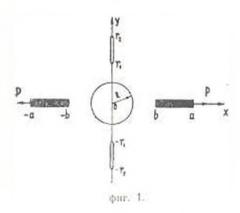
С. С. ШАГИНЯН

ПЕРЕДАЧА НАГРУЗКИ ОТ ДВУХ СИММЕТРИЧНО РАСПОЛО-ЖЕННЫХ СТРИНГЕРОВ К БЕСКОНЕЧНОЙ ПЛАСТИНЕ, РАССЛАБЛЕННОЙ КРУГОВЫМ ОТВЕРСТИЕМ И ДВУМЯ СИММЕТРИЧНЫМИ РАДИАЛЬНЫМИ РАЗРЕЗАМИ

1. Пусть бесконечная пластина с круговым отнерстием радиуса R, рассавбленная двумя радиальными симметричными ризрезами, не выходящими на свободную границу кругоного отверстия, подкреплена симметрично расположенными и достаточно топкими упруглями стрингерами из одинакового материала. Пусть далее, к концам стрингеров приложены равные по величине и противоположные по направлению силы P (фиг. 1). При нулевом напряжением состоящия на бесконечности требуется найти закон распределения контактных напряжений вдоль линии крепления стрингеров с пластиной и определить коэффициенты интенсивностей разрывающего папряжения в концевых точках симметрично расположенных разрезов.



Веледствие симметрии задачи рассмотрим только правую часть данной области. Очевидно, что функцию влияния этой задачи можно представить в следующем виде:

$$V(r) = V_{r}(r, 0) + V_{r}(r, 0), \quad r = R$$

где смещения $V_{c}^{+}(r,0)$ обусловлены действием единичных сосредоточенных нагрузок q, приложенных в симметричных точках пластины с круговым отверстнем без разрезов, а упругие смещения $V_{c}^{p}(r,0)$ обусловлены наличием симметрично расположенных разрезов в пластине, расслабленной круговым отверстием.

Эти перемещения даются формулами [1, 2]

$$V_{r}^{q}(r, 0) = \frac{xq}{2\pi^{q}(1+x)} \left[\ln \frac{r+t}{|r-t|} + \frac{x^{2}+1}{2x} \ln \frac{rt+R^{2}}{rt-R^{2}} - \frac{R^{4}t}{r(r-t-R^{4})} + \frac{R^{4}r}{t(r^{2}t^{2}-R^{4})} - \frac{2R^{2}rt}{r^{2}t^{2}-R^{4}} - \frac{R^{2}(R^{2}-t^{2})(R^{2}-r^{2})(r^{2}t^{2}-R^{4})}{xrt(r^{2}t^{2}-R^{4})^{2}} + \frac{R^{2}}{xrt} \right],$$

$$V_{r}^{p}(r, 0) = \frac{1}{2\pi^{q}} \int_{0}^{t_{2}} G_{R}(r, s) \lambda_{t}(s) ds, \quad R \leq r < \infty$$

где

$$G_{R}(r, s) = -\frac{4}{\pi} \frac{s^{3}r}{r^{2}s^{2} + R^{4}} + \frac{2(x-1)}{\pi} \frac{r^{3}s}{r^{2}s^{2} + R^{4}} + \frac{2(x-1)R^{2}}{\pi} \frac{rs}{r^{2}s^{2} + R^{4}} + \frac{2(x-1)R^{2}}{\pi} \frac{rs}{r^{2}s^{2} + R^{4}} + \frac{4}{\pi} \frac{rs}{r^{2} + s^{2}} - \frac{1+x}{\pi} \operatorname{arctg}\left(\frac{2R^{2}rs}{r^{2}s^{2} - R^{4}}\right) - \frac{1+x}{\pi} \operatorname{arctg}\left(\frac{r^{2} - s^{2}}{2rs}\right) - \frac{4R^{2}}{\pi rs} + \frac{4s}{\pi r} - \frac{2(x-1)}{\pi} \frac{r}{s} - \frac{1+x}{s}, \quad R \leqslant r < \infty, \quad r_{1} < s < r_{2}$$

