ՀԱՑԿԱԿԱՆ ՍՍՀ ԳԻՏՈՒԹՅՈՒՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОП ССР

11 նիստ նիկոս

XX. No.3. 1967

Mexaningi

C. Α. ΚΑΛΟΕΡΟΒ

РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В АНИЗОТРОПНОЙ ПОЛУПЛОСКОСТИ С ЭЛЛИПТИЧЕСКИМ УПРУГИМ ЯДРОМ

В работе [1] рассмотрена задача о напряженном состояния анизотропной полуплоскости с эллиптическим отверстием. Здесь решена задача о напряженном состояния лакой же полунлоскости в случае, когда отверстие подхрежлень упругим жаром, которое изготовлено из другого анизотронного ма: риала.

\$ 1. Рассмотрям упругую авизотропную полуплоскость с элляптическим отверстнем, полуоси которого ранны и и р. Обозначим рас-

стояние между центром отверстия и границей полуплоскости черея /, контур эллиптического отверстия через L, границу полуплоскости через L. (фиг. 1).

Пусть в отверстие без предварятельного натяжения впаяно или вклеено ядро из другого анизотрелного материала. Полуплоскость подвержена дейстрию внешних усилий, действующих ыдали от отверстия.

Определение напряженного состояния олуплоскости и ядря, как известно, приводится к нахождению 🖤 нений комллексных переменных. 🤐 (z) и 👘 (z¹) (ј = 1, 2), удовлетворяющих следующим условиям [3]:

2	$\frac{ Re[\Phi_1(z_1) - \Phi_2(z_2)] }{ P_1 - 2\operatorname{Re}[\Psi_1(z_1) - \Psi_2(z_2)] }$			
2	$\mathbb{R}e\left[\mu_{1}\Phi_{1}\left(\boldsymbol{z}_{1}\right)+\mu_{2}\Phi_{2}\left(\boldsymbol{z}_{1}\right)\right] = 2\mathbb{R}e\left[\mu_{1}^{1}\Psi_{1}\left(\boldsymbol{z}_{1}^{1}\right)+\mu_{2}^{1}\Psi_{2}\left(\boldsymbol{z}_{2}^{1}\right)\right] = 0$	на	L	
2	$\operatorname{Re}\left[p_{1}\Phi_{1}\left(z_{1}\right)+p_{2}\Phi_{2}\left(z_{1}\right)\right]=-1_{0}+2\operatorname{Re}\left[p_{1}^{\dagger}\Psi_{1}\left(z_{1}^{\dagger}\right)+p_{1}^{\dagger}\Psi_{2}\left(z_{1}^{\dagger}\right)\right]$		(1.2)	
2	$\frac{2\operatorname{Re}[q_1\Phi_1(z_1) + q_2\Phi_2(z_2)]}{2\operatorname{Re}[q_1W_1(z_1) + q_2\Phi_2(z_2)]} = \frac{2\operatorname{Re}[q_1W_1(z_1) - q_2\Psi_2(z_2)]}{2\operatorname{Re}[q_1W_1(z_1) + q_2\Phi_2(z_2)]}$			

Здесь /и (1 1, 2) - функции, характеризующие загружения сплошной полуплоскости; и, и 🐘 – проежции смещения в сплошной

Û

Здесь и « дальнейшем величины с индексом 1 посрху относится к ядру, а Сез индексов-к полуплоскости. 14

полуплоскости, возникшие под действием внешних усилий; р. и комплексные параметры для полуплоскости и ядра, их булем в дальнейшем считать чисто минмыми, т. е. $p_1 = ip_1$, $p_2 = ip_2$, $p_3 = ip_2$; наконец, постоящие *p*, и *q*; определяются но следующим формулам[3]:

$$p_{1} = a_{12} - a_{11}^{2}, \quad p_{2} = a_{12} - a_{11}^{2},$$
$$q_{1} = i \left(a_{12}\beta - \frac{a_{22}}{\beta} \right), \qquad q_{2} = i \left(a_{12}\beta - \frac{a_{22}}{\beta} \right),$$

Параметры p_1^{\dagger} и q_1^{\dagger} получаются из p и $q_{..}$ если заменить в последних a_{ik} , p и 4 на a_{ik} , ²¹ и . Коз 1 идненты и a_{i1}^{\dagger} упругие постоянные соответственно полуплоскости ядра.

