Механика

М. Н. М. АЛЛАМ, Б. Е. ПОБЕДРЯ

К РЕШЕНИЮ КВАЗИСТАТИЧЕСКИХ ЗАДАЧ АНИЗОТРОПНОЙ ВЯЗКОУПРУГОСТИ

1. Рассмотрим линейную вязкоупругую анизотропную среду, для которой связь между напряженнями — и деформациями — имеет вид [1]

$$\tau_{ij} = \int_{0}^{t} R_{ijkl}(t-z) dt_{kl}(z)$$
 (1.1)

$$s_{ij} = \int_{0}^{1} \Pi_{ijkl}(t-z) dz_{kl}(z)$$
 (1.2)

Тензоры ядер релаксации $R_{ijkl}(t)$ и ядер ползучести $\{I_{ijkl}(t)\}$ являются взаимообратными. Это означает, что если нам известен один из этих тензоров, например, $R_{ijkl}(t)$, то тензор ядер ползучести получается на решения следующих интегральных уравнений:

$$\int_{0}^{t} R_{ijkl}(t-\tau) d\Pi_{ki=n}(\tau) = \Delta_{ijmn} - R_{ijkl}(t) \Pi_{kimn}(0)$$
 (1.3)

rge

$$\Delta_{ijmn} = \frac{1}{2} \left(\delta_{im} \delta_{jn} + \delta_{in} \delta_{jm} \right) \tag{1.4}$$

И обратно, если задан тензор ядер ползучести $\Pi_{ijkl}(t)$, то для тензора ядер релаксации имеем

$$\int_{0}^{1} \Pi_{ijkl}(t-1) dR_{klmn}(1) = \Delta_{ijmn} - \Pi_{ijkl}(t) R_{klmn}(0)$$
 (1.5)

Экспериментально замечено [1], что для большинства реальных вязкоупругих материалов объем изменяется по упругому закону. Из соотношений (1.2) для изменения объема 0 — имсем

$$\theta = \int_{0}^{t} \Pi_{ilkl}(t-\tau) \, d\tau_{kl}(\tau) \tag{1.6}$$

и кокои бы ни был тензор зад

$$\sigma_{kl} = \sigma_{kl}^0 h(l) \tag{1.7}$$

где z_{kl}^{η} тензор-константа, а h(t) единичная функция Хевьсайда, величина 0 не должна зависеть от времени. Это означает, что не должен зависеть от времени тензор $B_{kl}=11_{ijkl}$, то есть

$$B_{kl} = \Pi_{ilkl} = \Pi_{ilkl}(0) \tag{1.8}$$

Умножая левую и правую части (1.5) на 3, и производя суммирование по 1 и 7, получим

$$B_k: R_{klmn}(\ell) = a_{mn} \tag{1.9}$$

то есть левая часть этого равенства также не должна зависеть от времени.

2. Частным видом анизотропии является так называемая структурная анизотропия. Пусть материал составлен из двух компонентов, один из которых (армировка) является изотропиым упругим материалом с модулем Юнга E_a и коэффициентом Пуассона v_a , а другой (заполнитель)—изотропным вязкоупругим материалом с модулем сжатия K_a и ядром $\omega(t)$, то есть связь между напряжениями и деформациями для заполнителя имеет вид (индексы а и з. если это не вызывает недоразумений, мы будем опускать, то есть будем считать, что если индекс отсутствует, $v = v_a$, $E = E_a$, $K = K_a$)

$$s_{ij} = 3K \int_{0}^{\infty} \omega (t - \tau) de_{ij}(\tau) = 3K \omega e \qquad \sigma = K0$$
 (2.1)

гле

$$s_{ij} = s_{ij} - s_{ikj}, \quad e_{ij} = s_{ij} - \frac{1}{3} \delta \delta_{ij}, \quad s = \frac{1}{3} s_{kk}$$
 (2.2)

и обратно

$$e_{ij} = \frac{1}{3K} \int_{-\pi}^{\pi} (t - \pi) dS_{ij}(\pi) - \frac{1}{3K} \pi S_{ij}; \qquad \theta = \frac{\pi}{K}$$
 (2.3)

