Մեխանիկա

XXIV, No 3, 1971

Механика

О. М. САПОНДЖЯН

ПОСТРОЕНИЕ КОНФОРМНО ОТОБРАЖАЮЩИХ ФУНКЦИЙ ДЛЯ НЕКОТОРЫХ ДВУСВЯЗНЫХ ОБЛАСТЕЙ С ПРИМЕНЕНИЕМ К ЗАДАЧЕ КРУЧЕНИЯ

В работе указывается способ построения функций, конформно отображающих область кольца на некоторые двусвязные области, ограниченные простыми контурами. При построении приближенных отображающих функций применен известный метод Л. В. Канторовича 1].

Построенные отображающие функции могут применяться при решении ряда задач теории упругости и пластичности [2].

В качестве примера применения построенных функций рассмотрена задача о кручении призматического стержня с сечением, ограниченным извие окружностью, а изнутри—прямолинейным разрезом.

§ 1. Отображение области кольца на область с прямолинейным разрезом

1. Обозначим комплексную координату области кольца через z=x+iy. Впутренний радиус кольца пусть будет y=x<1, а внешний y=1. В области y=1 имеется прямолинейный разрез идоль конечного отрезка прямой, уравнение которой пусть будет y=mx (y=x) или и комплексной форме

$$\bar{z} = \frac{(1 - im)^2}{1 + m^2} z$$
 $(\bar{z} = x - iy)$ (1.1)

Конформное отображение области кольца на область G осуществляется рядом Лорана. Используя только условие перехода внутренней окружности кольца на разрез (1.1), указанный ряд приводим к виду

$$z = o(\zeta) = \sum_{k=1}^{\infty} \left[a_k z^k + \frac{1 + m^2}{1 + m^2} \overline{a}_k \frac{z^{*k}}{z^k} \right]$$
 (1.2)

rae $a_i = 0$, $\lim a_i = 0$.

Функция (1.2) обеспечивает паличие разреза (1.1) в С независимо от значения коэффициентов а. Последние определяются из услония перехода впешней окружности кольца на внешний контур области G. 2. В качестве первого примера определения a, рассмотрим случай, когда область G есть бесконечная полоса с разрезом вдоль отрезка оси x длиной 2d (фиг. 1). В этом случае в (1.2) надо положить m=0, a=a, . 0. Из условия перехода коптура y=b на внешнюю полуокружность кольца при $0\leqslant b\leqslant \pi$, то есть из условия

$$\sum_{1} \alpha_{2k+1} (1-i^{4k+2}) \sin(2k+1) \theta = b$$

определяем коэффициенты

$$a_{2k+1} = \frac{4b}{\pi (2k+1) (1-k^{1k+2})}$$

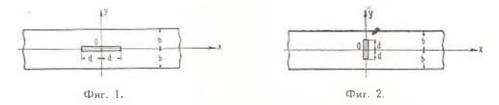
При этом отображающая функция (1.2) примет вид

$$z = o(3) = \frac{4b}{\pi} \sum_{k=0}^{\infty} \frac{\zeta^{2k+1} + \frac{\lambda^{2k+2}}{\zeta^{2k-1}}}{(2k+1)(1-\lambda^{2k+2})}$$
 (1.3)

Отсюда при 🕻 = / для половины длины разреза будем иметь

$$d = \frac{8b}{\pi} \sum_{n=1}^{\infty} \frac{i^{2k+1}}{(2k+1)(1-i^{4k-2})}$$
 (1.4)

Приданая параметру ν различные эначения и интернале $0 < \nu < 1$ находим соответствующие значения d.



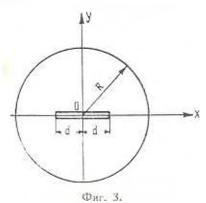
В случае, когда разрез длиной 2d проведен вдоль отрезка оси y и симметрично расположен относительно оси x (фиг. 2), отображающая функция (1.2) примет вид

$$z = 0 \ (\zeta) = \frac{4b}{\epsilon} \sum_{k=0}^{\infty} \frac{\zeta^{2k+1} - \frac{\lambda^{4k+2}}{\zeta^{2k+1}}}{(2k+1)(1+\lambda^{4k+2})}$$
 (1.5)

откуда, при $i=i\hbar$. будем иметь

$$d = \frac{8b}{2} \sum_{k=1}^{\infty} \frac{(-1)^k k^{2k+1}}{(2k+1)(1-k^{2k+1})}$$
 (1.6)

3. Рассмотрим случай, когда область G есть круг с диаметральным разрезом длипой 2d < 2R, симметрично расположенным относительно центра круга, принятого за начало координат (фиг. 3). Ось х проходит вдоль разреза.



Из (1.2) для рассматриваемого случая имеем

$$z = \omega(\zeta) = \sum_{i=1}^{\infty} a_{i,k+1} \left(\zeta^{i,k+1} + \frac{\lambda^{4k+2}}{\zeta^{2k+1}} \right)$$
 (1.7)

Уравнением внешнего контура области G будет $zz = R^2$. Внеся в вто уравнение (1.7) и приняв $z = e^{i\theta}$, приходим к бескопечной системе уравнений относительно

$$\sum_{k=0}^{\infty} (1+e^{8k+4}) a_{2k+1}^2 - R^2$$

$$\sum_{k=0}^{\infty} (1-e^{2k+1}) a_{2k+2n+1} - e^{2k+1}$$

$$= \sum_{k=0}^{\infty} e^{4k+1} a_{2k+2n+1} - e^{2k+1} a_{2k+2n+1} - e^{2k+1}$$

Решая эти уравнения с точностью до и методом последовательных приближений [1], находим

$$a_1 = R(1 - \lambda^4 - 2\lambda^8),$$
 $a_3 = -R\lambda^2(1 - 2\lambda^4)$
 $a_5 = R\lambda^4(1 - 2\lambda^4),$ $a_7 = -R\lambda^8,$ $a_8 = R\lambda^8$

