20.500000 002 НОЗПРАНИАНИИ UNUAGUPUSE SEQUEUSEP ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Մեխոսնիկա

XXIV, Nº 6, 1971

Механика

### Ю. В. ТАТЕВОСЯН, В. Е. НАКОРЯКОВ, А. П. БУРДУКОВ

# ИССЛЕДОВАНИЕ КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ В ВЕРТИКАЛЬНОМ ДВУХФАЗНОМ ПОТОКЕ

Исследование закономерностей изменения основных гидродинамических параметров, характеризующих течение газожидкостных -иссей, имеет большое значение, так как без знания этих параметров невозможно создать единую теорию, описывающую двухфазное течение.

Одним из пажных параметров является касательное напряжение на стенке :. Прямых методов измерения : при течении двухфазных ср.д практически ист. Измерение потерь на трение в двухфазных потоках проводится косненным образом, через измерение среднего по сечению истинного газосодержания — методы измерения которого [2: 3] не дают надежных результатов при большом диапазоне газосодержания в потоке.

Простейшим приближением для расчета служит гомогенная модель, по которой

$$= C_{f} \frac{z_{eu} w_{ev}^{2} L}{2 \sigma d}$$
(1)

гле во приведенная скорость смеси,

С. коэффициент трения гомогенного потока [1],

d. L - диаметр и длина канала соотнетственно.

Широко известен также метод Локкарта-Мартинелли [4].

В работе описываются результаты измерсния касательных напряжений на стенкс канала при изотермическом неустановившемся течении днухфазного, потока электрохимическим методом, который дяет возможность получить действительное напряжение на стенке канала [5]. Метод заключается в измерении предельного диффузионного тока / в электролитической ичейке, состоящей из текущего в канале влектролита, анода и поляризованного катода-датчика. В качестие электролита используется 0.001 0.15 N иодный раствор ферри-ферроцианида с фононым 0.5 N раствором NaOH. Связь между т и / выражается зависимостью

$$z = \frac{1.87 \, \text{s} f^4}{F^5 F h^4 D^2 C^3} \tag{2}$$

гле С концентрация К, ГетСМ в объеме электролита,

D ковфрициент диффузии,

1 продольный размер датчика по потоку,

h — ширина датчика.

F - число Фарадея.

и - коэффициент линамической иязкости.

Формула (2) применима для двухфалного потока, если на стеняе канала существует сплошная пленка жидкости. Опыты проводились



Фиг. 1. Схема экспериментальной установки.

на вертикальной трубе диаметром d 86.4 мм. Схема установки показана на фиг. 1.

Установка предстананет из себя замкнутый циркуляционный контур со следующими основным узлами: бак с водяным холодильником (смкостьні 300 л), центробежный насос (производительне стью 55 м час), расходомерные устройства по газу и по жидности. смеситель, вертикальная трубы длиной 6.5 м. бак первичной селерации, сепаратор тарельчатого тина и сливной трубопровод. Все узаы изготовлены из нержавсющей стали, а также из опганического стекла и нинипласта. Эксперимен тальный участок состоит из 3 блоков (в каждом по 4 датчика) и 2-х секций оргстеклянных труб общей длиной 1.5 м. Блок датчиков со-

стоит из корпуса и 2-х оргстеклянных втулок с заделянными заподлицо никелеными пластияками (фиг. 2).



Средний размер датчиков в исследуемых опытах ранен *l* = 2 мм, *h* = 20 мм. Проперкой качества датчиков служило сопоставление данных измерений электрохимическим методом с расчетными значениями = по известным зависимостям для различных значений числа Рейнольдса *Re для од*нофазной жидкости (фиг. 3).



Фиг. 3. Тарировка датчиков (прасчот но Блазнусу, виспериментальные точки)

В качестве газовой фазы в опытах использонался чистый азот. Температура жидкости поддерживалась в пределах 22—25°С.

Значения кинематической вязкости были измерены нами в диапазоне изменения температуры от 15—30 С, а данные по коэффициенту диффузии были изяты из литературы [8]. Перед и после каждой серии онытов производился замер концентрации ионов феррицианида в растворе потенциометрическим титрованием. Газожидкостиая смесь создяналась в смесителе на расстоянии 35 калибров от перпого датчика, идувом газа через сопло. Опыты проводились п дизпазоне приведенных скоростей жидкости и = 0.05 ÷ 0.956 м'сек; изксимальные скорости газа достигали 2 м сек. Во время каждой серин опытов расход жидкости поддерживался постоянным, а изменялся расход газа. В измерительной электрической цепи исличина регулирусмого напряжения измерялась ламповым нольтметром, а неличина предельного диффузионного тока миллиамперметром и одновре-

менно авлисылалась на осциллографе Н-700.