а функция ¼(s) дается формулой

$$Z_t(s) = \left[1 - \left(\frac{2s - r_2 - r_1}{r_2 - r_1}\right)^2\right]^{-1/2} \sum_{m=1}^{\infty} x_m T_m \left(\frac{2s - r_2 - r_1}{r_2 - r_1}\right), \quad r_1 < s < r_2$$

Коэффициенты да удовлетворяют бесконечным системам линейных урав-

$$x_n + \sum_{m=1}^{\infty} a_{mn} x_m = e_n(t), \quad n = 1, 2,...$$

Вид ядра и спободного члена последней системы приведены в работе [2]. В этих выражениях и и и — упругне постоянные материала пластины. Решение указанной бескопечной системы представим в виде

$$x_n = \sum_{k=1}^{\infty} \xi_n^{(k)} e_k(t), \quad t > K$$

где последовательность чисел 👫 👢 🚛 является решением бесконечной системы

$$\xi_n^{(k)} + \sum_{m=1}^{\infty} a_{mn} \xi_m^{(k)} = \xi_{n1}, n, k = 1, 2, ...$$

rge

$$\delta_{nk} = \frac{[1, n = k]}{[0, n \neq k]}$$

Если теперь вместо внешнях единичных сосредоточенных сил q взять распределенную касательную нагрузку интенсивности q(t), то в этом случас роль функции $\chi_i(s)$ будет играть функция $\chi_i(s)$, которая будет даваться формулой

$$X^{\pm}(s) = d_{\perp} \sum_{k=1}^{\infty} \hat{\alpha}_{k}(s) \int_{-r_{\perp}}^{s} (t) q(t) dt$$

Входящая в это выражение функция $h_k(s)$ имеет вид

$$h_k(s) = \sum_{m=1}^{\infty} \xi_m^{(k)} \left[1 - \left(\frac{2s - r_2 - r_1}{r_2 - r_1} \right)^2 \right]^{-1/2} T_m \left(\frac{2s - r_2 - r_1}{r_2 - r_1} \right), \quad k = 1, 2, \dots$$

а постоянкая d. — ширина упругих стрингеров.

На основе этих формул горизонтальные смещения точек положительной полуоси ($r\geqslant R$) абсцисс будут

$$V(r) = \frac{d}{2\pi \pi (1+x)} \int_{1}^{\infty} \left[\ln \frac{r-t}{|r-t|} - \frac{x^{2}+1}{2x} \ln \frac{rt+R^{2}}{rt-R^{2}} - \frac{R^{4}t}{r(r-R^{2})} - \frac{R^{4}t}{r(r^{2}t^{2}-R^{4})} - \frac{2R^{3}rt}{r(r^{2}t^{2}-R^{4})} - \frac{2R^{3}rt}{r^{2}t^{2}-R^{4}} - \frac{R^{2}(t^{2}-R^{2})(r^{2}-R^{2})(r^{2}t^{2}-R^{4})}{xrt(r^{2}t^{2}-R^{4})^{2}} - \frac{R^{2}}{xrt} \left| q(t) dt - \frac{1}{2\pi} \int_{1}^{\infty} G_{R}(r,s) L^{\pi}(s) ds, \quad R = r < \infty$$

Подставив в эту формулу значение функции х (5), получим

$$V(r) = rac{\pi d_s}{2\pi \mu (1+z)} \int_{b}^{a} \left[\ln rac{r+t}{|r-t|} + rac{\pi^2 + 1}{2\pi} \ln rac{rt + R^2}{rt - R^2} +
ight.$$
 $+ R^2 \left(rac{r^2 - R^2}{r^2} + rac{t^2 - R^2}{t^2}
ight) rac{rt}{r^2 t^2 - R^4} +$

$$= R^{2} \frac{(t^{2} - R^{2})(r^{8} - R^{4})(r^{2} - R^{4})}{rt(r^{2}t^{3} - R^{4})^{2}} = \frac{R^{3}}{rt} \left| q(t) dt + \frac{d^{4}}{2n} \sum_{k=1}^{n} \ln(r) \int_{t}^{a} e_{k}(t) q(t) dt \right|$$