Пользуясь этими эначениями, из (1.7) получим

$$z = R \left[(1 - \lambda^4 + 2\lambda^8) \left(\zeta + \frac{\lambda^2}{\zeta} \right) - \lambda^2 (1 - 2\lambda^4) \left(\zeta^3 + \frac{\lambda^6}{\zeta^3} \right) + \right.$$

$$\left. + \lambda^4 \left(1 - 2\lambda^4 \right) \left(\zeta^5 + \frac{\lambda^{10}}{\zeta^5} \right) - \lambda^6 \left(\zeta^7 + \frac{\lambda^{14}}{\zeta^7} \right) + \lambda^8 \left(\zeta^9 + \frac{\lambda^{18}}{\zeta^9} \right) \right]$$
(1.8)

Приняв в (1.8) = 1, с принятой точностью находим

$$d = 2Rt \left(1 - 2t^8 + 5t^8\right) \tag{1.9}$$

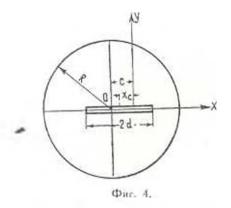
4. Рассмотрим теперь случай, когда область G есть круг с песимметричным относительно центра круга диамстральным разрезом длиной 2d < 2R. Направив ось x вдоль разреза (фиг. 4) и приняв m=0, $a_b=a_L$, из (1.2) получим

$$z = \alpha(\zeta) = \sum_{k=1}^{\infty} a_k \left(\zeta^k + \frac{k^{2k}}{z^k}\right) \tag{1.10}$$

Ураннение вчешнего контура области G предстаним и комплексной форме

$$zz + c(z + \bar{z}) = R - c^{-}$$
 (1.11)

где с - расстояние от центра круга до начала координат.



Внеся (1.10) при $\zeta = e^{i\tau}$ в (1.11) и обозначив

$$v = \frac{c}{R}$$
, $a_k - Ra_k$

приходим к бесконечной системе ураннений

$$u_{1} = (1 + \lambda^{4}) \qquad (1 - \nu^{2} - [(1 + \lambda^{5}) u^{2} + (1 + \lambda^{12}) u^{2} - \cdots])^{\binom{5}{5}}$$

$$u_{2} = -u^{-1} (1 + \lambda^{4n+2})^{-1} \cdot (1 + \lambda^{-6}) u_{2} u_{2n+1} + \sum_{k=2}^{\infty} [(1 + \lambda^{6k+4n-2}) u_{2k} u_{2k+2n-1} + (1 + \lambda^{-6}) u_{2k+1} u_{2k+1} + \sum_{k=1}^{\infty} (\lambda^{4k-2} u_{2k-1} u_{2k+2k+1} + \lambda^{4k} u_{2k} u_{2n+2k+1}) + (1 + \lambda^{-6}) u_{2k+1} + \sum_{k=1}^{\infty} (\lambda^{4k-2} u_{2k+1} u_{2n+2k+1}) + (1 + \lambda^{-6}) u_{2k+1} + \lambda^{4k} u_{2k} u_{2n+2k+1} + \lambda^{4k} u_{2k} u_{2k} + \lambda^{4k} u_{2k} u_{2k} + \lambda^{4k} u_{2k} u_{2k} + \lambda^{4k} u_{2k} u_{2k}$$

$$\begin{aligned} u_{2n-1} &= u_{-} (1 - \lambda^{4n+4})^{-1} \left\{ (1 - \epsilon^{4n}) u_{2n-1} + \frac{1}{2} \sum_{k=2}^{n-1} \left[(1 + \epsilon^{8k+4n}) u_{2k} u_{2k} - (1 - \epsilon^{8k+4n-4}) u_{2k-1} u_{2k+2n+1} \right] + \frac{1}{2} \sum_{k=1}^{n-1} \left(\epsilon^{4k-1} u_{2k-1} u_{2n-2k-1} + \epsilon^{4k} u_{2k} u_{2n-2k} \right) + \left[(1 - \epsilon^{4n}) u_{2n} \right] \\ u_{0} &= 0 \quad (n = 1, 2, \cdots) \end{aligned}$$

 U_3 этой системы уравнений методом последовательных приближений [1] могут быть найдены значения консчного числа коэффициентов u_t .

Определив эти коэффициенты для нечетных "k" с точностью до t^m у" при m+n=4 (m=0, 2, 4; n=0, 2, 4), а для четных "k" с точностью до t^m у" при m+n=5 (m=0, 2, 4; n=1, 3, 5) и приняв за исходное значение $u_t^{(i)}=u_x^{(i)}=\cdots=0$, отображающую функцию (1.10) представим в виде

$$z = R \left[(1 - v^{2} - v^{2} h^{2} - h^{4}) \left(\zeta + \frac{h^{2}}{\zeta} \right) - \left(v + 2 h^{2} - h^{3} - 4 h^{2} v^{3} \right) \left(\zeta^{2} + \frac{h^{4}}{\zeta^{2}} \right) + \left(v^{2} - h^{2} + 5 v^{2} h^{2} - v^{4} \right) \left(\zeta^{3} + \frac{h^{6}}{\zeta^{3}} \right) + \left(2 v h^{2} - v^{3} + 4 v h^{4} - 8 v^{3} h^{2} + v^{5} \right) \left(\zeta^{3} + \frac{h^{8}}{\zeta^{4}} \right) - \left(3 v^{2} h^{2} - h^{4} - v^{4} \right) \left(\zeta^{3} + \frac{h^{10}}{\zeta^{5}} \right) + \left(4 v^{3} h^{2} - 3 v h^{4} - v^{5} \right) \left(\zeta^{6} + \frac{h^{12}}{\zeta^{6}} \right) \right]$$

