24344446 ИЛ2 АРХЛРИЗЛРИЗИР ЦЧИАВИРИЗР ХОДИЧИАРИ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Մեխանիկա

XXIV, Nº 1, 1971

Mexallin (

в. н. лозинский

ТЕРМОУПРУГИЕ НАПРЯЖЕНИЯ В КРУГЛОЙ ПЛАСТИНКЕ С РЕГУЛЯРНО РАСПОЛОЖЕННЫМИ КРУГОВЫМИ ОТВЕРСТИЯМИ, ВЫЗВАННЫЕ ДЕЙСТВИЕМ ТОЧЕЧНОГО ИСТОЧНИКА ТЕПЛА

Решение термоупругой задачи для круглого цилиндра с регулярно расположенными круговыми полостями, когда на контурах цилиндра задана определенная температура, изучено методом А. С. Космодамианского [3] в работе [1]. В данной работе атим же методом решена и исследонана термоупругая задача в случае действия в пластинке сосредоточенного источника тепла.

1. Рассмотрим круглую пластинку радиуса R, ослабленную mкругоными отверстиями радиуса \cdot 1 таким образом, что центры их находятся на окружности радиуса d, концентричной к окружности радиуса R, а угол регулярности 3 равен -m (см. фиг. 1). В центре пластинки действует стационарный точечный источник тепла мощностью W. На контурах L_{q_1} — температура T = 0.

Чтобы определить напряженное состояние данной пластинки, необходимо найти спачала температурное поле, возпикающее в ней. Для этой цели необходимо проинтегрировать уравнение

$$\nabla^2 T + \frac{W}{c} \delta(z) = 0 \tag{1}$$

при заданных для температуры граничных условнях [5]. В уравнении (1) «(z)-- функция Дирака, / — коэффициент теплопроводности.

Общее решение уравнения (1) можно выразить, как известно, через функцию комплексного переменного / (2), аналитическую в данной области и имеющую особенность в точке z 0:

$$T = F(z) - \overline{F(z)} \tag{2}$$

В рассматриваемом случае функцию F(z) можно представить следующим образом [3]:

$$F(z) = A \ln z + \sum_{q=1}^{m} B^{(q)} \ln (z - z_q) - \sum_{q=1}^{m} \sum_{k=1}^{\infty} \frac{b_k^{(q)}}{(z - z_q)^k} + \sum_{k=0}^{\infty} a_k \left(\frac{z}{R}\right)^k$$
(3)

где $B^{(z)}$ вещественные постоянные, $b_k^{(z)}$, a_k комплексные постоянные, z_q координата центра q-го отверстия. Учитывая геометрическую симметрию и симметрию граничных условий, выражение (3) можно переписать так:

$$F(z) = A \ln z + B \sum_{q=1}^{\infty} \ln (z - de^{q^*}) + \sum_{q=1}^{m} \sum_{k=1}^{\infty} \frac{b_k e^{q^* k}}{(z - de^{q^*})^k} + \sum_{k=0, m, 2m}^{\infty} a_k \left(\frac{z}{R}\right)^k$$
(4)

Здесь

$$B=B^{(1)}, \quad b_k-b_k^{(1)}, \quad q^*=i\frac{2\pi}{m}(q-1).$$

Следуя Э. Мелану, Г. Паркусу [4], коэффициент А определию так:

$$A = -\frac{W}{4\pi \lambda}$$
(5)

где 6 — толщина пластинки.