Тогда различными способами можно ввести так называемые эффективные ядра релаксации $R_{ijkl}(t)$ или ползучести $\Pi_{ijkl}(t)$. При этом эти ядра имеют вид [2]

$$R_{ijkl}(t) = \sum_{\alpha=1}^{V} R_{ijkl}^{(\beta)} \psi_{\alpha}(t)$$

$$\Pi_{ijkl}(t) = \sum_{\beta=1}^{U} \Pi_{ijkl}^{(\beta)} Z_{\beta}(t)$$
(2.4)

где Π_{ijkl} — тензоры-константы, завнсящие от v_a , \mathcal{E}_i , K_{ij} процентного содержания компонентов γ_i , геометрии армировки и т. п.;

 $\psi_*(t)$ — функция, представляющая собой или единицу, или $\omega(t)$, или ядро А. А. Ильюшина $\chi_*(t)$ [1]

$$\dot{g}_0 = \frac{1}{1 + \beta \omega} \tag{2.5}$$

(1) — функция, являющаяся или единицей, или п (1), или ядром (2.5). В литературе известны эффективные модули упругости, построенные из основе различных подходов. Например, для слоистого композита, отношение толщины слоя армировки в котором к толщине всего накета, из которых составлен материал, равно у, эффективные ядра ползучести могут быть построены на основании эффективных модулей упругости [3]

$$\Pi_{ijkl}(t) = \Pi_{ijkl}^{(1)} + \Pi_{ijkl}^{(2)} g_{j_1}(t) + \Pi_{ijkl}^{(3)} g_{j_2}(t) + \Pi_{ijkl}^{(4)} = (t)$$
(2.6)

rae

$$\Pi_{1111}^{(1)} = \Pi_{2222}^{(1)} = \Pi_{1122}^{(1)} = \frac{1 - v}{\gamma \beta_1 E} = L$$

$$\Pi_{11211}^{(1)} = \Pi_{2222}^{(1)} = \frac{(1 - \gamma)(1 - v) - 2\gamma v}{\gamma \beta_1 E}$$

$$\Pi_{1212}^{(1)} = \frac{2\gamma v - (1 - \gamma)(1 - v)}{\gamma (1 - v) \beta_1 E} + \frac{\gamma (1 + v)(1 - 2v)}{(1 - v) E}$$

$$\Pi_{1212}^{(1)} = \Pi_{1222}^{(2)} = \frac{2\beta_2 (1 - v) - (\beta_1 - 2)}{\gamma (\beta_2 - \beta_1) E} - \frac{\beta_2 (1 - v)}{\gamma \beta_1 (\beta_2 - \beta_1) E} = M_1$$

$$\Pi_{1112}^{(2)} = \frac{v (\beta_1 - 2) + \beta_2 (1 - v)}{\gamma (\beta_2 - \beta_1) E} - \frac{\beta_2 (1 - v)}{\gamma \beta_1 (\beta_2 - \beta_1) E} = M_2$$

$$\Pi_{1112}^{(2)} = \frac{2\gamma v - (1 - \gamma)(1 - v)}{\gamma \beta_1 E} - \frac{\gamma v + (1 - \gamma)(1 - v)}{\gamma E}$$

$$\Pi_{1112}^{(3)} = \Pi_{1222}^{(3)} = \frac{1}{\gamma E} - L - M_2$$

$$\Pi_{1122}^{(3)} = -\frac{v}{\gamma E} - L - M_2$$

$$\Pi_{1221}^{(3)} = \frac{2(1 + v)}{\gamma E}$$

$$\Pi_{1221}^{(3)} = \frac{2(1 - v)}{\gamma E}$$

$$\Pi_{1221}^{(4)} = \Pi_{2322}^{(4)} = \frac{2(1 - v)}{\gamma E}$$

$$\beta_1 = 2 + \frac{9K}{E} \frac{1 - \gamma}{\gamma} (1 - \gamma)$$

$$\beta_2 = \frac{3K}{E} \frac{1 - \gamma}{\gamma} (1 + \gamma)$$
(2.8)

В соотношениях (2.7) выписаны только отличные от нуля компоненты тензоров структурных постоянных с учетом симметрии [1]:

$$||I_{IM}| = |I_{klij} - |I_{ijk}| = |I_{ijk}|$$
 (2. 9)

