Մեխանիկա

XXXII, № 5, 1979

Мехавика

А Н. ОЛЕЙНИК

АСИМПТОТИЧЕСКИЙ АНАЛИЗ ЭЛЕКТРОУПРУГОГО СОСТОЯНИЯ ТОНКОЙ АНИЗОТРОПНОЙ ПЬЕЗОЭЛЕКТРИЧЕСКОЙ ПОЛОСЫ

Исследовано электроупругое состояние тонкой анизотропной пьезоэлектрической полосы при заданных на боковых поверхностях физических поздействиях.

Задача решена методом асимптотического интегрирования трехмерных уравнений электроупругости [1]. Граничные условия на боковых поверхностях удовлетворены с помощью вариационного принципа Лагранжа [2], абобщенного на случай пьезоэлектрической среды [3].

Определение электроупругого состояния типа пограничного слоя сведено к решению бесконечной системы линейных уравнений.

Аналогичная задача о равновесни пьезокерамической пластинки с влектродированными плоскими гранями решена методом однородных решеший в работе [4].

§ 1. Рассмотрим гонкую акизотропную пьезоэлектрическую полосу: 0 $|x_1 \leq 2h_1, |x_2| \leq 1, |x_h| \leq h, h$ (фиг. 1). Будем считать, что плоские грани полосы неэлектродированы и свободны от внешних физических воздействий, то есть

арн

пря

 $x_3 = \pm h \ I_0 = O \ (j = 1, 2, 3), \ D_3 = 0 \ (1.1)$

Фиг. 1.

Действующие на полосу механические усилия, уравновешенные силами, приложенными на бесконечности, и распределение поверхностных электрических зарядов, как и в работе [5], задания на се боковых поверхностях

Следуя А. Л. Гольденвейзеру [1], электроупругое состояние полосы представим как сумму медленно затухающего вдали от краев электроупругого состояния, которое строится при помощи основного итерационного процесса [6], и быстро затухающих электроупругих состояний, которые строятся при помощи вспомогательных итерационных процессов.

§ 2. Для построения вспомогательных итерационных процессов воспользуемся термодинамическими соотношениями, связывающими механические напряжения и компоненты электростатического смещения с механическими деформациями и компонентами электростатического поля. Они имеют вид [7]

$$T = c R - eE, D = 4 \pi eR + E$$
 (2.1)

Уравнения электроупругого равновесия при отсутствии массовых сил и объемных электрических зарядов можно записать так [8]:

$$t_{ij,j} = 0, \quad D_{i,j} = 0 \quad (i, j = 1, 2, 3)$$
 (2.2)

Впедем безразмерные неличины

$$\overline{z_1} = \frac{x_1}{h}, \quad \overline{z_2} = \frac{x_2}{h}, \quad \overline{z_3} = \frac{x_3}{h}, \quad \overline{z_4} = \frac{h}{a}$$
(2.3)

где а — некоторый линейный параметр, и дифференциальные операторы

$$\vec{\partial}_1 = \frac{\partial}{\partial \vec{z}_1}, \quad \vec{\partial}_1 = \frac{\partial}{\partial \vec{z}_1} \quad (j = 2, 3)$$
 (2.4)

Будем считать, что л << 1. Предположим, что электроупругие характеристики полосы можно представить в следующем ниде:

$$\left(\frac{1}{a} u_{m}, \frac{1}{a} v\right) = \sum_{n=0}^{\infty} \lambda^{l+n+1} (u_{m}^{(n)}, v^{(n)})$$
$$(t_{ij}, D_{m}) = \sum_{n=0}^{\infty} \lambda^{l+n} (t_{ij}^{(n)}, D_{m}^{(n)})$$
(2.5)

Злесь u_{v} (m = 1, 2, 3) — механические перемещения, v — потенциал электростатического пеля, l — некоторые целые числа [6].