$$(1.12)$$

Принян в (1.12) - - с принятой точностью находим

$$2d = 4Rr(1 - v^2 - 2r^4) \tag{1.13}$$

а для абсциссы срединной точки разреза будем иметь

$$x_{\epsilon} = -2Ri^{2}v\left(1 + 2r^{2} - v^{2}\right) \tag{1.14}$$

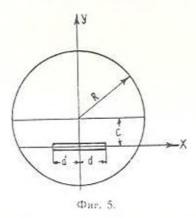
 Рассмотрим также случай, когда область (i есть круг с разрезом, показанным на фиг. 5.

В случае, когда область G симметрична только относительно оси у 1 ось х пронедена пдоль разреза, отображающая функция (1.2) приведется к ниду

$$z = m(\zeta) = \sum_{1}^{\infty} \left[a_{2k-1} \left(\zeta^{2k-1} + \frac{\lambda^{4k-2}}{\zeta^{2k-1}} \right) + i a_{2k} \left(\zeta^{2k} - \frac{\lambda^{4k}}{\zeta^{2k}} \right) \right]$$
 (1.15)

Уравнение внешнего контура области G представим в комплексной форме

$$zz-ic(z-z)=R^2-\epsilon$$



В это урависние впеся (1.15) при $\mathbb{I}=\mathbf{e}^{r'}$, приходим в бесконечной системе уравиений

$$u_{2n} = u_{1}^{-1} \left(1 + e^{n-2}\right)^{-1} \left\{ (1 - e^{n-2})^{-1} \left\{ (1 - e^{n-2})^{-1} \right\} \left(1 - e^{n-2}\right)^{-1} \left\{ (1 - e^{n-2})^{-1} \left\{ (1 - e^{n-2})^{-1}$$

где

$$a_1 = \frac{a_k}{R}$$
, $a_2 = \frac{c}{R}$

Из принеденной бесконечной системы уравнений методом последовательных приближений, с огоноренной выше точностью, определяем u_1, u_2, \cdots, u_m

При этом отображающая функция (1.15) будет иметь пид

$$z = \sum_{1}^{3} \left[a_{2k-1} \left(\zeta^{2k-1} + \frac{\zeta^{4k-2}}{\zeta^{2k-1}} \right) + i a_{2k} \left(\zeta^{2k} - \frac{\lambda^{4k}}{\zeta^{2k}} \right) \right]$$
(1.16)

где

$$a_1 = R(1 - v^2 + v^4), \quad a_2 = -R(v - 2u^2 - v^3 + 4v^3)^2)$$

$$a_3 = -R(v^2 - v^2)^2 - v^4), \quad a_4 = R(2u^7 - v^3 - 2vv^4 - 8v^3)^2 - v^5) \quad (1.17)$$

$$a_5 = R(v^4 + 3v^2)^2 - v^4), \quad a_4 = -R(3u^4 - 4v^2)^2 + v^5)$$

Приняв в (1.16) $\tilde{z} = \ell e^{it}$, получим значение абсулссы произвольной точки разреза

$$x = 2 \sum_{i=1}^{3} |a_{ik}|^{\frac{2k}{2}-1} \cos(2k-1) \theta - a_{ik}^{-2k} \sin(2k\theta)$$
 (1.18)

Для полонины длины разреза имеем $d=x_{\max}$.

Если принять, например, $v=\ell=0.25$, то из (1.18) найдем d=0.468R при $\theta=6^241$.

§ 2. Отображение области кольца на область, ограниченную нивне окружностью, а изнутри правильным многоугольником и наоборот

Обозначим через № (*) функцию Кристоффеля-Шварца, конформно отображающую внешнюю область окружности радиуса р = г на внешнюю область правильного многоугольника. Эта функция разлагается в ряд

$$z_0 = -(1) = c\left(1 + \sum_{k=1}^{\infty} \frac{a_k}{a_k} - \frac{a_k}{a_k}\right) \tag{2.1}$$

где $c \mapsto \text{постоянный параметр.}$ $m \mapsto \text{число сторон многоугольника,}$ $a_{-1} = \text{чанестные действительные постоянные, не зависящие от <math>\ell$.

Иногда (2.1) принимают за приближенное выражение функции, конформно отображающей область кольца раднусами $\iota = \iota < 1$ и $\iota = 1$ на область G_i ограниченную изнутри правильным многоугольником, а изине окружностью L Точность такого приближения, очевидно, заинсит от значения ι . Чем меньше — тем больше точность приближения.

Условие перехода внешней окружности кольца на окружносты / выражается формулой

$$w_0(e^{ib})w_0(e^{-ib}) = R^{\frac{1}{2}}$$
 (2.2)

где R — радиус охружности L.

Из (2.2), с учетом (2.1), получим

$$1 + \iota^{*} a_{m-1}^{*} + \dots + 2\iota^{m} a_{m-1} \cos mb +$$

$$+ 2\iota^{2m} a_{2m-1} \cos 2mb + \dots = \frac{R^{2}}{\epsilon}$$
(2.3)

Это уравнение будет точно выполняться тогда, когда все коэффициенты a_{mk-1} равны нулю, что можно было предвидеть заранее. Приближенно (2.3) будет ныполняться, если пренебречь и нем членами, содержащими множитель в степени m и больше. При этом из (2.3) получим

$$c = R \tag{2.4}$$

При указанной точности кривую L можно принять за окружность радиуса R.