Функции $\Phi_i(z_i)$ определены о областях S, получаемых из заданной области путем использивания аффинных преобразований вида $z_i = x$ (4.9). В этих областях будем иметь полуплоскости с эллиятическими отверстиями, полуоси которых будут соответственно $a_i = a_i$ (b. При этом расстояния от центров эллинсов до границ полуплоскостей не изменяются и будут разны l_i Функции же $\Pi_j(z_j)$ определены и голоморфны в эллипсах, полтч смых из заданного эллинса аффинными преобразованиями = $u_j u_i$.

Функции Ф. (2.) будем искать в виде

$$\Phi_{c}(z_{1}) = \Phi_{cl}(z_{1}) + \Phi_{cl}(z_{1}) \tag{1.3}$$

сде Ф_и(z,) функция, голохорфяв - в нижних полуплоскостих, а Фи — вне контуров залист ското и регио в областах S₁. П следние представим так:

$$\Phi_{11}(z_1) = \sum_{k=1}^{\infty} \frac{a_k}{\left[\zeta_1(z_1) \right]^k}, \qquad \Phi_{21}(z_2) = \sum_{k=1}^{\infty} \frac{b_k}{\left[\zeta_2(z_2) \right]^k}$$
(1.4)

Здесь а и b произвольные комплексные постоянные, подлежащие определению, $z = z_i - l$, а связаны с следу-щими неянными зависимостями:

$$z_1 = m_0 z_1 - \frac{m_1}{z_1}$$
 $z_1^* - n_1 z_1 - \frac{n_1}{z_2}$ (1.5)

При этом

$$m_{i} = \frac{a - 3b}{2}, \quad m_{i} = \frac{a - 3b}{2}, \quad n_{i} = \frac{a - 3b}{2}, \quad n_{i} = \frac{a - 3b}{2}$$
(1.6)

Из граничных условий (1.1) годов г. И. Мускелишанли (5) вайдем Распределение нап

$$\Phi_{10}(z_{1}) = \sum_{i=1}^{n} \left\{ \frac{l_{1}\vec{b}_{i}}{\left[\bar{\zeta}_{1}(z_{1}^{*})\right]^{k}} \pm \frac{l_{2}\vec{b}_{i}}{\left[\bar{\zeta}_{2}(z_{1}^{*})\right]^{k}} \right\}$$
(1.7)
$$\Phi_{10}(z_{1}) = \sum_{i=1}^{n} \left\{ \frac{l_{1}\vec{b}_{i}}{\left[\bar{\zeta}_{1}(z_{2}^{*})\right]^{k}} \pm \frac{l_{1}\vec{b}_{i}}{\left[\bar{\zeta}_{2}(z_{2}^{*})\right]^{k}} \right\}$$

где

$$l_1 = \frac{9-5}{3-5}, \qquad l_2 = \frac{25}{9-5}, \qquad l_2 = \frac{-2\beta}{-5}$$

Функции [4(z')]⁻¹ можно разложить внутри вллипсов в областях S₁ в сходящиеся ряды по излиномам Фабера [4]

$$\left[\overline{\zeta_{1}}(z_{f}^{*})\right]^{-k} = \sum_{k=0}^{\infty} A_{k}^{(j)} P_{j}(z_{f}^{*}), \qquad \left[\overline{\zeta_{2}}(z_{f}^{*})\right]^{-l} = \sum_{k=0}^{\infty} B_{kl}^{(j)} P_{jl}(z_{f}^{*})$$
(1.8)

Через Р. (2) здесь обозначены полиномы Фабера для эллипсов в областях S). Они связаны с - иг стыми залисимостями:

$$P_{\mathcal{U}}(z_1) = z_1^{\ell} + \frac{m^{\ell}}{z_1^{\ell}}, \quad P_{\mathcal{U}}(z_1) = z_2^{\ell} - \frac{n^{\ell}}{z_2^{\ell}}, \quad \left(m = \frac{m_1}{m_0}, \quad n = \frac{m_1}{n_0}\right) \quad (1.9)$$