3. Подставляя в (1.7) выражение эффективных ядер ползучести в виде (2.4), получим вместо тензора-константы $B_{k\ell}$ выражение

$$B_{kl}^*(t) = \sum_{3=1}^{U} \Pi_{i,kl}^{(0)} X_3(t)$$
 (3.1)

Тензор $B_{kl}(t)$ отличен от постоянного тензора B_{kl} и совпадает с ним только в случае $\gamma=0$, $\gamma=1$ или при любом γ , если $K_{\bullet}=K_{\bullet}$ ($E=3K(1-2\nu)$). За меру отклонения тензора $B_{kl}(t)$ от тензора-константы B_{kl} можно взять всличину , отнесенную к какой-нибудь величине, именищей размерность упругой податливости:

$$\bar{z} = \left(\sum_{q=1}^{U_1} \Pi_{ij}^{(q)} \Pi_{jj}^{(q)} \eta_j\right)^{1/2} \tag{3.2}$$

где суммирование ведется по всем q, для которых $\mathbb{Z}_q(t)$ отлично от тождественной постоянной, $U_1 \leq U$.

Для рассмотренного в предыдущем пункте примера имеем

$$\bar{z} = 1/\bar{\tau}_{(2)} + \bar{\tau}_{(3)} + \bar{\eta}_{(4)}$$
 (3.3)

где

$$\gamma_{i(\alpha)} = \Pi_{\alpha i}^{(\alpha)} \Pi_{\alpha i}^{(\alpha)} \quad (\alpha = 2, 3, 4)$$
 (3.4)

Компоненты тензора $B_{kl}^{*}(t)$ имеют вид

$$B_{11}^* = B_{22}^* = P_1 + \left(\frac{1 - 2\nu}{E} - P_1\right) g_{11}(t)$$

$$B_{33}^* = P_2 + P_3 g_{31}(t)$$
(3.5)

где = для ядра = (t) дается формулой (2.8), а постоянные $P_{\scriptscriptstyle 1},\,P_{\scriptscriptstyle 2},\,P_{\scriptscriptstyle 3}$

$$P_{1} = \frac{1}{\gamma^{2}_{1}E} \left[3 (1 - \nu) - \gamma (1 + \nu) \right]$$

$$P_{2} = \frac{\gamma (1 - 2\nu) (1 + \nu)}{E (1 - \nu)} + \frac{(1 - \gamma) (1 - \nu) - 2\gamma \nu}{1 - \nu} P_{1}$$

$$P_{3} = \left[\frac{9 (1 - \gamma) \beta_{1}}{2 - \beta_{3}} + \frac{(1 - \gamma) (1 - \nu) - 2\gamma \nu}{1 - \nu} \right] \left[\frac{1 - 2\nu}{E} - P_{1} \right] (3.6)$$

Следовательно, величина 5 имеет вид

$$\tilde{z} = \left| \frac{1 - 2v}{E} - P_1 \right| \left[2 + \left(\frac{9(1 - \gamma)\beta_1}{2 - \beta_1} + \frac{(1 - \gamma)(1 - v) - 2\gamma v}{1 - v} \right)^{3} \right]^{1/2} (3.7)$$

Вычисления показывают, что ξ не превосходит $\frac{1}{E}$.

4. При решении квазистатических задач линейной теории пязкоупругости для композитов может быть использован метод сведения неоднородной задачи изотропной вязкоупругости к последовательности задач однородной анизотропной теории вязкоупругости аналогично тому, как это сделано в упругом случае [2]. При этом для решения в каждом приближении задачи однородной анизотропной теории вязкоупругости благодаря специальному виду эффективных ядер релаксации и ползучести (2.4) может быть использовано некоторое обобщение метода апироксимаций [1].

Суть этого обобщения заключается в следующем. Пусть получено решение соответствующей упругой задачи для анизотропной среды и пусть в этом решении ястречается выражение типа $f(\cdot)Q$, где Q — известная величина, $f(\cdot)$ означает функцию от модулей анизотропной упругости. Подставляя вместо этих модулей их выражения через величины E_3 , K_1 и ω_1 получим функцию $f = f(\omega)$, которую аппроксимируем с помощью ядер ψ_0 (t) и χ_3 (t), входящих в представление (2.4):

$$f(\omega) = \sum_{\alpha=1}^{V} A_{(\alpha)} V_{\alpha} + \sum_{i=1}^{U} B_{(\beta)} V_{\beta} \equiv \sum_{\alpha=1}^{U+V} C_{(\alpha)} \varphi_{\alpha}$$
 (4.1)

где $\phi_a(t)$ представляет собой единицу или ядра $\omega(t)$, $\pi(t)$ или $g_a(t)$, определяемые соотношением (2.5).