Учитывая соотношения (2.1), из (2.2) получим систему дифференциальных уравнений

$$(c_{11}^{E} \partial_{1} + c_{35} \partial_{3} + 2c_{15} \partial_{1} \partial_{3}) u_{1}^{(n)} = [c_{16} \partial_{1} + c_{36}^{E} \partial_{3}^{2} + (c_{14} - c_{36}) u_{1}^{(n)} + [c_{15} \partial_{1}^{2} + c_{35}^{E} \partial_{3} - (c_{13}^{E} + c_{35}) u_{1}^{(n)} + [c_{15} \partial_{1}^{2} + c_{35}^{E} \partial_{3} + (c_{13}^{E} + c_{55}) u_{1}^{(n)} - (c_{45}^{E} + c_{45}^{E}) \partial_{3} \partial_{3} + (c_{12}^{E} + c_{46}) u_{1}^{(n)}] u_{2}^{(n)} = \\ = -2 (c_{56} \partial_{2} \partial_{3} + c_{16}^{E} \partial_{1} \partial_{2}) u_{1}^{(n-1)} - [(c_{45}^{E} + c_{45}^{E}) \partial_{3} \partial_{3} + (c_{12}^{E} + c_{46}) u_{1}^{(n)}] u_{2}^{(n-1)} - [(c_{36}^{E} + c_{35}^{E}) - (c_{14} + c_{56}) u_{1}^{(n-1)} + [(c_{46}^{E} + c_{46}) u_{1}^{(n-1)} + (c_{46}^{E} + c_{46}) u_{1}^{(n-1)} + (c_{46}^{E} + c_{46}) u_{1}^{(n-1)} + (c_{46}^{E} - c_{46}^{E} \partial_{2}^{2} u_{1}^{(n-s)} + (c_{46}^{E} - c_{46}^{E} - c_{46}^{E} - c_{46}^{E} - c_{46}^{E} - c_{46}^{E} - c_{46}^{E} - c_{46}$$

$$\left[c_{43} \partial_{3}^{2} + (c_{14}^{E} + c_{36}^{E}) \partial_{1} \partial_{3} \right] u_{1}^{(n)} + (c_{66} \partial_{1}^{2} + c_{34} \partial_{3} + 2c_{46}^{E} \partial_{1} \partial_{3}) u_{2}^{(n)} + \\ + c_{43} \partial_{3}^{2} + (c_{36}^{E} + c_{45}^{E}) \partial_{3} \partial_{3} u_{3}^{(0)} + \left[e_{10} \partial_{1} - e_{34} \partial_{3} - (e_{14} + e_{34}) \partial_{3} \partial_{3} \right] v_{1}^{(n)} = \\ = - \left[(c_{23}^{E} + c_{46}^{E}) \partial_{2} \partial_{3} + (c_{19} + c_{66}) \partial_{3} \partial_{3} \right] u_{1}^{(n-1)} - 2 \left(c_{24} \partial_{2} \partial_{3} + c_{26}^{E} \partial_{1} \partial_{2} \right) u_{2}^{(n-1)} - \\ - \left[(c_{23}^{E} + c_{44}^{E}) \partial_{2} \partial_{3} + (c_{45} + c_{46}^{E}) \partial_{1} \partial_{2} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} + (c_{45}^{E} + c_{46}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} + (c_{45}^{E} + c_{46}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} + (c_{45}^{E} + c_{46}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} + (c_{45}^{E} + c_{46}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} + (c_{45}^{E} + c_{46}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} + (c_{45}^{E} + c_{46}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{24}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{(n-1)} + \left[(c_{3}^{2} + e_{34}^{E}) \partial_{3} \partial_{3} \right] u_{3}^{($$

 $= (e_{22} + e_{24}) \overline{\sigma_1} \overline{\sigma_2}] u^{(n-1)} + c_{26} \overline{\sigma_2^2} u^{(n-2)} + c_{22} \overline{\sigma_2^2} u^{(n-2)} + c_{24} \overline{\sigma_1^2} u^{(n-2)} + e_{12} \overline{\sigma_2^2} u^{(n-2)} + e_{12} \overline$