Теперь функции $\Phi_i(z_j)$ в области сходимости разложений (1.8) примут вид:

$$\Phi_{1}(z_{1}) = \sum_{k=1}^{\infty} \left[\frac{a_{k}}{z_{1}} - \sum_{i=1}^{\infty} (l_{1} \mathcal{A}_{k}^{(1)} \overline{a}_{k} - l_{2} B_{ki}^{(1)} \overline{b}_{k}) P_{1i}(z_{1}^{*}) \right]$$

$$\Phi_{2}(z_{2}) = \sum_{k=1}^{\infty} \left[\frac{a_{k}}{z_{2}} - \sum_{i=1}^{\infty} (l_{1} \mathcal{A}_{ki}^{(1)} \overline{a}_{k} - l_{1} B_{ki}^{(2)} \overline{b}_{k}) P_{2i}(z_{2}^{*}) \right]$$

$$(1.10)$$

Функции ¹¹/ (z¹) голоморфиы и эллинсах, получаемых из данного вллипса путем использования аффиниых преобразований z¹ к ¹⁵/у. Поэтому их можно представить в виде рядов

$$\Psi_{1}(z_{1}^{i}) = \sum_{k=1}^{\infty} c_{k} P_{ik}^{i}(z_{1}^{i}), \qquad \Psi_{2}(z_{1}^{i}) = \sum_{k=1}^{\infty} d_{k} P_{ik}^{i}(z_{1}^{i}) \qquad (1.11)$$

где

$$P_{1k}^{1}(z_{1}^{1}) = z_{1}^{k} - \frac{(nz^{1})^{k}}{z_{1}}, \qquad P_{2k}^{1}(z_{2}) = z_{2}^{k} + \frac{(n^{1})^{k}}{z_{2}^{2}}$$
(1.12)

При этом :, связаны с z¹ с помощью неявных записимостей

$$z_{1}^{1} = m_{0}^{1*} + \frac{m_{1}^{1}}{z_{1}} + z_{0}^{1} - n_{0}^{1} z_{2} + \frac{n_{1}^{1}}{z_{2}} + (1.13)$$

Если теперь подстапить в граничные условия (1.2) выражения (1.10) и (1.11), то применением известного метода рядон для определения постоянных a_1 , b_4 , c_5 , d_5 получим следующум бесконечную алгебранческую систему:

$$a_{1} = b_{1} - [(m^{1}) - 1] c_{k} - [(n^{1}) - 1] d_{1} - \sum_{p=1}^{n} [(1 - m^{2} A_{pk}^{(1)} - l_{3}n^{2} A_{pk})a_{-} - (l_{1}A_{pk}^{(1)} - l_{3}A_{pk}^{(2)})a_{p} - (1 - m^{2} B_{pk}^{(-)})\bar{b}_{1} + (1 - l_{3}A_{pk}^{(2)})a_{p} - (1 - m^{2} B_{pk}^{(-)})\bar{b}_{1} + (1 - l_{3}A_{pk}^{(-)})a_{p} - (1 - l_{3}A_{pk}^{(-)})\bar{b}_{1} + (1 - l_{3}A_{pk}^{(-)})\bar{b}_{2} - (1 - m^{2} A_{pk}^{(0)})\bar{b}_{p} + (1 - m^{2} A_{pk}^{(0)})\bar{b}_{p} + (3 l_{3}A_{pk}^{(-)})\bar{b}_{p} + (1 - m^{2} A_{pk}^{(0)})\bar{b}_{p} + (3 l_{3}A_{pk}^{(-)})\bar{b}_{p} + (1 - m^{2} A_{pk}^{(0)})\bar{b}_{p} - \delta l_{4}n^{k}B_{pk}^{(2)})\bar{b}_{p} - (3 l_{3}B_{pk}^{(1)} - \delta l_{4}B_{pk}^{(1)})\bar{b}_{p} - \beta_{p}$$