Остальные коэффициенты, которые, как показали проведевные нами исследования, являются вещественными величинами. Они определяются из граничных условий для температуры на контурах пластивки L_1 и L_0 . На остальных контурах L_2, \dots, L_m граничные условия выполняются автоматически. Обычным методом рядов для определения этих коэффициентов получим следующую бесконечную алгебраическую скстему:

$$Bm\ln R + a_{0} = -A\ln R$$

$$B \sum_{q=2}^{m} \ln \left[d^{2} \left(2 - e^{q^{*}} - e^{-q^{*}} \right) \right] - 2 \sum_{n=1}^{\infty} \varepsilon_{1}^{m(n-1)} a_{m(n-1)} + -2 \sum_{n=1}^{\infty} \varepsilon_{n}^{m} - \frac{e^{q^{*}n}}{(1 - e^{\alpha^{*}})^{*}} b_{n-1} - 2A \ln d$$

$$-B \sum_{q=1}^{m} -a_{1} + mb_{1}^{(n)} = 0, \quad j = m, \ 2m, \ 3m, \cdots$$

$$-BP_{n} - a_{1}^{(1)} - b_{j} + b_{1}^{(1)} - A \frac{(-z_{2})^{j}}{j}, \quad j = 1, \ 2, \ 3, \cdots$$

Здесь

$$\varepsilon_1 = \frac{d}{R^2}, \quad \varepsilon_2 \stackrel{\cdot}{=} \frac{1}{d}$$
$$a_i^{(1)} = \sum_{n=1}^{\infty} \varepsilon_{m(n-1)}^{d} \varepsilon_1^{m(n-1)} \varepsilon_2^{d} C_{m(n-1)}^{d} \alpha_{m(n-1)}$$

52

Термоупругие напряжения в круглой иластнике с отверстиями

$$b_{i}^{(1)} = \sum_{n=1}^{m} (-\pi_{n})^{i} = C_{i}^{i} = \sum_{q=2}^{m} \frac{e^{q^{n}n}}{(1-e^{q^{n}})^{i+n}} b_{n}$$

$$b_{i}^{(0)} = \sum_{n=1}^{l} z_{1}^{i-n} \left(\frac{1}{R}\right)^{n} C_{i-1}^{i-n} b_{n}$$

$$P_{i} = \frac{(-\pi_{n})^{i}}{j} \sum_{q=2}^{m} \frac{1}{(1-e^{q^{n}})^{i}}$$

$$\delta_{m(n-1)}^{i} = \begin{pmatrix} 1, & \text{если } m(n-1) = j \\ 0, & \text{если } m(n-1) = j \end{pmatrix}$$

2. После определения функции F(z) становится известным распределение температуры в пластинке. Неравномерность этого распределения приводит к возникновению в пластишке напряжений и перемешений [4]:

$$\overline{F}_{y} = -8Gk_{1}[F(z) - \overline{F(z)}]$$

$$\overline{F}_{y} = -8Gk_{1}[\overline{z}F'(z) - f'(z)]$$
(7)

$$f(z) = (b_1 - Bd) \sum e^{q^2} \ln (z - de^{q^2})$$

 функция, определяемая из условия однозначности перемещений и выпряжений, получаемых в результате интегрирования уравнения термоупругого потенциала. Они обозначены здесь черточками сверху.

Так как найденные поля напряжений и перемещений получены с помощью частного решения уравнения термоупругого потенциала, то они, как и следовало ожидать, не удочлетворяют граничным условиям. Поэтому к полю напряжений z_x , пужно прибанить второе поле, воторое возникает в пластинке, если к контурам приложить усилия $(\overline{X_n} - i \overline{Y_n})$ в случае, когда они свободны, или перемещения (u = 10) в случае жесткого защемления контуров.

Для определения второго поля напряжений необходные найти функции

$$\frac{\varphi(z)}{\varphi(z)} = \sum_{q=1}^{\infty} \sum_{j=1}^{\infty} \frac{c_j^{(q)}}{d_j^{(q)}} \frac{1}{(z - z_q)^j} = \sum_{j=1}^{\infty} \frac{a_j}{\beta_j} \left(\frac{z}{R}\right)^j$$
(8)

из граничных условий вида

$$t_q \in (t_q) + t_q \oplus (t_q) + \oplus (t_q) = F(t_q)$$
(9)

где 1 — аффикс точки на одном из контуров,

53

$$x_q = -\frac{3-v}{1-v}$$
, $F(t_s) = 2G(\overline{u} + i\overline{v})$

если рассматриваемый контур защемлен, и и д = 1

$$F(t_q) = -i\int (\overline{X_n} + i \overline{Y_n}) ds$$

если контур свободен $(q = 0, 1, 2, \dots, m)$.