 $- c_{44} \dot{\sigma}_{24}^{(n-2)} - c_{44}^E \dot{\sigma}_{24}^2 u_3^{(n-2)} + e_{24} \dot{\sigma}_{2}^2 v^{(n-2)}$

$$4^{-} [e_{11} \partial_{1}^{2} - e_{35} \partial_{3} + (e_{31} + e_{15}) - e_{15} \partial_{1} + 4^{-} [e_{10} \partial_{1}^{2} + e_{15} \partial_{1} + e_{15} \partial_{1} + e_{15} \partial_{3} - (e_{12} - e_{35}) \partial_{1} \partial_{3}] u_{3}^{n} + (e_{14} + e_{36}) \partial_{1} \partial_{1} + 2e_{13}^{r} \partial_{1} \partial_{3}) v^{(n)} - 4^{-} [(e_{25} + e_{36}) \partial_{2} \partial_{3} + e_{15} \partial_{1} \partial_{3}] u_{3}^{n} + e_{15} \partial_{1} \partial_{1} \partial_{1} \partial_{1} \partial_{1} \partial_{1} \partial_{2} \partial_{2} \partial_{3} + e_{15} \partial_{1} \partial_{1} \partial_{1} \partial_{1} \partial_{2} \partial_{1} \partial_{2} \partial_{1} \partial_{2} \partial_{2} \partial_{3} + e_{15} \partial_{1} \partial_{1} \partial_{1} \partial_{2} \partial_{2} \partial_{3} + e_{15} \partial_{1} \partial_{2} \partial_{2} \partial_{2} \partial_{2} \partial_{1} \partial_{2} \partial_{2} \partial_{1} \partial_{2} \partial_{1} \partial_{2} \partial_{2} \partial_{2} \partial_{1} \partial_{2} \partial_{2} \partial_{2} \partial_{1} \partial_{2} \partial_$$

$$+ (e_{21} + e_{14}) \overline{\partial}_1 \partial_2] u_1^{(n-1)} - 4^{-} [(e_{32} + e_{34}) \partial_2 \partial_3 + (e_{13} + e_{36}) \overline{\partial}_1 \partial_2] = -4^{-} [(e_{23} - e_{34}) \partial_2 \partial_3 - (e_{14} - e_{25}) - u_1^{(n-1)} - 2 (\overline{z}_{23}^{'} \partial_2 \partial_3 + \overline{z}_{12}^{'} \partial_1 \partial_2) u_1^{(n-1)} - 4^{-} e_{28} \partial_2 u_1^{(n-2)} - 4^{-} e_{22} \partial_2 u_2^{(n-2)} - 4 \pi e_{24} \partial_3 u_3^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_1^{(n-1)} - 4^{-} e_{22} \partial_2^2 u_2^{(n-2)} - 4 \pi e_{24} \partial_3^2 u_3^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_1^{(n-1)} - 4 \overline{z}_{22}^{'} \partial_2^2 u_3^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_1^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_2^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_2^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_3^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_2^{(n-2)} - \overline{z}_{22}^{'} \partial_2^2 u_2^{'} - \overline{z}_{22}^{'} \partial_2^2 u_2^{'}$$

Из условий (1.1) найдем условия на плоских гранях полосы:

при

$$a = -1 \quad t_{i3}^{(n)} = 0, \quad D_3^{(n)} = 0$$
 (2.7)

Граничные условия на боковых поверхностях полосы будут сформулярованы ниже.

В уравнениях (2.6) и в дальнейшем будем считать что величины с видексами п равны нулю при 1 < 0.

§ 3. Для кристаллов моноклинной системы [7] уравнения (2.6)—(2.7) распадаются на две группы, которые можно решать независимо друг от друга.