$$p_{1}a_{1} + p_{2}b_{2} - p_{1}^{1}[(m^{1})^{*} - 1]c_{k} - p^{1}[(n^{1}) - \sum_{i} (p_{1}l_{1}m^{*}A_{p}^{i}) - A_{p}l_{1}n^{*}A_{p}^{i}] = -p_{2}l_{1}n^{*}B_{P}^{(1)}b_{2} - (p_{1}l_{2}B_{1} + p_{2}l_{3}A_{p}^{i})a_{2} - (p_{1}l_{2}m^{*}B_{p}^{i}) = -p_{2}l_{1}n^{*}B_{P}^{(2)}b_{2} - (p_{1}l_{2}B_{1} + p_{2})b_{2}$$

$$q_{1}^{*} = -q_{1}^{*} [(m^{*})^{*} + 1] c_{k} - q_{2}^{*} [(n^{*})^{*} - 1] d_{k} - \sum_{n} [(q_{1}^{*} l_{n} m^{*} A_{nk}^{*} + q_{n}^{*} l_{n} n^{*} A_{nk}^{*} + q_{n}^{*} l_{n} n^{*} A_{nk}^{*} - q_{n}^{*} l_{n} n^{*} A_{nk}^{*}] a_{k} - (q_{1}^{*} l_{n} n^{*} B_{nk}^{*} - q_{n}^{*} l_{n} n^{*} B_{nk}^{*} - q_{n}^{*} l_{n} n^{*} B_{nk}^{*}] b_{k} - (q_{1}^{*} l_{n} B_{nk}^{*} - q_{n}^{*} l_{n} n^{*} B_{nk}^{*}] b_{k} = a_{k}$$

где

9: - - 19:

Производя над системой (1.14) некоторые алгебраические преобразования, завишем ес в ище

$$a = \sum_{i=1}^{\infty} [(t_{11} - t_{12}A_{ik})a_{i} - (t_{13}A_{i}^{(1)} - t_{14}A_{ik})a_{i} - (t_{13}B_{i}^{(1)} - t_{14}B_{ik}^{(1)})a_{i} - (t_{13}B_{i}^{(1)} - t_{14}B_{ik}^{(1)})b_{i}] = x^{2}$$

$$(1.15)$$

$$b_{k} = \sum_{i=1}^{\infty} [(t_{i1}A_{p^{k}} - A_{p^{k}}^{(1)})a_{i} - (t_{i1}A_{p^{k}})a_{i} - (t_{i1}A_{p^{k}})a_{i}]$$

$$(t_{23}B_{pk}^{(1)} + t_{s}B_{s}^{(1)} \bar{b}_{\rho} + (t_{s}B_{pk}^{(1)} + t_{2k}B_{pk}^{(2)}) \bar{b}_{\rho}] = \mathfrak{I}_{k}^{*}$$

$$c_{k} = \frac{1}{1_{k}} + \sum_{k=1}^{\infty} [(s_{21}A_{s}^{(1)} + s_{2k}A_{s}^{(2)})a_{s} - (s_{13}A_{pk}^{(1)} + s_{2k}A_{pk}^{(2)})a_{s} - (s_{12}B_{pk}^{(1)} + s_{2k}B_{pk}^{(2)})\bar{b}_{\rho}] \qquad (1.16)$$

$$d_{k} = \mathfrak{I}_{k}^{*} + \sum_{p=1}^{\infty} [(s_{21}A_{pk}^{(1)} - s_{22}A_{pk}^{(2)})\overline{a}_{p} - (s_{23}A_{pk}^{(1)} - s_{24}A_{pk}^{(2)})a_{p} - (s_{23}B_{pk} - s_{23}B_{pk})b_{\rho}]$$

Постоянные 3° , γ° , 5° зависят от праных частей системы (1.14) и от упругих постоянных полуплоскости и ядра. Коэффициенты же t_{in} и s_{in} (i = 1, 2; n = 1, 2, 8) зависят только от упругих постоянных полуплоскости и ядра.

Учитывая, что коэффициенты t_{in} остаются ограниченными при $k \to \infty$, можно доказать так же, как и в работе [2], что система (1.15) является квазирегулярной. Поэтому ее можно решать метолом редукции.