Ввиду геометрической симметрии и симметрии граничных условий выражения (8) можно представить следующим образом:

$$\begin{aligned}
\mathbf{v}(z) &= \sum_{q=1}^{m} \sum_{j=1}^{\infty} \frac{c_j e^{q^{n}(j+1)}}{(z - de^{q^{n}})^j} - \sum_{j=1, m+1, 2m+1, \dots}^{\infty} a_j \left(\frac{z}{R}\right)^j \\
\psi(z) &= \sum_{q=1}^{m} \sum_{j=1}^{\infty} \frac{d_j e^{q^{n}(j-1)}}{(z - de^{q^{n}})^j} + \sum_{j=m-1, 2m+1, \dots}^{\infty} \beta_j \left(\frac{z}{R}\right)^j
\end{aligned}$$
(10)

3. Проведенные исследования показали, что коэффициситы с., *d*₁, ², и входящие в выражения (10), являются вещественными. Для их определения методом рядон получена следующая бесконечная алгебраическая система уравнений:

$$x_{1}c_{j} + d(j-1)(c_{l-1}^{(1)} + A_{l-1}^{(1)}) + (j-2)(c_{l+2}^{(1)} + A_{l-2}^{(1)}) + d_{l}^{(1)} + B_{l}^{(1)} - f_{l}^{(1)}, \quad j = 1, 2, 3, \cdots$$

$$x_{1} + h_{l}^{(1)}(c_{l}^{(1)} - A_{l}^{(0)}) - h_{l}(j-2)c_{j+2} - h_{l}^{2}c_{j-1} + d_{l} - f_{l}^{(2)}, \quad j = 1, 2, 3, \cdots$$

$$(x_{0} + h_{l}^{3})x_{l} - d_{l}^{(0)} - h_{l}^{3}(j-2)c_{j+2}^{(0)} = f_{l}^{(3)}, \quad j = 1, m-1, 2m+1, \cdots$$

$$x_{0}c_{l}^{(0)} + (j+2)x_{l+2} + \beta_{l} = f_{l}^{(0)}, \quad j = m-1, 2m-1, \cdots$$
(11)

Здесь

C

$$\begin{aligned} \mathbf{c}^{(1)} &= \sum_{n=1}^{\infty} \left(-\mathbf{1}_{2} \right)^{j} \mathbf{1}_{i}^{n} \mathbf{c}_{j+n-1}^{i} \quad \sum_{n=2}^{m} \frac{e^{q^{n}(n+1)}}{\left(1 - e^{q^{n}}\right)^{j+n}} \mathbf{c}_{n} \\ d_{i}^{(1)} &= \sum_{n=1}^{\infty} \left(-\mathbf{z}_{2} \right)^{j} \mathbf{z}_{2}^{n} C_{j+n-1}^{j} \quad \sum_{q=2}^{m} \frac{e^{q^{n}(n+1)}}{\left(1 - e^{q^{n}}\right)^{j+n}} d_{n} \\ A_{i}^{(1)} &= \sum_{n=1}^{\infty} \delta_{n1}^{i} \mathbf{z}_{2}^{i} \mathbf{z}_{1}^{n1} C_{n1}^{i} \mathbf{a}_{n1}, \qquad B_{i}^{(1)} &= \sum_{n=1}^{\infty} \delta_{2n}^{j} \mathbf{z}_{1}^{n2} \mathbf{z}_{2}^{i} C_{n2}^{j} \mathbf{g}_{n2} \\ \mathbf{z}_{n}^{(0)} &= \sum_{n=1}^{i} m \mathbf{z}_{1}^{i-n} \left(\frac{1}{R} \right)^{n} C_{i-1}^{i-n} \mathbf{c}_{n}, \qquad d_{i}^{(0)} &= \sum_{n=1}^{j} m \mathbf{z}_{1}^{j-n} \left(\frac{1}{R} \right)^{n} C_{i-1}^{i-n} d_{n} \end{aligned}$$