Aля поньшения точности приближения кривой L к окружности радиуса R носпользуемся отображающей функцией

$$z = n_b(\zeta) - c n^n a_{n-1}^{-n+1}$$
 (2.5)

Тогда взамен (2.3) будем иметь

$$1 - 2^{k-1} - \dots - 2^{k-1} = -1 \cos 2m^{k} + \dots - \frac{R}{2}$$
 (2.6)

Это уравнение приближение удовлетворится, если в нем пренебречь членами, содержащими множитель в степени 2m и больше. При этом из (2.6) получится опять (2.4). Можно показать, что с той же точностью удовлетворяется условие перехода внутренней окружности кольца на внутренний контур области G.

Таким образом, функция (2.5), с учетом (2.4), с точностью 1 = 1 осуществляет условие перехода контуров кольца на контуры области G.

Перенишем (2.5) в окончательном виде

$$z = w(1) = R \left[1 + \sum_{mk=1}^{\infty} \frac{a_{mk-1}}{mk-1} - i^m a_{m-1}^{m-1} \right]$$
 (2.7)

В качестие примера рассмотрим случая отображения области кольца на область, ограниченную изнутри квадратом, а изпис окружностью.

За приближенное пыражение функции, конформно отображающей внешность окружности радиуса $y=\lambda$ на внешность квадрата, с достаточной точностью можно принять первые три члена функции (2.1) при m=4:

$$z_0 = c \left(\frac{1}{5} - \frac{1}{65^{15}} \right) \tag{2.8}$$

Отображающая функция (2.7) примет вид

$$z = R\left(\zeta - \frac{\lambda^4}{6\zeta^2} + \frac{\lambda^8}{56\zeta^5} + \frac{\lambda^4}{6}\zeta^5\right) \tag{2.9}$$

2. Обозначим через функцию Кристоффеля-Шварца, отображающую область единичного круга на область правильного многоугольника. Эта функция разлагается и ряд Тейлора

$$\omega_0(\zeta) = c\left(\zeta + \sum_{k=1}^{\infty} a_{mk-1}\zeta^{mk-1}\right)$$
 (2.10)

где т по-прежнему число сторон многоугольника, о по изместные действительные постоянные.

Аналогично случаю предыдущего пункта можно показать, что

$$z = \omega(\zeta) = \frac{R}{\lambda} \left[\zeta + \sum_{k=1}^{\infty} a_{mk+1} \zeta^{mk+1} - \frac{\lambda^{2m} a_{m+1}}{\zeta^{m-1}} \right]$$
 (2.11)

является приближенным выражением функции, конформно отображающей область кольца радиусами z=i<1 и y=1 на область G_i ограниченную изпутри окружностью радиуса R_i а изяне—правильным многоугольником. Приближенность указанного выражения заключается в том, что условие перехода контуров кольца на контуры области G удовлетноряется с точностью 1=1.

- § 3. Отображение области кольца на область, ограниченную изнутри правильным многоугольником с закругленными углами, а извие—замкнутой кривой, симметричной относительно осей симметрии указанного многоугольника
- 1. Известная руккция

$$z = c \left[1 - \frac{\lambda^m}{(m-1)^2 \cdot m^{-1}} \right]$$
 (3.1)

конформно отображает внешность окружности раднуса p = k на пнешность правильного m-угольника с закругленными углами. Коэффициент при втором члене (3.1) выбран из условия равенства нулю криниямы контура многоугольника в срединных точках его сторон [3].

Можно показать, что указанному условию удовлетворяет каждый член ряда

$$z = \omega(\zeta) = \sum_{k=0}^{\infty} a_{mk+1} \left[\frac{\zeta^{mk+1} - \frac{(mk+1)^2}{(mk+m-1)^2} \frac{\lambda^{2mk+m}}{\zeta^{mk+m-1}} \right]$$
(3.2)

причем a_1 0. Непосредственно яндно, что первый член (3.2) совпадает с (3.1). Согласно (3.2), когда точка описывает окружность радвуса $\gamma = 1$, точка z, недависимо от значений коэффициентов a_{nl+1} будет описывать правильный m-угольник с закругленными углами.

$$= \sum_{k=0}^{\infty} a_{mk-1} \left[\frac{a_{mk-1}a}{(mk-1)^2} - \frac{(mk-1)^2}{(mk-m-1)^2} \right]$$
 (3.3)

2. Рассмотрим случай отображения области указанного кольца на область G, ограниченную изнутри правильным m-угольником с закругленными углами, а извне — правильным m-угольником, оси симметрии которых совнадают.

При определении ковффициентон a_{min} достаточно учесть уравнение той части контура внешнего m угольныка, для которой — $\frac{1}{2}$ — . В этом интернале x const a, следонательно, согласно (3.3)

$$\sum_{k=1}^{\infty} a_{nk+1} \left| \cos \left(mk - 1 \right) \cdot 5 - \frac{(mk-1)^2}{(mk+m-1)^2} \right|^{2nk+m} \cos \left(mk+m-1 \right) \cdot 5 \left| -a \right|$$

$$\left(-\frac{\pi}{m} \leqslant 9 \leqslant \frac{\pi}{m} \right)$$
(3.4)

В промежутке $\left(-\frac{1}{m}, \frac{1}{m}\right)$ функции $\cos mn^{\frac{1}{2}} (n=0, 1, 2, \cdots)$ образуют полную систему, поятому для определения a_{m1} умножим (3.4) на $\cos mn^{\frac{1}{2}}d^{\frac{1}{2}}$ и проинтегрируем результат от $-\frac{1}{m}$ до $\frac{1}{m}$.