После определения из системы (1.15) коэффициентов b функции Ф₁(2) становятся известными. Через них напряжения, возникающие в полуплоскости, выражаются следующим образом:

$$\sigma_{x} = \sigma^{0} - 2 \operatorname{Re} \left[\frac{9^{2} \Phi_{1} (z_{1}) + \sigma^{2} \Phi_{2} (z_{2})}{\sigma_{y} - \sigma_{y}^{0} + 2 \operatorname{Re} \left[\Phi_{1} (z_{1}) + \Phi_{2} (z_{2}) \right]}$$
(1.17)
$$\sigma_{xy} = \sigma_{xy} - 2 \operatorname{Re} \left[i \Im \Phi_{1} (z_{1}) - i \Im \Phi_{2} (z_{2}) \right]$$

Здесь э, — напряжения, возникающие в сплошной полуплоскости, а функции Ф, (z.) выражаются через так:

$$\Phi_{1}(z_{1}) = \sum_{k=1}^{\infty} \left\{ \frac{a_{k}}{(m_{1} - m_{0}\zeta_{1}^{2})\zeta_{1}^{k-1}} - \frac{l_{1}\overline{a}_{k}}{(m_{1} - m_{0}\zeta_{1}^{2})\zeta_{1}^{k-1}} - \frac{i_{1}l_{2}\overline{b}_{k}}{(n_{1} - n_{0}\zeta_{2}^{2})\zeta_{2}^{k-1}} \right\} (1.18)$$

где

$$\zeta_{1}(z_{1}) = \frac{z_{1} - l \pm 1}{2m_{0}} \frac{z_{1} - l}{2m_{0}} = \frac{z_{1} - l \pm 1}{2m_{0}} \frac{z_{1}}{2m_{0}}$$

$$\zeta_{1}(z_{1}) = -\frac{z_{1} - l \pm 1}{2m_{0}} \frac{(z_{1} + l)^{2} - 4m_{0}m_{1}}{2m_{0}}$$

$$\zeta_{2}(z_{1}) = -\frac{i_{1}z_{1} - l}{2n_{0}} \frac{(z_{1} - l)^{2} - 4n_{0}m_{1}}{2n_{0}}$$

$$\delta_{1} = \frac{\delta_{1}}{\beta}$$

В первом выражении знак перед радикалом следует выбрать таким образом, чтобы большим значениям соотнетствовали большие значения].

Выражение для определения $\Phi(z)$ получим на ныражения (1.18), если поменять в нем местами a_1 и b_4 , z_5 и z_2 , 3 и

Напряжения т. э. действующие на площадках, касательных и пормальных к контуру эллиптического отнерстия, нычисляются по формулам

$$\frac{1}{L^2} \left(b^2 z_x \cos^2 \theta - a^2 z_y \sin^2 \theta + 2a b z_{xy} \sin \theta \cos \theta \right)$$

$$\frac{1}{L^2} \left(a^2 z_x \sin^2 \theta + b^2 z_x \cos^2 \theta - 2a b z_{xy} \sin \theta \cos \theta \right)$$

$$z_{yy} = \frac{1}{L^2} \left[ab \left(z_y - z_x \right) \sin \theta \cos \theta + z_y \left(b^2 \cos^2 \theta - a^2 \sin^2 \theta \right) \right]$$

Эдесь

 $L^2 = a^2 \sin^2 \theta - b^2 \cos^2 \theta$

Для определения напряжений в ядре по формулам (1.16) находим сл. d_A. После определения атих коэффициентов функции — становятся известными, и напряжения вычисляются по формулам

$$\begin{aligned} z_x^1 &= -2\operatorname{Re}\left[\left(2^1\right) \Psi_1^{\dagger}(z_1^1) + (2^1)^2 \Psi_2^{\dagger}(z_2^1)\right] \\ &= 2\operatorname{Re}\left[\Psi_1^{\dagger}(z_1^1) + \Psi_2^{\dagger}(z_2^1)\right] \\ z_{xy}^1 &= 2\operatorname{Re}\left[i\beta^{1}\Psi_1^{\dagger}(z_1^1) + i\delta^{1}\Psi_2^{\dagger}(z_2^1)\right] \end{aligned}$$

Функции Ч, (z) получаются дифференцированием выражений (1.11). При этом производные от полиномов Фабера находятся по рекуррентным формулам

$$P_{j0}^{1} = 0, \quad P_{j1}^{1} = 1$$

$$P_{jk+1}^{1} = P_{jk}^{1} - z^{1} P_{jk}^{1} - z^{1}$$

Из системы (1.14) легко получить систему для определения постоянных a_k , b_i для случая, когда ядро является абсолютно жестким или абсолютно гибким. В первом случае нужно положить по всех формулах $a_i = 0$, а во втором перейти к пределу при a_i^1 . —

9. Пусть полуплоскость растягияается усилиями интенсивности р, приложенными к ней на бесконечности параллельно се границе.