$$h^{1} = \begin{cases} 1, \text{ если } j = 1, \\ 0, \text{ если } j > 1, \end{cases} \quad h^{2}_{j} = \begin{cases} 1, \text{ если } j \ge 2, \\ 0, \text{ если } j < 2; \end{cases} \quad h^{3} = \begin{cases} 1, \text{ если } j > 3 \\ 0, \text{ если } j < 3 \end{cases}$$
$$n^{1} = m(n-1) + 1, \quad n^{2} = mn - 1, \quad \delta^{1}_{k} = \begin{cases} 1, \text{ если } k - j \ge 0, \\ 0, \text{ если } k - j \ge 0, \end{cases}$$

Выражения для правых частей системы (11) / / / / / / и / /

$$f_{1}^{(1)} = 4Gk_{1}A \left[B(P_{1}d + P_{i-1}) + (-q_{1})^{i-1} \left(\frac{1}{j} - \frac{z_{2}}{j+1}\right) + \frac{(-q_{1})^{i-1}}{j} \sum_{q=2}^{n} \frac{b_{i+1}}{(1-e^{q_{1}})} - \frac{b_{i+1}}{j} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + a_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(2)} + a_{i-1}^{(2)} + b_{i-1} + b_{i-1} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(2)} + a_{i-1}^{(2)} + b_{i-1} + b_{i-1} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(2)} + a_{i-1}^{(2)} + b_{i-1} + b_{i-1} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(1)} + b_{i-1}^{(2)} + b_{i-1} + b_{i-1} + b_{i-1}^{(1)} + b_$$

$$-\delta_{i}^{1} m BR \frac{s_{i}^{i-1}}{j-1} - (b_{1} - Bd) m \frac{z_{i}^{i}}{j} + \delta_{j}^{1} Rm b_{i}^{(0)} + R \frac{a_{i-1}}{j} \Big]$$

$$f_{i}^{0} = 4Gk_{1}A \left[Ra_{i-1} - mBR \frac{s_{i}^{i-1}}{j-1} - (b_{1} - Bd) m \frac{z_{i}^{i}}{j} - b_{i}^{(3)} \right]$$

В выражениях для правых частей системы (11) коэффициенты $a^{(1)}$. $b_t^{(1)}$, P_t означают то же, что и в системе (6),

$$\begin{split} b_{i}^{(0)} &= \sum_{n=1}^{\infty} \frac{(-z_{0})^{i} z_{2}^{n}}{n} C_{i+n-2}^{i} \sum_{q=2}^{n} \frac{e^{q \cdot (n+1)}}{(1-e^{q \cdot })^{i+n}} b_{n+1} \\ a_{1}^{(0)} &= \sum_{q=1}^{\infty} b_{n1}^{i} z_{1}^{m(n+1)} z_{2}^{i+1} C_{n1}^{i} \frac{a_{m(n-1)}}{n1} \\ b_{i}^{(0)} &= \sum_{n=2}^{i+1} \frac{m}{n+1} C_{i-1}^{i+n+1} z_{1}^{i-n+1} \left(\frac{1}{R}\right)^{n-1} b_{n} \end{split}$$

В. Н. Лозинский

$$0,$$
если $j = 1$
1, если $j > 1$

Система (11) оказывается квазирегулярной при любой близости рассматриваемых контуров, что устананливается таким же образом, как в работе [2]. В связи с этим ее можно решать методом редукции. Знание коэффициентов $c_1, d_k, a_k, 3_k$ позволяет определить функции $\varphi(z)$ и $\varphi(z)$, через которые компоненты второго поля напряжений выражаются так:

$$\overline{z}_{y} - \overline{z}_{z} + 2i \overline{z}_{xy} = 2[\overline{z} \varphi''(z) + \psi'(z)]$$
(12)

Полное поле напряжений и пластинке получается путем суммирования напряжений (7) и (12).