Для исследования течения ракимов на участке визуллизации проводилась киносъемка.

На фиг. 4 представлены результаты опытов для разных значений то в ниде записимости т от расходного объемного газосодержания В, а также расчетные данные по методу Локкарта-Мартинелли [4] и экспериментальные данные Говера [7]. Из



Фиг. 1. Обработка экспериментильных донных авторов в координатах ти и

графика видно, что при w 0.956 *м сек* и 3 0.6 расчет по [4] даст звянженные значения а при p < 0.6 — завышенные. С уменьшением то, расхождения наших экспериментальных данных от данных [4] н чинаются при 3 0.3. Экспериментальные данные Гонера при 3 >0.65 имеют хорошее совпадение с нашим экспериментом.

На фиг. 5 представлена обработка наших данных в координата: от w/w, при постоянных числах Фруда, где

$$F_r = \frac{w_{eq}}{gd}$$
(3)

Зону стержненого режима можно представить в виде степенно функции  $-j\tau_0 = A (F_c)^{-1} (w_{-} w_{0})^n$  (4), где *m* и *n* угловые коэффициент линий при  $F_c = \text{const}$  и w'/w' const.



Окончательно формула имеет вид

$$z/\tau_0 = 1.066 \left(F_r\right)^{-0.84} \left(\frac{w_0'}{w_0}\right)^{-1.13}$$
 (5)

где то трение, вычисленное по гомогенной модели.

Визуальным наблюдением и киносъемкой отчетливо зафиксированы три режима течения потока: пузырьковый, снарядный, стержневой.

Границы этих режимов на фиг. 4 нанесены пунктирными диниями. Пузырконый режим наблюдается при 2 = 0.18 0.35, причем с улеличением из граница перехода к снарядному режиму по 3 смещается в сторону больших 3.

Снарядный режим наблюдался при 3 0.18 0.75 для малых расходов жидкости и 3 0.35 0.5 для больших расходов. Граница перехода к стержневому режиму с увеличением 20 смещается в сторону меньщих β.

Ниститут топлофилики СО АН СССР

Поступила З V 1971

Յու Վ. ԹԱԹԽԱՈՍՅԱՆ, Վ. հ. ՆԱԿՈՐՅԱԿՈՎ, Ա. Պ. ԲՈՒՐԳՈՒԿՈՎ

### շոշներվ լունեւթերի շրջաններն սիմմանութ բերթանն շրուններ

Ամփոփում

Աշխատունըում դետեղված նն ուղղաքայաց խողովակի պատի վրա դոլասող շփման ուժի փորձնական հղանակով չափման արդյունըները, երբ խողովակով քոսում է Տեղուկ-դադ սիստեմ։

Չափումները կատարված են էլեկտրարինիական եղանակով Տեղուկի և «աղի տարրեր բերված արադունյունների (ծախսի) դեպրում։

# STUDY OF WALL SHEAR STRESSES IN A VERTICAL TWO-PHASE FLOW

#### Yu. W. TATEVOSIAN, W. E. NAKORIAKOV, A. P. BURDUKOV

### Summary

The work presents the results of experimental study of the wall shear stresses of a two-phase flow in a vertical channel at various liquid and gas velocities, using electrochemical method.

#### **ЛИТЕРАТУРА**

- Кутателадзе С. С., Стырикович М. А., Гидравлика газожидкостных смессй, Госянергоиздат. М., 1958.
- 2. Армонд А. А. Исследование механизма движения двухфазной смоси в вертивальной трубе. Изн. ВТИ, № 2, 1950.
- 3. Isbin H. S., Sher N. C., Eddy K. C. A. i. Chem. Eng. Journal, vol. 3, 1957.
- 4. Streetor L. Handbook of fluid dynamics. Mc Graw-Hill Book company W. Y., 1961, pp. 17-1
- Кутателадзе С. С., Накоряков В. Е., Бурлуков А. П., Кузьмин В. А. Примеясные влектрохимического метода измерения трения в скароднизмике двухфизных сред. Тепло и массоперенос, т. Н. Минск, 1968, стр. 367.
- Кузьмин В. А., Покусцев Б. Г. Измерение трения в двухфазных потоках влектрохвияческим методом. Ж. ПМТФ, М., 1969.
- 7. Gowter G. W. and Leigh W. Short, Cam Y. Chem Fug., vol. 36, p. 193, October, 1958.
- 8 Arvia A. I., Morchtand S. L., Podesta I. I. Electrodinamica Acta, 1967, vol. 12, 259 Pergamon Press td. Printed in Northern Ireland.