тле обояначено

$$h_k(r) = \int G_R(r, s) h_k(s) ds, \quad k = 1, 2,...$$

Так как функция влияния этой задачи уже найдена, запишем, не останавливаясь на подробностях, основное определяющее уравнение поставленной контактной задачи. Оно имеет вид

$$\int_{0}^{a} \left[\frac{1}{t-r} + K_{R}(r, t) + \frac{-(r+1)}{s} \sum_{k=1}^{\infty} e_{k}(t) \frac{h_{k}(r)}{dr} \right] b'(t) dt = i\theta(r) \quad (1.1)$$

К этому уравнению должны быть добавлены граничные условия

$$\theta(b) = 0, \qquad \theta(a) = Pd. \tag{1.2}$$

выражающие условие равновесия стрингеров.

Отметим, что первый интеграл в девой части (1.1) следует понимать в смысле главного значения по Коппи.

Контактное напряжение дается формулой

$$q(r) = b'(r), b < r < a$$

Постоянная величина г. является комбинацией упругих в геометрических характеристик пластины в стрингеров и имеет вид

$$=\frac{2\pi\mu\left(1+\kappa\right)}{\nu d_{s}h_{s}\mathcal{E}_{s}}$$

где параметры h_s и E_s — соответственно высота и модуль Юнга стрингеров.

Функция $K_R(r, t)$, входящая в состав ядра сингулярного интегродиференциального уравнения (11), выражается формулой

$$K_{R}(r, t) := \frac{1}{r+t} - R^{2} \frac{x^{2}-1}{x} \frac{t}{r^{2}t^{2}-R^{4}} \frac{2R^{4}t}{r^{2}(r^{2}t^{2}-R^{4})} - R^{2}t \left(\frac{r^{2}-R^{2}}{r^{2}} + \frac{t^{2}-R^{2}}{t^{2}}\right) \frac{r^{2}t^{2}+R^{4}}{(r^{2}t^{2}-R^{4})^{2}} + \frac{2R^{2}(r^{2}-R^{2})(r^{2}t^{2}+R^{4})}{x^{2}(r^{2}t^{2}-R^{4})^{2}} - \frac{2R^{2}t(R^{2}-t^{2})(R^{2}-r^{2})}{x^{2}(r^{2}t^{2}-R^{4})^{2}}$$

$$-\frac{R^{2} (t^{2} - R^{2}) (r^{2} - R^{3}) (r^{2} + R^{4})}{2r^{2}t (r^{2}t^{2} - R^{4})^{2}}$$

$$-\frac{4R^{2}t (t^{2} - R^{2}) (r^{2} - R^{2}) (r^{2}t^{2} + R^{4})}{2r^{2}t^{2} - R^{4})^{3}} - \frac{R^{2}}{2r^{2}t}, \quad \dot{o} \leq r, \ t \leq a$$

2. Решение сингулярного интегро-дифференциального уравнения (1.1) представим в виде разложения по многочленам Чебышена перного рода

$$\theta'(r) = \left[1 - \left(\frac{2r - a - b}{a - b}\right)^2\right]^{-1/2} \sum_{m=0}^{\infty} y_m T_m \left(\frac{2r - a - b}{a - b}\right), \quad b < r < a$$

где $y_m/^*$ — неизвестные коэффициенты, подлежащие определению.