Первый вспомогательный итерационный процесс описывается соотношениями

$$(c_{66} \theta_{1}^{2} + c_{41} \theta_{3}^{2} + \hat{c} c_{46}^{T} \bar{\theta}_{1} \theta_{3}) u_{2}^{(n)} - [e_{16} \bar{\theta}_{1}^{2} - e_{31} \theta_{3}^{2} - (e_{16} + e_{11}) \theta_{1} \theta_{3}] v^{(n)} - - [(c_{25}^{E} + c_{46}^{E}) - \theta_{3} - (c_{12} + c_{66}) - \theta_{41} - [(c_{21} + c_{43}) \theta_{2} \theta_{3} + + (c_{45}^{E} + c_{46}) \theta_{4} \theta_{3} - c_{22} \theta_{1}^{2} u_{2}^{(n-2)} + e_{22} \bar{\theta}_{2}^{2} v^{(n-2)}$$
(3.1)

$$4 = [e_{10}\sigma_1^2 + (e_{11} + e_{30}) + (e_{21}^2 + e_{30}\partial_3^2 + 2e_{13}\partial_1\partial_3) v^{(1)}$$

$$= -4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{21} + e_{16})\partial_1\partial_1] u_1^{(-1)} - 4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{14} - e_{23}) + (e_{14} - e_{23}) \partial_1\partial_1] u_1^{(-1)} - 4 = e_{22}\partial_2^2 u_2^{(1-2)} - e_{22}^2 \partial_2 v^{(1-2)}$$

$$= -4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{21} + e_{16})\partial_1\partial_1] u_1^{(-1)} - 4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{21} + e_{23})\partial_1\partial_2] u_1^{(-1)} - 4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{21} + e_{23})\partial_1\partial_2] u_1^{(-1)} - 4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{21} + e_{23})\partial_1\partial_2] u_1^{(-1)} - e_{22}\partial_2 v^{(1-2)} - e_{22}\partial_2 v^{(1-2)}] u_1^{(1)} - 4 = [(e_{23} + e_{36})\partial_2\partial_3 + (e_{21} + e_{23})\partial_1\partial_2] u_1^{(-1)} - e_{22}\partial_2 v^{(1-2)}] u_1^{(-1)} - e_{22}\partial_$$

при

Для второго вспомогательного итерационного процесса будем иметь

$$\begin{aligned} (c_{11}\theta_{1}^{i} + 2c_{15}^{E}\overline{\theta}_{1}\overline{\theta}_{3}) u^{(n)} + [c_{15}^{E}\theta_{1} + c_{35}\theta_{3} + (c_{13}^{E} + c_{55}) \theta_{3}\overline{\theta}_{2}] u^{(n)}_{3} = \\ & - \left(c_{25}^{E} + c_{16}^{L}\right) \partial_{\alpha}\overline{\theta}_{3} + (c_{12}^{E} + c_{66}^{E}) \overline{\theta}_{1}\overline{\theta}_{2}] u^{(n-1)}_{2} + \left| (e_{25} + e_{36}) \overline{\theta}_{2}\overline{\theta}_{3} + \\ & + (1 + e_{14}) \right|_{2} - \cdots + u \end{aligned}$$
(3.3)
$$[c_{15}\theta_{1}^{i} + c_{35}\beta_{3} - (c_{13} + c_{55}) \overline{\theta}_{1}\theta_{3}] u^{(n)}_{1} + (c_{55}\overline{\theta}_{2} + e_{14}) + 2c_{35}\overline{\theta}_{1}\overline{\theta}_{3}) u^{(n)}_{3} = \\ & - \left[(e_{23} + c_{44}) + (c_{25}^{E} + c_{46}) \overline{\theta}_{1}\overline{\theta}_{2} \right] u^{(n-1)}_{2} + \left[(e_{23} + e_{34}) \overline{\theta}_{2}\overline{\theta}_{3} + \right] \end{aligned}$$

npu

 $\xi_3 = \pm 1 \quad t_{33}^{(n)} = t_{33}^{(n)} = 0$ (3.4)

Общее решение однородной системы (3.1) представим в виде

+ $(e_{14} + e_{25}) \sigma_1 \sigma_2 v^{(n-1)} - c_{10} \sigma_1 \sigma_1^{(n-1)} - c_{10} \sigma_2 \sigma_1^{(n-2)}$

$$u_{2} = e_{14}\phi_{1} + e_{14}\dot{\theta}_{3} + (e_{16} + e_{14})\theta_{1}\theta_{3} \exp(\eta_{1}\xi_{2}\theta_{1}) W_{1}^{(n)}(\xi_{1}, \xi_{2})$$

$$v^{(n)} = (c_{66}^{E}\vec{\theta}_{1}^{2} + c_{44}^{E}\theta_{3}^{2} + 2c_{46}^{E}\vec{\theta}_{1}\theta_{3}) \exp(\eta_{1}\theta_{2}) \widetilde{W}_{1}^{(n)}(\xi_{1}, \xi_{2})$$
(3.5)