В качестве примера рассмотрена круглая пластинка с четырымя отверстиями. При этом R = 10, а расстояние *d* варьировалось (смтабл. 1). Вычисления проводились на ЭЦВМ "Минск-22". Точность полученных результатов контролировалась путем проверки граничных условий во многих точках контуров пластинки для каждого приближения.

Фиг. І.

Так, например, при расстоянии d=2 в случае свободных контуров вместо нуля радиальные напряжения в точке A получали следующие энзчения: при числе членов, удерживаемых в функциях (z) и (z), равном восьми. = 0.095, при N = 12 и 16 соответственно 0.0028 и 0.00033. При этом тангенциальные напряжения равнялись соответственно 3.311, 3.428 и 3.431.

В табл. 1 приведены значения для напряжений $=_{6}$ и = с точностью до $H = -4Gk_{1}A$ на контуре L_{1} , при этом $=_{6}$ относится к случаю, когла контуры свободны от внешних усилий, а $=_{7}$ — к случаю жестко зашемленных внутренних контуров.

Тиблица 1

d	_	0								
01	1.5	2.0	3.0	4.0	5.0	7.0	8.5	8.95		
0	0.058	0.437	+1.250	+2.043	-2.809	4.215	5.422	8,045		
15	-0.093	-0.406	+1.158	1.880	+2.571	+3.826	-4.905	7.073		
30	+0.078	-0,314	0.889	-1.413	-1.900	+2.752		- 4.664		
45	- 0.003	0.163	+0.466	+0.707	-0.918	-1.246	1,651	+1.919		
60	-0.010	-0.047	-0.072	-0.139	-0.198	-0.338	-0.153	-0.256		
75	-0.071	-0.302	-0.665	-0.989	-1.230	-1.629	-1.980	-1.498		
90	-0.205	-0.565	-1.220	-1.670	-1.936	-2.301	2.186	1.798		
105	-0.326	-0.800	-1.607	-1.962	-2.070	2.125	-1.836	-1.215		
120	-0.658	-0.999	-1.613	-1.614	-1.435	-1.033	-0.539	-0.170		
135	-1.082	-1.106	-0.905	-0.456	-0.004	0.801	-1.450	2.139		
150	-0.708	-0.439	0.695	1.363	-1.910	+2.911	-3.627	-4.244		
165	+0.542	1.819	-2.672	3,147	3.610	1,614	+5.327	-5.877		
180	- 3.420	-3.431	3.611	3,905	4.297	-5.270	5.972	6.495		

0	-0.028	-0.232	-0.434	-0.447	-0.377	-0,166	-0.050	-0.026		
15	-0.052	-0.222	-0.398	-0.389	0.300	0.060	+0.044	0.028		
30	-0.050	-0.186	-0.287	0,217	-0.076	-0.244	0.333	0.232		
45	-0.010	-0.119	-0.010	0,060	+0.272	0.705		+0.619		
60	0.005	-0.008	0.168	H. 422	+0,700	1,243	1.397	1.245		
75	+0.028	+0.170	0.504	0.820	-+-1.132	+1.746	+1.963	1.866		
90	+0.154	0.447	+0.862	+1,170	-1.464	± 2.061	+2.330	+2.295		
105	-0.413	-0,828	+1.131	+1.343	-1.566	2.077	- 2.352	-2.359		
120	1.122	1,155	1.123	+1.192	+1.330	-1.728	-1.975	-2.001		
135	+1.958	0,980	-0.654	+0.610	+0.735	L.061	- 1.277	1.308		
150	U,668	-0.038	0.264	-0,211	-0.075	0.261	+0.462			
165	-1.614	-1.503	-1.252	-1.018	-0.794	-0.397	-0.192	-0.158		
180	-3.082	-2.279	-1,692	-1.355	-1.083	-0.652	-0,442	-0.407		
							1			

На фиг. 1 даны графики распределения напряжений и т, по контуру L₁, когда d = 2 (сплошная линия) и d = 3 (пунктирная линия).