Неизвестные постоянные $C_{(a)}$ можно определить, например, методом наименьших квадратов. Для этого записывается выражение

$$J \equiv \int_{\omega}^{\omega} \left[f(\omega) - \sum_{\alpha=1}^{U+V} C_{(\alpha)} \gamma_{\alpha} \right]^{2} d\omega \tag{4.2}$$

где ω' и ω'' — границы изменения ядра $\omega(\ell)$, $0 {<\!\!\!<} \omega' {<\!\!\!\!<} \omega'' {<\!\!\!\!<} 1$, например,

$$\omega' = \omega_0 = \omega(0), \quad \omega' = \omega_\infty = \lim_{t \to \infty} \omega(t) \tag{4.3}$$

Приравнивая нулю производные $\frac{\partial f}{\partial C_{ij}}$, получаем систему алгебраических уравнении

$$\frac{\partial f}{\partial C_{(0)}} = -2 \int \left[f(w) - \sum_{i=1}^{U-V} C_{(i)} \tau_i \right] \tau_i dw = 0$$

$$\beta = 1, \dots, U+V \tag{4.4}$$

для определения величин C_{10} . После этого искомое вязкоупругое решение получается расшифровкой выражения $I(\cdot)Q$ в следующем виде:

$$\sum_{n=1}^{U-V} C_{(n)} \int_{0}^{t} \varphi_{-}(t-\tau) dQ(\tau)$$

$$\tag{4.5}$$

Если пределы ω' и ω'' заранее неизвестны и удобно вести интегрирование в (4.2) от 0 до 1, иногда, чтобы исключить возможность появления синсулярностей, полезно в подынтегральное выражение вводить некоторую положительную весовую функцию $\Omega(\omega)$:

$$J = \int_{0}^{1} \Omega(\omega) \left[f(\omega) - \sum_{i=1}^{U+V} C_{i,i,i,i} \right]^{2} d\omega \tag{4.6}$$

5. В качестве примера рассмотрим задачу о растижения силон P в направлении оси х бесконечной ортотропнои пластинки. Из решения упругов задачи [4] следует, что максимальное напряжение σ_q возникает на контуре окружности в точках пересечения оси х. проходящей через центр окружности, и рапно

$$(z_1) = (1 + z_1 + z_2) P (5.1)$$

где и и и — корни бигармонического уравнения.

$$\frac{x^4}{E_x} - \left(\frac{1}{G_{xy}} - \frac{2v_{xy}}{E_x}\right)x^2 + \frac{1}{E_y} = 0 \tag{5.2}$$

причем

$$x_1 + x_2 = \sqrt{2\left(\sqrt{\frac{E_s}{E_g}} - \gamma_{xg}\right) + \frac{E_x}{G_{xy}}}$$
 (5.3)

где E_{x} , E_{y} , G_{xy} — модули упругости ортотропной пластники [4].

В работе [2] для плоско-напряженного состояния даны, пыражения тенвора эффективных ядер полвучести. Компоненты атого тенвора выра-

жаются через операторы 1, 💨 🔭 где

$$g_3 = \frac{1}{1 + 30}, \quad \beta = \frac{1}{2} \left(1 + 9M \frac{1 - \frac{1}{2}}{7} \right), \quad M = \frac{K_1}{E_2}$$
 (5.4)

Подставляя в (5.3) вместо модулей упругости соответствующие операторы, получим

$$F(x) = \frac{2}{1 - m(1 - v) - \sqrt{1 + \frac{m(2 + (1 - 9M)\omega)^2}{M\omega(2 + w)}} + \frac{m}{3M} \frac{2 + (1 - 9M)\omega + 27M^2(1 + v)\omega^2}{\omega(2 + w)}$$
(5.5)