где 1] — корни уравнения

$$4 = [e_{16} + (e_{14} + e_{36})\gamma_i + e_{34}\gamma_i^z]^2 + (c_{66}^z + 2c_{46}^E\gamma + c_{44}\gamma_i^z)(\varepsilon_{11} + 2\varepsilon_{13}^F\gamma_i + \varepsilon_{33}\gamma_i^z) = 0$$
(3.6)

Из термодинамических перавенств [8]

$$c_{mn} = c_{mm}c_{nn}, \quad \varepsilon_{mn} = \varepsilon_{mm-an}$$
 (3.7)

следует, что уравнение (3.6) не может иметь вещественных корией.

Для электроупругих характеристик исрвого процесса получаем следующие представления:

$$\widetilde{u}_{2}^{(n)} = \sum_{j=1}^{4} a_{j1} \widetilde{\sigma}_{1}^{2} \exp\left(\tau_{ij} \xi_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{3}, \xi_{2}), \quad v^{(n)} = \sum_{j=1}^{4} \vartheta_{j1} \widetilde{\sigma}_{1}^{2} \exp\left(\tau_{j1} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{3}, \xi_{2}), \quad v^{(n)} = \sum_{j=1}^{4} \vartheta_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{3}, \xi_{2}), \quad \widetilde{t}_{12}^{(n)} = \sum_{j=1}^{4} \vartheta_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{3}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{3} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \xi_{2}), \quad \widetilde{D}_{3}^{(n)} = \sum_{j=1}^{4} d_{j1} \widetilde{\sigma}_{1}^{3} \exp\left(\tau_{j1} \widetilde{\varsigma}_{1} \widetilde{\sigma}_{1}\right) \widetilde{W}_{j1}^{(n)} (\widetilde{\xi}_{1}, \widetilde{\varepsilon}_{2}),$$

Здесь а₁₁, 3₁₁, а₁₁, b₁₁, c₁₁, d₁₁ – комплексные коэффициенты, занисящие от и электромеханических постоянных полосы.

Возьмем функции W 1 (:, :) в виде

$$\widetilde{W}_{j1}^{(n)}\left(\overline{z}_{1},\overline{z}_{2}\right) = \exp\left(-i\frac{\gamma}{2}\overline{z}_{1}\right)\widetilde{W}_{1}^{(n)}\left(\overline{z}_{2}\right)$$
(3.9)

Гогда из граничных условий (3.2) получим дисперсионное уравнение относительно у

$$\cos 4' = 1$$
 (3.10)

Выберем 7, и так, чтобы выполнялось условие

$$\operatorname{Re}\left(i\frac{\Upsilon}{\gamma_{*}}\right) > 0 \tag{3.11}$$

Тогда функции (3.9) будут убывать с увеличением за характеризуя электроупругос состояние пограничного слоя.

Первос выражение (3.8) принимает вид

$$\overline{u}_{2}^{(n)} = \sum_{k=1}^{\infty} \left\{ \left[A_{1k}^{1} \exp\left(-i\frac{k\pi}{2}\overline{z}_{3}\right) + B_{1k}^{1} \exp\left(i\frac{k\pi}{2}\overline{z}_{3}\right) \right] \times \left\{ \exp\left(-i\frac{k\pi}{2}\overline{z}_{1}\right) W_{21k}^{(n)}(\overline{z}_{2}) + \left[C_{1k}^{1} \exp\left(-i\frac{k\pi}{2}\overline{z}_{3}\right) + D_{1k}^{1} \exp\left(i\frac{k\pi}{2}\overline{z}_{3}\right) \right] \exp\left(i\frac{k\pi}{2}\overline{z}_{1}\right) W_{41k}^{(n)}(\overline{z}_{2}) \right\}$$
(3.12)

где A₁₄, B¹, C_{1k}, D¹ некоторые комплексные постоянные. Формулы для остальных выражений (3.8) имеют ту же структуру.

