Г. М. Айвазян

ОСЛАБЛЕНИЕ РАДИАЦИИ 0.4—13 µ В ЕСТЕСТВЕННЫХ ОБЛАКАХ И ТУМАНАХ*. II

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ПРОЗРАЧНОСТИ ОБЛАКОВ И ТУМАНОВ

§ 1. Результаты исследования в области 0,4-1,2 µ

В 1958 году с аппаратурой, описанной в первой части настоящей работы [1], записано около 300 спектральных распределений энергии источника в замутненной атмосфере, из которых 144 используются для выводов в настоящей работе. Каждая спектрограмма разбивалась на 25 равных частей и величина α_{λ} рассчитывалась по формуле (1) (см. [1]) для 25 значений λ , перекрывающих область спектра 500— 1100 *т*µ. В табл. 1 приведены деления барабана монохроматора и соответствующие им λ в *т*µ, для которых проводились расчеты. В дальнейшем по полученным величинам α строились кривые зависимости коэффициента ослабления от длины нолны λ .

Анализ кривых показал, что имеется большое разнообразие в характере хода кривых α_{λ} . Оказалось, что кривые α_{λ} могут меняться не только день ото дня, но и в течение дня от спектра к спектру, в то время как измеренная микроструктура не показывает существенных изменений. Одновременно с этим паблюдаются дни, когда за 1—1,5 часа ход кривой остается почти постоянным, а α_{λ} меняется только по абсолютной величине.

* Настоящая работа включает материалы отчета автора по заданию "Эльбрус"—Эльбрусская экспедиция ИПГ АН СССР, г. Нальчик, 1958. 5—243

Г. М. АПВАЗЯН

Таблица 1

Делен. барабана	<u>), в т</u> р	Делен. барабана), в <i>т</i> µ	Делен. бараблиа). в <i>т</i> р	Делен барабана	λ Β <i>Μ</i> μ
25,20	517	39,56	627	49,15	752	54,55	866
29,95	545	41.19	644	49,96	760	53.11	990
31,59	559	42,80	657	50,77	777	55,67	1045
33,13	572	44,29	683	51,53	790	56,19	1100
34.76	583	45,99	705	52,29	804		
36.30	595	47,68	728	53,14	833	-	
38,01	614	48,41	740	53,99	850		

Если облака и туманы по характеру стабильности хода кривых разбить на два класса:

 а) облака и туманы, в которых за 1—1,5 часа ход кривой остается постоянным, а абсолютная величина а_х меняется,

б) облака и туманы, в которых за 1—1,5 часа меняются как ход кривой а, так и его абсолютная величина,

то дни по этой классификации распределятся согласно табл. 2. Легко заметить, что преобладают туманы второго

Таблица 2 класса не учитывая еще то, что два дня из причисленных к I классу, можно с та-

I класс	II класс	ким же успехом отнести и ко II классу. На рис. 1 приведены кривые α _λ для
03.06.58 20.07.58 30.07.58 18.09.58 22.09.58 30.09.58	04.04.58 05.04.58 02.06.58 20.06.58 07.08.53 08.09.58 09.09.58 11.09.58 17.09.58 23.09.58	одного из дней туманов I класса. По оси абсцисс отложена длина волны в $m\mu$, а по оси ординат—а в обратных метрах (m^{-1}). Как видно из рис. 1, за 1.5 часа, ход кривых остается постоянным, а a_{λ} меняется по абсолютной величине в ин- тервале 1—2.5×10 ⁻² m^{-1} . В туманах II класса (см. рис. 2) встречяется сравнительно мало случаев, (около 20°/ ₀), когда ход кривой a_{λ} изме- няется по всей области 550—1100 m_{μ}

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 и ТУМАНАМИ. 11 67

В основном изменения наблюдаются в области 550-850 mp, что наглядно можно видеть на рис. 2, а еще лучше на рис. 3.

Таким образом, большинство кривых а, резко меняется от спектра к спектру, в то время как микроструктура среды остается почти неизменной*. Поэтому чтобы выявить радиацию, для которой облака и туманы наиболее прозрачны, необходимо обратиться к статистическому методу

* Необходимо учесть, что "поточные ловушки" не захватывают капель дизметрэм меньше 4 µ. 5*

г. М. АПВАЗЯН

обработки экспериментального материала, тем более, что наблюдаемые величины α_{λ} находятся преимущественно в сравнительно узком интервале $2-4 \times 10^{-2}$ м⁻¹.

Тогда по характеру хода спектрального коэффициента ослабления, кривые «, можно разбить на пять видов:

а) нейтральный ход ад;

б) уменьшение величины а, в коротковолновой области спектра (аномальный ход);

в) минимум кривой ал в области 750-850 mµ;

г) увеличение величины а, в коротковолновой области спектра (нормальный ход) и нейтральный ход в длинноволновой области;

ЭСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ ТУМАНАМИ. II (

д) уменьшение величины а, в коротковолносой обласги спектра и нейтральный ход в длинноволногой области.

Рассмотрим каждый из этих видов в огдельности.