F,28

$$m \equiv \gamma (1 - \gamma) \tag{5.6}$$

Запишем аппроксимацию функции F(w) в виде

$$F(\omega) = A_1 + A_2\pi + A_3g_3 \tag{5.7}$$

Чтобы иметь возможность интегрировать в (4.6) от 0 до 1, введем весовую функцию $\Omega - \omega$. Тогда

$$\omega F(\omega) = B_1 + B_1 \omega + B_2 g \tag{5.8}$$

Fige

$$B_1 = A_2 + \frac{A_3}{\beta}, \quad B_2 = A_1, \quad B_3 = -\frac{A_3}{\beta}$$
 (5.9)

Для нахождения величин $B_t(t=1,\,2,\,3)$ имеем систему алгебраических уравнений

$$L_{ij}B_j = N_i \tag{5.10}$$

FAC

$$L_{ij} = \int_{0}^{1} \varphi_{i} \varphi_{j} d\omega, \quad N_{i} = \int_{0}^{1} \omega F(\omega) \varphi_{i} d\omega$$

$$\varphi_{i} = 1, \quad \varphi_{i} = \omega, \quad \varphi_{i} = g_{j}$$
(5.11)

После решения системы (5.10) получим, учитывая (5.9) для коэффициента концентрации $\dot{k} = \frac{(s_0)_{\text{max}}}{P}$

$$k = 1 + A_1 + A_2 \pi(t) + A_3 g_3(t)$$
 (5.12)

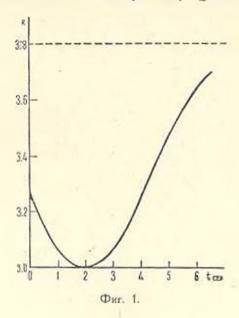
В частности, для ядра $\omega(t)$ в виде

$$\omega(t) = a + be^{-\alpha t} \tag{5.13}$$

HMCCM

$$k = 1 + A_1 + A_1 \left[\frac{1}{a} - \frac{b}{a(a+b)} e^{-\frac{2a}{a+b}t} \right] + A_1 \left[\frac{1}{1+\beta a} - \frac{\beta b}{(1+\beta a)(1+ba+\beta b)} e^{-\frac{\alpha(1+\beta a)}{1+\beta a+\beta b}t} \right]$$
(5.14)

На фиг. 1 показана зависимость k(t) при следующих параметрах:



$$V_{a} = 0.4,$$
 $E_{a} = 10^{6} \frac{M}{c M^{2}},$ $K_{a} = 10^{5} \frac{M}{c M^{2}},$ $m = 0.1$

$$a = 0.01, \quad b = 0.99, \quad a = 1$$

Московский государственный университет им. М. В. Ломоносова

Поступная 27 V 1977

и, ь. и. идаи, р. б. чарьчези

ԱՆԻԶՈՏՐՈՊ ՄԱԾՈՒՑԻԿՈԱՌԱՁԳԱԿԱՆՈՒԹՅԱՆ ՔՎԱԶԻՄՏԱՏԻԿ ԽՆԳԻՐՆԵՐԻ ԼՈՒԾՄԱՆ ՎԵՐԱՑԱԼ

Ամփոփում

ցիկոտոտծդական միջավայրնիի ծավայային դնֆորմացիան։

Այդորիսի միջավայրերի համար քվաղիստատիկ խնդիրների լուծման համար առաջարկվում է հղանակ, որը հիմնված է ապրոքսիմացիայի հղանակի մար առաջարկվում է հղանակ, որը հիմնված է ապրոքսիմացիայի հղանակի

ON SOLUTION OF QUASI-STATICAL PROBLEMS IN THE NONISOTROPIC THEORY OF VISCOELASTICITY

M. N. M. ALLAM, B. E. POBEDRYA

Summary

The volumetric deformations of structural nonisotropic media are discussed. A method of solution based on a generalization of the approximation method is suggested for the solution of quasi-statical problems. A numerical example is given.

АИТЕРАТУРА

- 1. Вльющин А. А. Победря Б. Е. Основія математической теории термовязкоупругости. М., 1970, 280 с.
- 2. Победря Б. Е. О структурной амизотронии в вязкоупругости. Механика полимеров, 1976. № 4. с 622—626.
- 3. Нобедря Б. Е.: Горбичен В. И. О статических задачах упругих композитов. Вестинк Моск. университета, сер. 1, 1977, № 6.
- 4. Лехницкий С. Г. Анизотронные пластинки. М. А., 1947, 356 с.