Общее решение однородной системы (3.3) строится аналогично. Для него характеристическое уравнение получается таким:

$$[c_{15}^{E} + (c_{55}^{E} + c_{13})^{2} + c_{35}^{2}]^{2} - (c_{11}^{E} + 2c_{15}^{I} + c_{55}^{I}) (c_{11}^{I} + 2c_{12}^{I} + c_{53}^{E}) = 0$$
(3.13)

дисперсионное же уравнение совпадает с уравнением (3.10) первого процесса. Как и в работе [9], можно показать, что кории уравнения (3.13) не могут быть вещественными.

Выражения для характеристик второго процесса имеют структуру (3.12). Например,

$$\begin{split} \overline{u}_{1}^{(n)} &= \sum_{k=1}^{\infty} \left\{ \left[A_{1k}^{2} \exp\left(-i\frac{k\pi}{2}\overline{z}_{3}\right) + B_{1k}^{2} \exp\left(i\frac{k\pi}{2}\overline{z}_{3}\right) \right] \times \\ &\times \exp\left(-i\frac{k\pi}{2\zeta_{2}}\overline{z}_{3}\right) W_{22k}^{(n)}(\overline{z}_{2}) + \left[C_{1k}^{2} \exp\left(-i\frac{k\pi}{2}\overline{z}_{3}\right) + \right. \\ &+ D_{1k}^{2} \exp\left(i\frac{k\pi}{2}\overline{z}_{3}\right) \right] \exp\left(i\frac{k\pi}{2\zeta_{4}}\overline{z}_{1}\right) W_{42k}^{(n)}(\overline{z}_{2}) \right] \end{split}$$
(3.14)

Частное решение неоднородных систем (3.1) и (3.3) зависит от предыдущих шагов обоих вспомогательных процессов. Его построение не представляет принципиальных трудностей.

Для удовлетворения граничным условиям (1.2) воспользуемся вариационным принципом Лагранжа [2], обобщенным на случай ньезоэлектрической среды [3]:

$$\int_{S}^{0} \int \left(t_{11} \delta u_{1} + t_{21} \delta u_{2} + t_{13} \delta u_{3} - \frac{1}{4\pi} D_{1} \delta v \right) dS = \int_{S}^{0} \int \left(T_{1} \delta u_{1} + T_{2} \delta u_{2} + T_{3} \delta u_{3} - \tau \delta v \right) dS$$
(3.15)

где S — боковая поверхность полосы.

Варьнруя в уравнении (3.15) поочередно граничные значения первого и втерого процессов и прирапнивая коэффициенты при одинаковых вариациях $2\omega_{41k}^{(n)}, 2\omega_{41k}^{(n)}, 2\omega_{42k}^{(n)}, 10 Muguum бесконечную систему ли$ $нейных уравнений относительно функций <math>w_{41k}^{(n)}(z_2), w_{41k}(z_2), w_{42k}^{(n)}(z_4), 2000 Muguum бесконечную систему ли$ $ими в относительно функций <math>w_{41k}^{(n)}(z_2), w_{41k}(z_3), w_{42k}^{(n)}(z_4), 2000 Muguum бесконечную систему ли$ $ими в относительно функций <math>w_{41k}^{(n)}(z_4), w_{41k}(z_5), w_{42k}^{(n)}(z_4), 2000 Muguum бесконечную систему ли$ $ими в относительно функций <math>w_{41k}^{(n)}(z_5), w_{41k}(z_5), w_{42k}^{(n)}(z_5), 2000 Muguum бесконечную систему ли$ $ими в относительно функций w_{41k}^{(n)}(z_5), 2000 Muguum бесконечную систему ли$ ная в относительно функций в относит

. При проведении численных расчетов была рассмотрена полоса шириной $2h_i \gg 2h_i$, изготовленная из кристалла сульфата лития, когда кристаллографические оси Y. Z направлены по осям координат x_{2i} x_{1i} а ось X под углом 17 18' к x. [10].