Известным способом [1—6], не останавливаясь здесь на подробностях, али определения коэффициентов разложения $y_m \mid_{m=1}^\infty$ получим бесконечную систему личейных алгебранческих урапнений

$$y_n + \sum_{m=1}^{\infty} (A_{mn} + B_{mn} + C_{mn}) g_n = (a_n + b_n + A_{0n} + C_{0n}) \dots n = 1, 2, \dots$$

где яведсны обозначения

$$\begin{split} A_{mn} &= \frac{4}{\pi^2 (a-b)} \int_b^{\infty} U_{n-1} \left(\frac{2r-a-b}{a-b} \right) \sqrt{1 - \left(\frac{2r-a-b}{a-b} \right)^2} \, dr \times \\ &\times \int_b^a K_R \left(r, \, t \right) \left[1 - \left(\frac{2t-a-b}{a-b} \right)^2 \right]^{-1/2} \, T_m \left(\frac{2t-a-b}{a-b} \right) \, dt \\ &\qquad \qquad m = 0, \, 1, \, 2, \dots; \, n = 1, \, 2, \dots \\ B_{mn} &= \frac{2h}{\pi^2 m_b} \int_b^a U_{n-1} \left(\frac{2r-a-b}{a-b} \right) \, U_{m-1} \left(\frac{2r-a-b}{a-b} \right) \left[1 - \left(\frac{2r-a-b}{a-b} \right)^2 \right] \, dr, \quad m, \, n = 1, \, 2, \dots \\ C_{mn} &= \frac{4 \left(z+1 \right)}{\pi z \left(a-b \right)} \sum_{k=1}^\infty \int_b^a \frac{dh_k^k \left(r \right)}{dr} \, U_{n-1} \left(\frac{2r-a-b}{a-b} \right) \times \\ &\times \sqrt{1 - \left(\frac{2r-a-b}{a-b} \right)^2} \, dr \int_b^a e_k \left(t \right) \left[1 - \left(\frac{2t-a-b}{a-b} \right)^2 \right]^{-1/2} \times \\ &\times T_m \left(\frac{2t-a-b}{a-b} \right) \, dt, \quad m = 0, \, 1, \, 2, \dots; \, n = 1, \, 2, \dots \end{split}$$

$$a_{n} = \frac{2\lambda}{\pi} \int_{b}^{a} U_{n-1} \left(\frac{2r - a - b}{a - b} \right) \sqrt{1 - \left(\frac{2r - a - b}{a - b} \right)^{2}} dr, \quad n = 1, 2, \dots$$

$$b_{n} = \frac{2\lambda}{\pi^{2}} \int_{b}^{a} \operatorname{arc} \cos \left(\frac{2r - a - b}{a - b} \right) U_{n-1} \left(\frac{2r - a - b}{a - b} \right) \times \sqrt{1 - \left(\frac{2r - a - b}{a - b} \right)^{2}} dr, \quad n = 1, 2, \dots$$

Здесь $U_{n-1}(x) = \sin(n \arccos x) \sin \arccos x$ (n = 1, 2, ...) — много члены Чебышева второго рода.

Коэффициент у определяется из граничных условий (1.2) и имеет значение

$$y_0 = 2P \cdot d \cdot (a - b)$$

Без особого затруднения можно показать, что для любого эначения нараметра λ полученная бесконечная система квазивполне регулярна, а для некоторого диапазона изменения значений этого параметра она внолне регулярна. Кроме того, можно показать, что свободный член этой системы убывает со скоростью не медленее, чем n^{-1} .

Определим коэффициенты интенсивностей разрывающего напряженит от (г. л. 2) в концевых точках симметрично расположенных разрезов. Аналогично тому, как это сделано в работе [2], для коэффициентов интенсивностей разрывающего напряжения в этом случае будем иметь

$$N(r_1) = \lim_{t \to r_1 = 0} z_0(r_1 - \pi/2) + \overline{r_1 - r}$$

$$= - \sqrt{r_2 - r_1} d_s \sum_{m=1}^{\infty} (-1)^m \sum_{k=1}^{\infty} z_1^{(k)} - (t) q(t) dt$$

$$N(r_1) = \lim_{t \to r_1 \neq 0} z_1(r_1 - t/2) + \overline{r} =$$

$$= - \sqrt{r_2 - r_1} d_s \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \int_{\mathbb{R}^n} e_k(t) q(t) dt$$

Автор благодарен С. М. Мхитаряну за постановку задачи и внимание к работе.