Обозначин при этом

$$(-1)^* a_{mk-1} = \frac{\pi a}{m \sin \frac{\pi}{m}} u_{mk-1}$$
 (3.5)

приходим и бесконечной системе ураннений относительно и

$$\geq \frac{(mk-1)u}{(mn-mk-1)(mn-mk-1)} \left[1 - \frac{1}{mk} \right]$$

$$\frac{(mk-1)(mn-mk-1)(mn-mk-1)^{\frac{1}{2}-mk-m}}{(mk+m-1)(mn-mk-m-1)(mn-mk+m-1)}$$

$$(n=0, 1, 2, \cdots)$$
(3.6)

где

$$\alpha_n = -1, \quad \alpha_1 = \alpha_2 = \cdots = 0 \tag{3.7}$$

Из ураппений (3.6) можно найти приближенные милчения конечного числа коэффициентой u_{mk-1} , и тем самым из (3.2), с учетом (3.5), определить приближенное пыражение отображающей функции.

Покажем, что систему (3.6), при некотором ограничении значений параметра 4, можно привести к регулярному пиду.

Аегко проверить, что указанную систему можно видонаменить так:

$$\sum_{m=1}^{\infty} \left| \frac{1}{mn - mk - 1} - \frac{1}{mn + mk - 1} - \frac{(mk + 1)^{2}}{(mk + m - 1)^{2}} \right|^{2mk} = \times \left(\frac{1}{mn - mk - m + 1} - \frac{1}{mn + mk + m - 1} \right) = 2x_{n}$$
 (3.8)

Заменив в (3.8) п на n 1 и вычтя полученную систему из (3.8) (известный прием, указанный в [1]), приходим к новой бесконечной системе уравнении, которую занишем в следующем виде:

$$u_{mn-1} = \frac{m-1}{1+\nu_n} \sum_{\substack{k=0\\k+n}}^{\infty} u_{mk+1} \left[A_{k,n} - B_{k,n} - \frac{(mk-1)^2}{(mk-m-1)^2} \right]^{2mk}$$

$$\times (C_{k,n} - D_{k,n}) \left[-\frac{2(m-1)}{m(1+\nu_n)} z_n - (n=0, 1, 2, \cdots) \right]$$
(3.9)

где

$$A = \frac{1}{(mn - mk - 1)(mn - mk + m - 1)}$$

$$B = \frac{1}{(mn + mk - 1)(mn + mk + m + 1)}$$

$$C = \frac{1}{(mn - mk - m + 1)(mn - mk - 1)}$$

$$D = \frac{1}{(mn + mk - m - 1)(mn + mk + 2m - 1)}$$

$$\frac{m - 1}{(2mn + 1)(2mn + m + 1)} \frac{(mn + 1)^{2} e^{-nn + m + 1}}{(mn + m - 1)^{2}}$$

$$\frac{m - 1}{(2mn + m - 1)(2mn + 2m - 1)}$$

$$(3.10)$$

Легко проверить, что при k - n

$$A_{k,n} > 0$$
, $B_{k,n} > 0$, $C_{k,n} > 0$, $D_{k,n} > 0$
 $A_{k,n} = B_{k,n} = 0$ $C_{k,n} = D_{k,n} > 0$ (3.12)

и все эти величины стремятся к нулю, когда в отдельности k, $n \to \infty$. Нетрудно доказать справедливость оценки

$$a_{k,n} = \frac{(mk+1)^{2}t^{2nk}}{(mk-m-1)^{2}} \frac{a}{A_{k,n} - B_{k,n}} \frac{C_{k,n} - D_{k,n}}{A_{k,n} - B_{k,n}} \qquad \frac{(mk-m-1)(mn-mk-m-1)}{(mk-1)(mn-mk-m-1)}$$
(3.13)

откуда

при k < n

$$\left(1 - \frac{m-2}{mk-1}\right) \left[1 - \frac{2(m-1)}{mn-mk-m-1}\right]$$

$$\leq i^{m} (m-1) (2m-1)$$
(3.14)

при $k \ge n$

$$\mu_{k,n} \leqslant i^m (m-1) \tag{3.15}$$

Из (3.14) и (3.15), потребовав выполнения неравенств

МИРУЛОП

$$A = \lfloor (m-1)(2m-1) \rfloor^{-1}$$
 (3.17)

Согласно (3.17) вначения к монотонно возрастают от 0.464 при m=3 до 1 при $m=\infty$.

Учитыная (3.17) и принян m>2, будем иметь опенку

$$\frac{(mn+1)^{2}}{(mn+m-1)^{2}} \stackrel{2mn-m}{=} \left[1 + \frac{m-1}{(2mn+m-1)(2mn-2m-1)} \right] \\
= \frac{2m(m-1)}{(m-1)^{2n-2}(2m-1)^{2n}} = \frac{2m(m-1)}{(2m-1)} \\
= \frac{m-1}{(2m+1)^{2n-1}} = \frac{m-1}{1!} \frac{2n-1}{2!} \frac{(2n-1)2n}{2!} \stackrel{2m}{=} \frac{m-1}{(2mn-1)(2mn-2m-1)}$$
(3.18)

Сопоставия (3.11) с (3.18), получим

$$0 \text{ H lim v} = 0$$
 (3.19)

Пользуясь (3.10), (3.12), (3.13), (3.16) и (3.19), получим условие регулярности системы (3.9)

$$\frac{m-1}{1+\nu_n} \sum_{k=0}^{\infty} \left| A_{k,n} - B_{k,n} - \frac{(mk-1)^2}{(mk+m-1)^2} e^{2\pi k} - (C_{k,n} - D_{k,n}) \right|$$

$$\leq \frac{m-1}{1+\nu_n} \sum_{k=0}^{\infty} A_{k,n} - \frac{1}{1-\nu_n} \left[1 - \frac{m-1}{m(mn-m-1)} \right] \leq 1$$
 (3.20)

причем последний знак равенства имеет место при л — — При выводе (3.20) использовано значение суммы ряда [4]

$$\sum_{\substack{k=0 \ k=n}}^{\infty} \frac{1}{(mn-mk-1)(mn-mk+m-1)} = \frac{1}{m-1} \left[1 - \frac{m-1}{m(mn+m-1)} \right]$$

Регулярная система (3.9), с учетом (3.7), поэволяет найти значения конечного числа неизвестных и с недостатком и избытком [1].