В этом случае

$$a_{1} = \frac{a}{2}, \quad a_{1} = \frac{a}{2}, \quad a_{2} = \frac{a}{2}, \quad a_{2} = \frac{b}{2}, \quad a_{2} = \frac{b}{2}, \quad a_{3} = \frac{b}{2}, \quad a_{4} = 0 \quad (k \ge 2)$$

$$(2.1)$$

Для такого загружения, как видно из системы (1.141, коэффициенты a₁, b₂, c₄, d₈ получаются вещественными, и системы (1.14) и (1.15) несколько упрощаются.

При проведении расчетов было принято, что упругие постоянные для ядра пропорциональны упругим постоянным для полуплоскости, т. е.

$$a_{s}^{1} = i a_{cb} \tag{2.2}$$

Нами в широких пределах варьировались расстояние / между центром эллиптического отверстия и границей полунлоскости, а также коэффициент пропорциональности i и отвошение c - b a. Полуплоскость считалась изготовленной из различных ортотропных материалов. Все вычисления то определению напряжений запрограммированы и проподились на быстродействующей электронной вычислительной машине Урал 2. Незначительную часть проведенных расчетов приводим виже. Во всех случаях, если противное не оговорено, полуплоскость считалась изготовленной из авиационной фанеры. Для которой j = 4.11, 5 = 0.343.

В полученном нами решении граничные условия на границе полуплоскости удовлетворялись точно, а в точках L, на поверхности контакта полуплоскости и ядра -приближенно, т. к. бесконечная алгебраическая система (1.15) при проведении вычислений была урезана. Количество уравнений при ее решении варьировалось от двух до двадцати носьми, т. е. увеличивалось до тех пор, нока граничные условия на L_1 не удовлетворялись с очень яысокой точностью. Точность выполнения граничных условий в отдельных точках спая контролировалась вычислением напряжений эт в полуплоскости и a_{r1}^1 в ядре.

В табл. 1 даны значения напряжений и , действующих соответственно на площадках, касательных и нормальных к контуру кругового отверствя для разных расстояний между центром отверстия и границей полуплоскости, а на фиг. 2 изображен график распределения напряжений при 1.1*а*. Пунктирная липия на графике относится к случаю, когда иместо полуплоскости рассматривается плоскость с таким же идром. Здесь и ниже, если противное не огонорено, ядро считали изготовленным из такого материала, для которого упругие постоянные $a_{ik}^1 = 2a_{ik}$. Как видно из таблицы и графика, прямолинейная граница оказывает незначительное плияние на концентрацию напряжений.

В табл. 2 принедены значения напряжений то для разных жесткостей ядра, когда l = 1.5 a. Значение $\lambda = 0$ относится к случаю абсолютно жесткого ядра, а $\ell = \infty$ к случаю, когда ядро отсутствует. На фиг. 3, 4 наображены графики распределения напряжений то к когда $\lambda = 2$, т. с. $a = 2a_{22}$. Здесь же пунктирной и штрихпунктирной линиями проведены графики распределения этих напря-

Фиг. 4.

жения, соответствующие случаям, когда ядро абсолютно жесткое и когда ядро асболютно гибкое. Значения напряжений зу в точках перемычки (в этих точках напряжения за малы, а равны нулю) для случая абсолютно жесткого, упругого и абсолютно гибкого ядра приведены в табл. 3.