Граничные условия на боковых поверхностях (2, 0, 24, 4) принимались в виде

$$t_{11} = q \cdot \frac{1}{1}, \quad t_{12} = t_{13} = 0, \quad D_1 = 4\pi z \cdot \frac{2m}{3}$$
(4.1)

Используя выражения для электроупругих характеристик основного итерационного процесса [6], в случае, когда $q \neq 0$, $\sigma = 0$, с точностью до q будем иметь

при
$$m = 1$$
 $t_{11} = 0.33$ при $m = 2$ $t_{11} = 0.20$ (4.2)

Если же q = 0, $\sigma \neq 0$, то с точностью до σ получим

ари
$$m = 1$$
 $D_1 = 4.19;$ при $m = 2$ $D_1 = 2.51$ (4.3)

В табл. І припедены в случае 1, 2 с точностью до $q(\sigma = 0)$ суммарные значения механических напряжений $l_{11}(m = 1, 2)$, а в случае 3, 4 — с точностью до $\sigma(q = 0)$ суммарные значения электростатических смещений $D_1(m = 1, 2)$.

Сравнивая основное решение (4.2) и (4.3) с результатами, принеденными в табл. 1, приходим к выводу, что для рассматриваемой задачи электроупругое состояние типа пограничного слоя проникает в глубь полосы на расстояние до 2/4,

Таблиуа 1

				Ę3 0.3 .			3 0.6			s = 0.9		
_		-	1 = 0 = 125	0.2	5.0	+0.125	10.25	i. 0.5	601 0 ×	0 25	0.5	
	1	0.0 0.1 0.2 0.3 0.4 0.5	0.06 0.23 0.30 0.33 0.33 0.33	0.06 0.12 0.23 0.23 0.30 0.32	0.06 0.07 0.12 0.18 0.23 0.26	0.34 0.23 0.29 0.32 0.33 0.33	() 34 () 21 () 23 () 26 () 29 () 31	0.34 0.21 0.21 0.22 0.23 0.25	0.83 0.20 0.29 0.32 0.33 0.33	0.83 0.35 0.26 0.27 0.29 0.31	0.83 0.51 0.35 0.28 0.26 0.27	
	2	0.0 0.2 0.4 0.6 0.8 1.0	0.01 0.18 0.20 0.20 0.20 0.20 0.20	0.01 0.13 0.18 0.19 0.20 0.20	0.01 0.05 0.12 0.16 0.18 0.18 0.19	0.11 0.17 0.20 0.20 0.20 0.20 0.20	0 II 0.11 0.17 0.19 0.29 0.20	0.11 0.69 0.11 0.14 0.17 0.18	0.68 0.17 0.20 0.20 0.20 0.20 0.20	0.68 0.13 0.17 0.19 0.20 0.20	0.68 0.18 0.13 0.15 0.17 0.18	
	3	0.0 0.1 0.2 0.3 0.4 0.5	1.09 4.08 4.18 1.19 4.19 4.19	1.09 3.61 4.03 4.17 4.18 4.19	1.0 2.84 3.61 3.14 4.08 4.14	4.59 4.24 4.19 4.19 4.19 4.19 4.19	4,59 4,44 1,24 1,19 4,19 1,19	4,59 4,65 4,44 4,30 4,24 4,21	10.52 4.35 4.19 4.19 4.19 4.19 4.19	10.52 5.13 4.35 -1.21 4.19 4.19	10.52 6.51 5.13 4.58 4.35 4.25	
	4	0.0 0.1 0.2 0.3 0.4 0.5	0.10 2.42 2.51 2.51 2.51 2.51 2.51	0,10 2,05 2,42 2,50 2,51 2,51	$\begin{array}{c} 0.10 \\ 1.43 \\ 2.05 \\ 2.31 \\ 2.42 \\ 2.47 \end{array}$	1.74 2.55 2.51 2.51 2.51 2.51 2.51	$ \begin{array}{r} 1.74 \\ 2.67 \\ 2.55 \\ 2.52 \\ 2.51 \\ 2.51 \\ 2.51 \\ 2.51 \\ \end{array} $	1.71 2.66 2.67 2.60 2.55 2.55 2.53	8,89 2,64 2,51 2,51 2,51 2,51	8.89 3.28 2.64 2.53 2.51 2.51	8.89 1.51 3.28 2.82 2.64 2.55	

Автер благодарит А. С. Космодамианского и В. Н. Ложкина за постановку задачи и полезные советы.