§ 4. Кручение стержня круглого поперечного сечения с разрезом, параллельным одному из диаметров круга

В качестве примера применения построенных отображающих функций рассмотрим задачу о кручении стержны с поперечным сечением в виде круга с разрезом, парадлельным одному из диаметроп круга (фиг. 5).

Задача кручения для двусвязной области легко решается, когда известна функция, конформно отображающая область кольца на эту двусиязную область [5]. Учитывая это, мы опускаем детали решения.

Будем пользоваться отображающей функцией (1.16). Функцию напряжений при кручении выберем в виде

$$\Phi = -\frac{\alpha \tau}{2} z \overline{z} + \alpha \tau R^2 \Phi_0 \tag{4.1}$$

<mark>гле :— отпосительный угол закручивания, Ф</mark> — гармоническая функцыя

$$\Phi_0 = A_0 = \sum_{i} [(A_{i+1} - A_0)^{-k-1} - B_0] = A_0 = A$$

 A_k, B_k — искомые постоянные.

Пользуясь контурными условиями задачи: $\Phi = 0$ при z = 1 и $\Phi = C_0$ при z = 1, учитывая при этом (1.16), (4.1) и (4.2), находим

$$C_0 = \frac{\pi^2}{2} \sum_{i=1}^{n} (1 - i^{2k})^2 a_k^2$$

$$A_{0} = \frac{1}{2} \sum_{m=1}^{2} (1 - k) a_{k}^{2}$$

$$= \sum_{m=1}^{2k-1} (-1)^{m} k^{4k-2m} (1 - k^{2m}) a_{m} a_{2k-m}$$

$$= \sum_{m=1}^{2k-1} (-1)^{m} k^{4k-2m} (1 - k^{2m}) a_{m} a_{2k-m}$$

$$= \sum_{m=1}^{2k-1} (-1)^{m} k^{4k-2m} (1 - 2k^{2m}) a_{m} a_{2k-m}$$

$$= \sum_{m=1}^{2k-1} (-1)^{m} (1 - k^{4k-2m}) a_{m} a_{2k-m}$$

$$= \sum_{m=1}^{2k-1} (-1)^{m} (1 - 2k^{2m}) a_{m} a_{2k-m}$$

$$= \sum_{m=1}^{2k-1} k^{4k-2m} (1 - k^{2m}) a_{m} a_{2k-m-1}$$

$$= \sum_{m=1}^{2k-1} k^{4k-2m} (1 - k^{2m}) a_{m} a_{2k-m-1}$$

$$= \sum_{m=1}^{2k-1} k^{4k-2m} (1 - k^{2m}) a_{m} a_{2k-m-1}$$

$$= \sum_{m=1}^{2k-1} (-1)^{m} (1 - 2k^{2m}) a_{m} a_{2k-m-1}$$

Коэффициенты a_n определяются по (1.17). Таким образом, функция ф полностью определена. Крутящий момент определяется по формуле

$$M=2C_{c}F_{c}-2/\sqrt{\Phi dxdy}$$

Так как $F_0 = 0$ (площаль, ограниченная разрезом, равна пулю), то

$$J = 2 \int_{0}^{1} \Phi dx dy = 2 \int_{0}^{1/2\pi} \Phi(y, -5) = 0 \quad (5e^{-x5})$$
 (4.3)

где

$$\omega (\varphi e^{\beta}) = \omega (\zeta) = \frac{dz}{d\zeta}$$

Касательные напряжения определим по формулам

$$z_{\tau} = -\frac{x\frac{\partial x}{\partial \theta} + y\frac{\partial y}{\partial \theta} - R^{2}\frac{\partial \Phi_{0}}{\partial \theta}}{\psi \left[\left(\frac{\partial x}{\partial \psi}\right)^{2} + \left(\frac{\partial y}{\partial \psi}\right)^{2}\right]^{\frac{1}{2}-2}}\psi^{\frac{1}{2}}$$
(4.4)

$$\tau_{s} = \frac{x \frac{\partial x}{\partial y} + y \frac{\partial y}{\partial y} - R^{2} \frac{\partial \Phi_{0}}{\partial y}}{\left[\left(\frac{\partial x}{\partial y}\right)^{2} + \left(\frac{\partial y}{\partial y}\right)^{2}\right]^{1/2}} pz$$
(4.5)

Согласно (1.16)

$$\begin{split} x &= \left. \sum_{1}^{3} \left[\left. a_{2k-1} \left(p^{2k-1} + \frac{\tilde{r}_{1}^{4k-2}}{\tilde{r}_{2k-1}^{2k-1}} \right) \cos \left(2k - 1 \right) \theta \right. \right. \\ &\left. - a_{2k} \left(p^{2k} + \frac{\tilde{h}^{4k}}{\tilde{r}_{2k}^{2k}} \right) \sin 2k \theta \left. \right] \right. \\ y &= \left. \sum_{1}^{3} \left[\left. a_{2k-1} \left(p^{2k-1} - \frac{\tilde{h}^{4k-2}}{\tilde{p}^{2k-1}} \right) \sin \left(2k - 1 \right) \theta + \right. \\ &\left. + \left. a_{2k} \left(p^{2k} - \frac{\tilde{h}^{4k}}{\tilde{p}^{2k}} \right) \cos 2k \theta \left. \right] \right. \end{split}$$

