right]^2 U_1 + \frac{1}{2k} \frac{\partial U_1}{\partial y^2} = 0 \tag{3.2}$$

Если решение (3.2) искать в виде $u = a(x, y) \exp[i\varphi(x, y)]$, то для амплитуды a и фазы φ получим систему уравнений [1-5]

$$\frac{\partial a}{\partial x} = \frac{1}{k} \frac{\partial a}{\partial y} \frac{\partial z}{\partial y} = \frac{a}{2k} \frac{\partial z}{\partial y^2} = 0$$

$$\frac{\partial z}{\partial x} = \frac{1}{2k} \left(\frac{\sigma_z}{\sigma y} \right) = \frac{1}{2ak} \frac{\partial^2 a}{\partial y^2} + \beta a^2 = 0$$
(3.3)

Рассмотрим задачу об эволюции волны, первопачально заданной в виде гауссова пучка

при
$$x = 0$$
 $a = a_0 \exp\left(-\frac{y^2}{2y_0}\right)$ $\varphi = a_0 + \frac{y^2}{2R_0}$ (3.4)

где d_a , σ_a — начальные амплитуды и фаза волны при x=0, y_a и $1/R_a$ — вачальные ширина профиля и кривизна волны. Задача (3.3)—(3.4) ставилась и подробно исследовалась в [2, 3], поэтому дадим краткое описание поведения волны.

Если γ > 0, в дефокусирующей среде происходит расплывание пучка Если γ < 0, в фокусирующей среде происходит волноводное распространение волны, то есть узкий пучок стремится фокусироваться, однако дифракционный эффект, выражаемый в (3.3) вторыми производными, препятствует образованию фокуса. Как было показано выше, процесс аволюции волны отибающей периодически повторяется.

В заключение отметим, что в более высшем приближении в работе [4] на основании закона сохранения потока импульса исследовано влияние акустического течения на самофокусировку звукового пучка. Утверждается, что учет среднего течения приводит к дополнительной расфокусировке пучка в дефокусирующей среде ($\gamma > 0$). Тогда, по апалогии с [4], можно утверждать, что в фокусирующей среде ($\gamma < 0$) акустическое течение усиливает процесс фокусировки пучка.

Институт механики АН Арминской ССР

Поступила 8 XII 1980

9. 9. 02UV3UV

<mark>ԴԻՍՊԵՐՍ</mark>ԻՎ ՄԻՋԱՎԱՅՐԵՐՈՒՄ ԱԼԻՔԻ ԶԱՐԴԱՑՄԱՆ ՎՐԱ ՄԻՋԻՆ (ԱԿՈՒՍՏԻԿ) ՀՈՄԱՆՔԻ ԱԶԴԵՑՈՒԹՅԱՆ ՄԱՍԻՆ

Und diather if

Դիտարկվում են փոքր ամպլիտուդայի մոնոխըսմատիկ ալիքների պարուրիչ ալիքի տարածման խնդիրները։ Ցույց է տրված, որ ոչ ստացիոնար միաչափ խնդրում ակուստիկ հոսանքի հաշվառումը դիսպերսիայի դրական պարամետրի դնպեում ալիքի տարածման վրա քողնում է դեմագուլացվող ազդեցություն, իսկ դիսպերսիայի բացասական պարամետրի դեպրում՝ ինք նամողուլացվող էֆեկտ։ Երկչափ ստացիոնար խնդրում ակուստիկ հոսանքը

ON INFLUENCE OF MEAN (ACOUSTIC) FLOW ON THE EVOLUTION OF WAVE IN DISPERSIVE MEDIA

G. G. OHANIAN

Summary

The problems of propagation of enveloping waves of monochromatic waves of small amplitude are considered. It is shown that in one-dimensional nonstationary problem the taking into account of accustic flow exerts a demodulation influence on propagation of wave, when the parameter of dispersion is positive, and conversely—the self-modulation effect, when the parameter of dispersion is negative. In a two-dimensional stationary problem the acoustic flow has no influence on evolution of enveloping waves.

ЛИТЕРАТУРА

- 1. Учлем Дм. Линейные и нелинейные волны. М., «Мир», 1977.
- 2. Виноградова М. Б., Руденко О. В., Сухоруков А. П. Теория воли. М., «Наука» 1979
- 3. Ахминов С. А., Сухоруков А. П., Хихлов Р. В. Саморокусировка и дифракция света и нелинейлой среде. Усп. физ. и., 1967. т. 93, № 1, стр. 19—70.
- 4. Забологская Е. А. Два механизма самовоздействия звуковых воли, распространяющихся и газожидкостной смеси. Акуст. ж., 1977. т. 23, № 4, стр. 591—595.
- 5 Вагловя А. Г. Озанян Г. Г. Распространение модулированных нелинейных воли в релаксирующен газожидкостной смеси. Нап. АН СССР, МЖГ, 1980, № 1, стр. 133— 143.
- 6. Карпман В. И. Пелинейные волны и диспергирующих средах. М., «Паука», 1973.
- 7. Озинян Г. Г. Распространение слабых воли в релаксирующей газожидкостной смеси. Нав. АН Арм. ССР. Механика, 1979, т. 32, № 2, стр. 3—13.