						T	аблаца /	
10 2			5	1	.1	1.05		
1.	N	2,	29	2,-	30	2,	<i>⊐4</i> ,	
-0.040	1.614	-0.039	1.620	-0.022	1.633	-0.014	1.636	
0.172	0.853	0.175	0.873	0.187	0.882	p.191	0.984	
0.595	0.265	0.599	0.272	0.610	0.283	0.612	0.283	
0.809	-0.124	0.815	-0.113	0.830	-0.098	0.831	-0.098	
0,602	0.255	0.612	0.259	0.638	0,268	0.645	0.266	
0.174	0.857	0 180	0,889	0.207	0,931	0.217	0,941	
-0.049	1.635	-0.050	1.672	-0.031	1.897	-0.019	2.079	
	2 -0.040 0.172 0.595 0.809 0.602 0.174 -0.049	2 -0.040 1.614 0.172 0.863 0.595 0.265 0.809 -0.124 0.602 0.255 0.174 0.867 -0.049 1.635	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Таблица 2

19	0			0.1		0	0.5		1	2		10		90
N	÷,	1		۶,	1	10	36	30	4	e .	24	×,	4	÷ ₀
0	0.070	0.00	20.0	060	0.129	0.290	9.568	0	1	0,039	1.620	-0.096	3.273	4.553
30	0.381	0.5	58 0 .:	364	0.582	0.305	0.666	0.250	0.750	0.175	0.873	0.016	1.215	1.491
60	1.000	0.2	17,0.9	968	0.221	0 857	0 236	0.759	0.250	0,599	0.272	0.226	0.330	0.325
90	1.299	0.0	12 1.	261	0.086	1,129	0 052	1	0	0.815	-0.114	0,333	-0,783	-2.157
120	0.969	0.2	0.0	941	0 210	0.845	0,233	0.750	0.250	0.612	0.259	0.249	0.118	0.496
150	0.366	0.5	25'0.1	351	0 555	0 300	0.655	0.250	0.750	0.180	0.880	0.028	1 116	0.971
180	0.082	0.0)3 Ŭ.	072	0,123	0.036	0.551	υ	1	-0.050	1.672	-0.126	3.733	5.959

Таблица З

1 1	Kee	ткое и	400	Улр	YFOR N.	apo	Свободное отверстие			
-	2	1.5	1.1	2	1.5	1.1	2	1.5	1.1	
0	0.965	0.733	0,224	1.046	1.143	1.640	0.675	0.557	0.215	
14 (1-1)	0.942	0.711	0.213	1.079	1 173	1.650	1.267	1.488	2.612	
12(1-1)	0,917	0.654	0,179	1.111	1 218	1.687	1.555	2.106	4.814	
34 (1-1)	0.812	0.520	0.115	1.184	1.313	1.760	2.047	2.958	7.351	
/-1	0.003	0.003	0.001	1.635	1.672	1.897	4.966	5.959	11,158	

Таблица 4

10	0.	0.2		0.5			2		5	
14	d,	54	7	4	3,	-71j	5,	08	$\bar{\tau}_{p}$	35
0	-0.006	1.892	-0.031	1 766	0.039	1.620	-0.025	1.455	-0.006	1.262
30	0.844	0.153	0.491	0.508	0,175	0.873	0.032	1.129	0.003	1.212
60	0,934	-0.033	0.813	0,071	0.599	0.272	0,298	0.571	0.055	0.919
90	0.948	-0.082	0.886	-0.117	0.815	-0.114	0.733	0,093	0.631	0.115
120	0.938	-0.042	0.822	0,565	0.612	0.259	0,310	0,562	0.061	0.893
150	0.850	0.139	0,490	0.497	0.180	0.880	0,034	1.161	0.000	1,241
180	-0.018	1.909	-0.049	1,891	0.050	1.672	-0,029	1.530	-0.006	1.385

С. У. Калоерон

						ruorunna o			
1.0	di une pac	н. утая пон-	рек волокон		CBAM				
1	0.2	1	5	0.2	1	5			
0	1 921	1.698	1.328	1.866	1_560	1.230			
30	0.118	0.792	1.212	0,129	0.994	L.194			
άθ	-0,010	0.237	0.835	-0.522	0.259	1,003			
90	-0.032	0.060	-0.030	-0.083	-0.152	0.110			
120	-0.013	0.229	0.332	-0.063	0,226	0.966			
150	0,113	0.796	1.249	0.110	0.985	1.235			
1.80	1 934	1.711	1.434	1.830	1 623	1.395			