Из приведенной табл. 1 следует, что в случае свободных контуров пластинка испытывает максимальные напряжения в области точки A, которые растут по мере увеличения расстояния d.

В. Н. Лозанский

Напряжения интенсивно растут при увеличении расстояния с также в области точки B, где они принимают максимальное значение, когда контуры L_{τ} ($q = 1, 2, \dots, m$) и L_0 находятся в непосредственной близости друг от друга.

В случае жестко защемленных отверстий напряжения -, в обла сти точки A растут с уменьшением расстояния d. При увеличени расстояния d напряжения -, растут в области точки C.

Донецкий вызислительный центр АН УССР

Поступила 27 1 197

վ. Ն. ԼՈԶԻՆՍԿԻ

ՋԵՐՄՈՒԹՅԱՆ ԿԵՏԱՅԻՆ ԱՂՐՅՈՒՐԻ ԱԶԴԵՑՈՒԹՅԱՄԲ ՊԱՅՄԱՆԱՎՈՐՎԱԾ ՋԵՐՄԱՌԱՉԴԱԿԱՆ ԼԱՐՈՒՄՆԵՐԸ ԿԱՆՈՆԱՎՈՐ ԴԱՍԱՎՈՐՎԱԾ ՇՐՋԱՆԱՅԻՆ ԱՆՏՔԵՐՈՎ ԿԼՈՐ ՍԱԼՈՒՄ

Ամփոփում

Տրված է ջերմուքյան ստացիոնար կետային աղբյուրի աղդնցության մե տեանքով առաջացած ջնրմառաձգական լարումների որոշման խնդրի լուծումը կանոնավոր գատավորված շրջանային անցջիրով քուլացված կլոր տալի ճամար, առաձգականության տեսուքյան ճարթ խնդրի առաջին և երկրորդ եղրային պալմանների դեպրում։

կարումների դաշար փնարում է երկու դաշաերի դումարի աճաթով, որոնցից առաջինը որոշվում է ջերմառաձդական պոտենցիալի հավասարման մասնավոր լումման օգնուքյամբ, իսկ երկրորգը ստացվում է սալի եզրագծերի վրա այնպիսի տեղափոխությունների կամ լարումների տրման դեպթում հարք խրեգրի լումման հետևանգով, որոնը մեծությամբ հավասար և բոտ նշանի հակադիր են նախորդ դեպրում որոշվածներին։

Կատարված հն լարումների Բվային հետադոտություններ լորս անցջով սալի համար։

THERMOELASTIC STRESSES IN A RING-LIKE PLATE WITH REGULARLY SPACED CIRCULAR HOLES CAUSED BY A POINT SOURCE OF HEAT

V. N. LOSINSKY

Summary

The solution of a thermoelastic problem for a ring-like plate with regularly-apaced circular holes and a stationary point source of heat is obtained by the method of A. S. Kosmodamiansky. The results of the numerical calculations of the stressed state for a ptate with four holes when 1) all the contours are free from any loading, 2) the interior contours are rigidly fixed are presented.

58

ЛИТЕРАТУРА

- Брюханова Е. Н. Температурные напряжения в круглом цилиндре с регулярно ресположенными круглыми полостими. Прикл. механ., т. V. п. 4, 1969.
- 2. Космодаміанський О. С. Ложкін В. М. і Шалдирван В. А. Квазірегулярність вескнічовних систем у задвчах теорії пружності для пластин з круговими отворами. Докл. АН УРСР. № 3, 1970.
- 3. посмодаміанський О. С. Термооружна задача для пилівдра з порожнивами. Прикладва мехапіки, т. VIII, в 6, 1962.
- Калан Э., Паркус Г. Термоупругие вапряжения, вызываемые стационарными техпературными полями Физматтие, М., 1958.
- 5. Снеддон И. Преобразования Фурьс. ИЛ. М. 1955.