Для получения числовых результатов рассмотрим случай

$$y = i = 0.25$$

Из (1.17) имеем

$$a_1 = 0.93750000R$$
, $a_2 = -0.20703125R$
 $a_3 = -0.10156250R$, $a_4 = 0.03613280R$
 $a_4 = 0.01953125R$, $a_5 = -0.00781250R$

Далее находим

$$A_0 = 0.4686322,$$
 $A_1 = -0.2327116$
 $A_2 = -0.0536258,$ $A_3 = 0.0259236$
 $A_4 = 0.0137898,$ $A_4 = -0.0051192$
 $A_6 = 0.0011763,$ $A_7 = -0.0004733$
 $A_8 = -0.0000068,$ $A_9 = 0.0000002$
 $A_{10} = A_{12} = 0,$ $A_{11} = 0$
 $B_1 = -0.2082840,$ $B_2 = 0.9205706$
 $B_3 = 0.4098398,$ $B_4 = -0.2447764$

2 Известия АН Армянской ССР, Механика, № 3

$$B_5 = -0.1140064$$
, $B_6 = 0.0607212$
 $B_5 = 0.0296006$, $B_8 = -0.0085008$
 $B_6 = -0.0029980$, $B_{10} = 0.0009460$
 $B_{11} = 0.0003052$, $B_{12} = -0.0000610$

Значение постоянного коэффициента C_0 не приводится, так как он исключен из выражения крутящего домента.

Из (4.3) находим

$$M = 0.4932 \text{mg·R}^{\text{T}} \tag{4.6}$$

Для сравнения и процерки точности вычислений принедем значения крутящего момента:

для круга радиуса
$$R$$
 без разреза $M=0.5$ = μ т R^+ (4.7)

для кольца с внешням радиусом R и с внутренним радиусом 0.5R M=0.4688=a-R

для кольца с внешним радиусом R, внутренняя окружнесть которого проходит через крайние точки рассматриваемого разреза (внутренний радиус $\approx 0.56R$)

$$M = 0.4509 \text{mas} R^{1}$$

Согласно (4.6) и (4.7) рассматриваемый разрез не оказывает существенного влияния на значение крутищего момеята.

Значения касательных напряжений T_0 (1 — 0) на внешнем контуре сечения (2 — 1) и в точках разреза (2 — r = 0.25) припедены в табл. 1. Из этой таблиды видно, что наибольшее и наименьшее напряжения на внешнем контуре мало отличаются друг от друга (T^0 ₁₀), при этом наибольшее напряжение отличается от наибольшего касательного напряжения круглого сечения без разреза (T^0) на T^0 0.

Таким образом, рассматриваемый разрез не оказывает существенного влияния на величину и распределение касательных вапряжений внешнего контура.

 ${
m B}$ точках разрева y=--0, воходетние чего ${
m o}_{1}$ мула 4.5 прощается

$$\tau_{ij} = -\frac{\partial \Phi_{ij}}{\left|\frac{\partial y}{\partial z}\right|} R^{ij} c$$
 (4.8)

На ковиах разреза ($x = \pm 0.468 R$, $\theta = 6.41^{\circ}$ в 180 — 6.41°)

$$\frac{\partial g}{\partial z} = 0, \quad \frac{\partial \Phi_0}{\partial z} = 0$$

Вследствие этого в указанных точках = = -

Легко показать, что главный вектор касательных усилий, действующих в окрестности каждой из крайних точек разреза, стремится к нулю, то есть что в указанных точках имеет место копцентрация напряжений

					Таблиц
1,0	2 0.25	$\gamma = 1$	y = 1	p 0.25	9 1
	R		9. R	To per R	14.1911
-90	0	0	0 7475	0.0126	0.9818
-80	0.0740	0.1376	-0.7407	0,0216	0.9786
- 70	0.1462	0.2719	0.7129	0.0487	0.9742
60	0.2149	0,3981	-0.6670	0,0951	0.9790
-50	0.2785	0.5113	-0.6062	0.1629	0.9992
40	0.3352	0.6099	-0.5362	0.2570	1.0273
-30	0.3837	0.6970	-0,4610	0.3891	1,0400
20	0.4225	0.7771	0.3797	0.5901	1.0210
-10	0.4502	0.8509	0.2868	0.9693	0.9887
- 5	0.4595	0.8842	0.2345	1.3661	0.9773
0	0.4656	0.9140	-0.1779	2.3261	0.9726
- 5	0.4683	0.9395	0.1173	9.7421	0.9754
6 41	0.4680			200	
- 10	0.4676	0.9602	-0,0532	3.5177	0.9850
15	0.4632	0.9758	0.0140	1.2593	0.9996
20	0.4552	0.9866	0.0841	0.6378	1.0157
÷25	0.4435	0.9928	0.1573	0.3314	1.0291
30	0.4281	0.9944	0.2343	0.1402	1.0362
+35	0.4089	0.9910	0,3163	0.0046	1.0352
40	0.3860	0.9811	0,4045	-0.0993	1.0276
+ 15	0.3595	0.9624	0.4997	-0.1826	1.0164
55	0,2964	0.8858	0.7103	-0.3087	0.9965
 65	0,2213	0,7338	0.9312	-0.3962	0.9893
-75	0.1368	0.4915	1.1225	0.4526	0.9918
+80	0.4921	0.3398	1.1914	-0.4701	0.9941
9(1	0	()	1.2501	0.4840	0.9966

В табл. 2 приведены значения касательных напряжений τ_0 ($\tau=0$), возникающих в точках оси симметрии сечения (в точках оси y).