Из таблиц и графиков индно, что подкрепление отверстия упругим или жестким ядром значительно снижает концентрацию напряжений около отверстия и в точках перемычки и изменяет картину их распределения. Особенно эффективно влияние подкрепления для близких расстояний *I*. Полуплоскость с подкрепленным отверстием, когда упругие постоянные подкрепляющего ядра меньше упругих постоянных полуплоскости, можно считать плоскостью с таким же ядром, начиная уже с расстояний между границами *L*₀ и *L*₁, равных полуоси *а.* Для полуплоскости же со свободным отверстием влияние границы *L*₀ начинается гораздо раньше, и при сближении границ *L*₁ и *L*₁ сильно возрастает концентрация напряжений в точках неремычки, близких к точкам контура отверстия.

В табл. 4 приведены значения напряжений и то и случае растяжения полуплоскости из авиационной фанеры вдоль волокон рубашки (р. 4.11, б. 0.343) для различных значений отношения полуосей вланиса, когда / 1.5a, в табл. 5 даны значения напряжений для некоторых с при растяжении полуплоскости из фанеры поперек волской рубашки (р. 0.243, 5 = 2.91) и слабоанизотропного стекловолокнистого материала CBAM (р. 1.89, 5 = 0.531). Из таблиц видио, что неличина отнощения с и анизотропия незначительно влияют на коннентрацию напряжений. Их влияние, как показывают расчеты, яначительно козрастает в случае снободного отверстия. В этом случае в сильно авизотропной полуплоскости быстро возрастают напряжения в точках перемычки вблизи от контура эллиптического отверстия, когда c < 1.

Нами вычислялись также значения напряжений то на контуре сная. Они оказались значительно меньшими по сравнению с и т и лотому их не приводим.

Саратовский государстаенный увиверситет

Постучила 30 VIII 1966

12

Ս. Ա. ԿԱԼՈԵԲՈՎ

ԼԱՐՈՒՄՆԵՐԻ ԲԱՇԽՎԱՆՐԻՐՅՈՒՆԸ ԷԼԻՊՏԻԿ ԱՌԱՉԳԱԿԱՆ ԾՎՈՐԴՎՈՏ ԳՎՈԳՉԱՆԱՄԺԻ ՔՈՉՈԶՎԱՆ ԷՐՈՑՅԵՐՈ ԹՎՈՋՎԾ

Ամփոփում

Դիտարկված է հլիպտիկ առավյական միջուկ ունեցող անդորդապ կիսահարկության լարվածալին վիճակի ինեղիրը։

արվերը դերգում է հանրահաչվական անվեր դիստեղի դունունը։ Ցուլց է արված այս որունքի թվադրություրությունը։

Մանրամամա ուսումնասիրված է լարումների րաշիվածուխյունը միջակ ունեցող կիսանանությունը միունում նրա ձգման դնպրում։

S. A. KALOEROV

DISTRIBUTION OF STRESSES IN THE ANISOTROPIC SEMI-PLANE WITH AN ELLIPTIC ELASTIC KERNEL

Summary

In this paper the strained state in the anisotropic semi-plane with elliptic kernel is considered.

The problem is reduced to the solution of an infinite system of algebraic equations. The quasi-regularity of this system is shown.

A detail analysis of the stress distribution in the semi-plane with the indicated kernel is examined.

АНТЕРАТУРА

- Космодаминиский 1. С. Упругос раввовесие внизотропной полуплоскости, ослабленной аллиптическим отверстием. Тр. Груз. полит. ин-та. № 8 (193), 1963.
- Космодамнанский А. С. Кразкрегулирность бесконскных сп. сен. в зидачах о напряженном состоянии анизотропной среды с залиптическими отверстиями. Прикх. мех., т. 1, вып. 10, 1965
- 3. Лехницкий С. Г. Анизотронные пластички. Гостехиздат, М., 1957.
- 4. Маркушевич А. И. Теория аналигических функций. Гостехиздаг, М., 1950.
- Мусхелицинан Н. И. Некоторые основные задачи математической хеорим упругости. Изд-во АН СССР. М. 1954.