Ивститут прикладной математики в механики АНТ УССР

Поступнал 10 Х 1978

է, Դ. ՕԼԵՆԻԿ

ԲԱՐԱԿ ԱՆԻՉՈՏՐՈՎ ՊՅԵՋՈԷԼԵԿՏՐԱԿԱՆ ՇԵՐՏԻ ԷԼԵԿՏՐՈԱՌԱՉԳԱԿԱՆ ՎԻՃԱԿԻ ԱՈՒՄՊՏՈՏԱԿԱՆ ՎԵՐԼՈՒԾՈՒԹՅՈՒՆԸ

Ուսումնասիրվել է թարակ անիզոտրոպ պյհղուկներտրական չեթտի էլեկտրոառաձղական վիճակը նրա կողմնային մակերևույի՞ների վրա տրված ֆիդիկական աղղեցունյուների դնպրում։

Խնդիրը լուծվել է էլնկտրատուածդականության հռայափ Հավասարումների ասիմպառատկան ինտեղըման մեքնոդով։ Կողմնային մակերևույթների վրա եղրային պայմանները բավարարվել են էադրանմի վարիացիոն սկդրունթի «դնությամը, որն ընդՀանրացվել է պյեղոէլեկտրական միջավայրի դեպթի Համար։

Սաճմանային շերտի տիպի էլեկտրատուածգական վիճակի որոշումը բեթ-«Ել է գծային ճավաստրումների անվերջ սիստեմի լուծմանը։

ASYMPTOTIC ANALYSIS OF ELECTRO-FLEXIBLE STATE OF THIN ANISOTROPIC PIEZOELECTRIC BAND

L. N. OLEYNICK

Summary

The electro-flexible state of thin anisotropic piezoelectric band is investigated with physical effects given on side surfaces.

The problem is solved by method of asymptotic integrating of three-dimensional equations of electric flexibility. The boundary conditions on side surfaces are satisfied by the Lagrange variation principle, generalized for the case of piezoelectric medium.

The definition of electro-flexible state of a border-layer type is reduced to calculation of an infinite system of linear equations.

ЛИТЕРАТУРА

- А. А. Постросние приближенной теории изгиба пластинки методом алимптотического интегрирования уравнений теории упругости. ПММ, 1962, т. 26, в. 4.
- 2. Аксентян О. К., Воропич И. И. Напряженное состояние плит малон толщины. ПММ, 1963, т. 27. в. 6.
- Вскопищева И. А. Варианновные принцяны в тенене электроупруготте. Прекл. механ., 1971, т. 7; в. 9.
- 4. Жиров В. Е. Электроупругое равновесие пьелокерамической илиты. ПММ, 1977. г. 41, в. 6.
- Улитво А. Ф. К теорин колебаний пьезокерамических тел. Республ. межвед. сс. «Тепловые напряжения в элементах конструкций. в. 15. Кнев, «Наукова думн.», 1975, стр. 176.
- Космоломианский А. С., Ложкий В. Н. Электроупругое равновесие тоякого анизотропного слоя с учетом пьезоэлектричского . ффекта. ПММ, 1978, у. 42, в. 4.
- Берлинкир Д., Керран Д., Жаффе Г. Шизоэлектрические и пьезоматнитные материалы в их применение в преобразователях. Флянческая акустика, т. 1. Методии и приборы ультразвуковых исследований, ч. А. М., «Мир», 1966, стр. 592.
- Лондац Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М., Физматгиз, 1959, стр. 532.
- 9. Лехницкий С. Г. Теория упругости анизотронного тела. М., «Наука», 1977, стр. 410.
- 10. Желудев И. С. Физика кристаллических диэлектриков. М., Наухан, 1968. стр. 464.