Tabenao 2

6 -s/2			η 2		
2	g/R	To /(all R	9.	y'R	τ_{q}/scR
0.25	0	0.0126	0.25	0	-0.4849
0.30	0.0779	0.1619	0.30	0.0977	-0.3037
0.35	0.1453	0.2752	0.35	0.1839	-0.1615
0.40	0.2058	0.3665	0,40	0.2638	-0.0564
0.45	-0.2615	0.4436	0.45	0.3405	0.0409
0.50	-0.3138	0.5110	0,50	0.4156	0.1286
0.55	-0.3634	0.5776	0.55	0,4903	0.2144
0_60	-0.4109	0.6273	0.60	0.5655	0.2937
0.65	0.4567	0.6795	0 65	0.6419	0.3758
0.70	0.5012	0.7289	0.70	0.7200	0.4556
0.75	-0.5446	0.7763	0.75	0.8003	0.5383
0.80	-0.5870	0.8222	0.80	0.8832	0.6231
0.85	-0.6287	0.8670	0.85	0.9692	0.7153
0.90	-0.6696	0.9110	0.90	1.0587	0.8019
0.95	-0.7100	0.9545	U.95	1 1522	0.8976
1.00	-0.7498	0.9818	1.00	1.2501	0.9966

В этих точках

$$x = 0, \quad \theta = \pm \frac{\pi}{2}, \quad 0.25 < \rho < 1$$

$$\frac{\partial x}{\partial \rho} = 0, \quad \frac{\partial y}{\partial \rho} = \pm \sum_{1}^{3} (-1)^{k-1} \alpha_{2k-1} (2k-1) \left(e^{2k-2} + \frac{e^{4k-2}}{\rho^{2k}}\right)^{+}_{-}$$

$$\frac{1}{2} \sum_{1}^{3} (-1)^{k} \alpha_{2k} \left(e^{2k-1} + \frac{e^{4k}}{\rho^{2k-1}}\right)$$

$$\frac{\partial \Phi_{0}}{\partial \rho} = \pm 2 \sum_{1}^{6} (-1)^{k} \left(A_{2k}e^{2k-1} - \frac{e^{4k}B_{3k}}{\rho^{2k+1}}\right) \mp$$

$$\pm \sum_{1}^{6} (-1)^{k-1} (2k-1) \left(A_{2k-1}e^{2k-1} - \frac{e^{2k-2}B_{2k-1}}{e^{2k}}\right)$$

$$\pm \frac{g \frac{\partial y}{\partial \rho} - R^{\frac{1}{2}} \frac{\partial \theta}{\partial \rho}}{\left|\frac{\partial y}{\partial \rho}\right|} = 0$$

Из двойных знаков верхний относится к значениям $y \geq 0$, а нижний—к значениям y = 0.

Ереванский полнтехинческий институт нм. К. Маркса

O. U. UILANARAUN

ՄԻ ՔԱՆԻ ԵՐԿԿԱՊ ՏԻՐՈՒՅԹՆԵՐԻ ՀԱՄԱՐ ԿՈՆՖՈՐՄ ԱՐՏԱՊԱՏԿԵՐՄԱՆ ՖՈՒՆԵՅԻԱՆԵՐԻ ԿԱՌՈՒՑՈՒՄԸ ԵՎ ԳՐԱՆՑԻՑ ՄԵԿԻ ԿԵՐԱՌՁԻՄԸ ՈԼՈՐՄԱՆ ԽՆԳՐՈՒՄ

Underdent

Լորանի չարրի օգնունկան կատուցված են օգակի ահրույնը մի բանի երկհապ տիրույններն վրա կոնֆորմ արտադատկերման ֆունկցիաներ։ Դրանց կառուցումը համեմատարար հեյտ է իրադործվում, երբ երկկապ տիրույնը ներսից սահմանափակված է ուղղագիծ ճեղբով, իսկ դրսից՝ պարզ եղրաղծով։ Դիտարկված են ուղղագիծ ձեղբ ունեցող անվերջ շերտի և շրջանի տիրույնների արտապատկերման մի բանի դեպքեր։ Գիտարկված են նաև արտապատկերման այլ դեպքեր։

ձեղը ունեցող չրջանի արտապատկերման ֆունկցիան, այն դեպքում, երբ նեղթը դուդաներ է շրջանի արտմագծերից մեկին օդատղործվել է համապատասիան կարվածը ունեցող ձոգի ոլորման ինդիրը լուծելիու

CONSTRUCTION OF SOME CONFORMAL MAPPING FUNCTIONS FOR DOUBLE-CONNECTED REGIONS AND THEIR APPLICATION TO THE TORSION PROBLEM

O. M. SAPONJIAN

Summary

This paper presents constructions of Laurent's series that map a circular ring onto some double-connected regions. Such transformations are comparatively easy to realize when the inner rim is a linear crack and the outer rim is a plane curve. Transformations of some cases of infinite strips and disks with a linear crack are considered. Other mappings are also presented.

The transformation of a circular ring onto the region of a circle with the crack which is parallel to the diameter is used to solve the corresponding problem of torsion.

ЛИТЕРАТУРА

- Канторович Л. В. и Крылов В. П. Приближенные методы высшего вназива. Гостомнадат, Л.-М., 1952.
- 2 Угодинков А. Г. Боков В. В., Кулагин Ю. М. К решению плоских задач теорик пластичности в принодинейных копраципатах. Методы решения задач упругости и пластичности, Горький 1969.
- 3. Нейман М. И. Напряжении в балке с хриволинейным отверстием. М., 1937.
- Градитейн И. С., Рыжик И. М. Таблицы интегрелов, сумм, рядов и произведений. Физматена, М., 1962.
- Мускелишвили П. И. Некоторые основные ладочи математической геории упругоети. М., 1954.