Институт механика АН Армянской ССР

Поступпла 28 VI 1976

Ս. Ս. ՇԱՀԻՆՑԱՆ

ՈՒԺԻ ՓՈԽԱՆՑՈՒՄԸ ԵՐԿՈՒ ՍԻՄԵՏՐԻԿ ԳԱՍԱՎՈՐՎԱԾ ՎԵՐԱԳԻՐՆԵՐԻՑ ԿՈՐ ԱՆՑՔՈՎ ԵՎ ԵՐԿՈՒ ՍԻՄԵՏՐԻԿ ՇԱՌԱՎՂԱՅԻՆ ՃԵՂՔԵՐՈՎ ԹՈՒԼԱՑՎԱԾ ԱՆՎԵՐՋ ՍԱԼԻՆ

Kohnynist

Աշխատանքում դիտարկված է հարի կոնտակատյին խնդիր կլոր անցրով սալի համար, հրդ մերջինս Ռուլացված լիննյավ հրկա շառավդային ձեզրնրով, ուժեղացված է սիմեարիկ դասավորված առաձղական վերադիրներով։ Ին-իադրվում է, որ արտաքին ուժերը կենտրոնացված բեռի տեսքով կիրառված են վերադիրների ծայրերում առանցքային տարբեր ուղղություններով։

Դիտարկված իննդրի լուծումը որոշակի նդրային պայմանների դեպքում ընդված է սինդուլյար ինտնդրո-դիֆերենցիալ Հավասարման լուծմանը։ Ձեւ բիջևի օրքողոնալ բազմանդամների օղնուքիյամբ ստացված է այդ Հավասարման էֆեկտիվ լուծումը։

LOAD TRANSFER FROM TWO SYMMETRICAL STIFFENERS TO AN INFINITE PLATE WITH A CIRCULAR HOLE WEAKENED BY TWO SYMMETRICAL RADIAL CUTS

S. S. SHAITINIAN

Summary

In the present paper the problem of load transfer from two symmetrical stiffeners to an infinite plate with a circular hole, weakened by two symmetrical radial cuts, not extending beyond the free circular boundary, is considered.

The problem is defined in the form of singular integro-differential equation under definite boundary conditions.

The solution is presented in the form of expansion by Chebishev polynomials of the first kind. As to the unknown expansion coefficients, a quasi-quite regular infinite system of linear algebraic equations is obtained.

ЛИТЕРАТУРА

- Шагинян С. С. Пекоторые контактные вядачи для бесконечной пластины с круговым отперстнем, усиленной упругими накладками. Дока. АН Арм. ССР, 1974. т. 59, № 3.
- Мхитарян С. М., Шатинян С. С. О напряженном гостояния бесконечной пластины с круговым отверстием, расслабленной двумя радиальными разревами. Дока. АН Арм. ССР, 1976, т. 63, № 4.
- Шатриян С. С. Некоторые контактные задачи для плоскости и круговым отверстием, усиленной на своей границе упругими накладками. Изв АН Арм. ССР. Механика, 1974. г. 27, № 1.

- 4 Arutunian N. K., Mkhitarian S. M. Some contact problems for a semiplane with elastic stiffeneers. Frends in elasticity and thermoelasticity. Witold Novacki Anniversary volume. Wolters-Nordorff publ., 1971.
- 5 Арутинин Н. Х., Мхитерин С. М. Некоторые контактиме задачи для полупространства, усилениего упругими накладамами. ПММ, 1972. т. 36, № 5.
- Морарь Г. А., Ирпон Г. Я. К периодической контактной задаче для полунациюств с упругими накладками. ПММ. 1971, т. 35, № 1.