а) Если принять количество обработанных спектрограмм

(144 шт.) за $100^{\circ}/_{0}$, то на кривые с нейтральным ходом α_{λ} приходится $10^{\circ}/_{0}$ спектрограмм. На рис. 4 изображены кривые α_{λ} за несколько дней. Вертикальными отрезками на каждой кривой показаны погрешности, рассчитанные согласно кривой погрешностей (см. рис. 12 [1]). Все экспериментальные точки лежат в пределах погрешности измерения, поэтому ход α_{λ} можно считать независящим от длины волны радиации.

6) Абсолютная величина α_{λ} при $\lambda = 550$ *т*р всегда мала по сравнению с $\lambda = 1100$ *т*р, а это означает, что туман более прозрачен для коротких длин волн, чем для длинных (см. рис. 5). Подобных кривых $5^{0}/_{0}$ от общего количества обработанных спектрограмм. Если дисперсия вычисляется по формуле: $Q = \left(1 - \frac{\alpha_{600}}{\alpha_{1100}}\right) \cdot 100^{0}/_{0}$ (см. [2]), то величина Q

в некоторых случаях гостигает 25-30%. Для кривых на рис. 5, величины Q меняются от 10 до 30%.

в) Кривые α_{λ} с мянимумом при $\lambda = 750 - 850 m\mu$ встречаются в 55% случаев (см. рис. 6). Для характеристики дисперсии в пределах каждой кривой рассматриваются величины $\frac{\alpha_{550}}{\alpha_{800}}$ и $\frac{\alpha_{1100}}{\alpha_{800}}$. В табл. З приведены эти значения для

21100 кривых на рис. 6. Как видно из таблицы, величины a 900

н	~350	достигают	соответственно	значений	1,88	И	2,34,	8	ЭТО
	a 890								

Таблица З

_	Дата	3.06.58 03.25	7.08.58	30-09.58 23.08	3.06.58 00.20	3.06.58 00.15	20.06.58
-	a <u>sso</u> a _{eco}	1,11	1,30	2,30	1,26	1.22	2,34
	α <u>1160</u> α ₈₀₀	1,19	1,30	1,88	1,35	1.37	1,47

означает, что при одинаковых условнях прохождения радиации через туман, радиация $\lambda = 800 \ m\mu$ в 1.88 раз лучше проходит через туман, чем радиация $\lambda = 1100 \ m\mu$ и в 2,34 раза лучше, чем радиация $\lambda = 550 \ m\mu$.

г) В области 550—750 mµ абсолютная величина α_{λ} уменьшается с увеличением λ , а начиная с $\lambda = 750$ mµ и до $\lambda = 1100$ mµ, ход α_{λ} нейтрален (см. рис. 7). Подобные кривые встречаются в 25% случаев, а отношение $\frac{\alpha_{000}}{\alpha_{800}}$ меняется от 1,2 до 4 раз.

д) Абсолютная величина α_{λ} , начиная с $\lambda = 550$ *т*µ и до $\lambda = 750$ *т*µ, увеличивается, а в области 750—1100 *т*µ ход кривой α_{λ} нейтрален (см. рис. 8). Таких кривых всего 5%

73

Рис. 8

Г. М. АГІВАЗЯН

от общего количества обработанных спектрограмм, а вели-

 α_{550} Таким образом, при работе во всей области 550—1100 *т*µ. необходимо ориентироваться на радиацию $\lambda = 750-850$ *т*µ, которая в несколько раз лучше проходит через туман, чем радиация $\lambda = 550$ и 1100 *т*µ.

Рассмотрим теперь характер хода α_{λ} в каждой из областей 550—750 mµ и 750—1100 mµ. В области 550—750 mµ кривые с нейтральным ходом встречаются в 10% случаев (вид *a*), с нормальным ходом α_{λ} —80% случаев (виды *в*, *г*) и с аномальным ходом α_{λ} —10% случаев (виды *б*, *д*), т. е. преобладают кривые с нормальным ходом α_{λ} и только в 20% случаев может иметь место аномальный и нейтральный ход. Для области 750—1100 mµ имеем: нейтральный ход α_{λ} —40% (виды *a*, *г*, *д*) и аномальный ход—60% (виды *б*, *в*). Таким образом, в области 750—1100 mµ наиболее часто встречается аномальный ход α_{λ} , и совершенно не попадаются кривые с нормальным ходом.

Остановимся теперь на вопросе совпадения экспериментальных кривых а) с теоретическими а), которые рассчитывались с привлечением микрострукгурного материала по облакам и туманам (см. тьбл. 1 [1]). Как видно из табл. 1, кривые а, измерялись в облаках и туманах со средне-квадратичным диаметром d₂. изменяющимся в интервале 5,8 µ < d₂ < 19,3 µ. Тогда, согласно нашей работе [2] (см. рис. 5), в области спектра 550-1100 ти кривые а_{кт} должны иметь аномальный или нейтральный ход, а дисперсия при аномальном ходе не должна превышать 20%. Сравнение же экспериментальных и теоретических кривых показало, что кривые сходятся лишь в 30% случаев, причем, в 15% случаев а, и алт совпадают как по величине, так и по дисперсии во всей области 550-1100 тр (см. рис. 9, 09.09.58), а в остальных 15% случаев кривые совпадают по дисперсии в области 750-1100 ти (см. рис. 9, 22.09.58), и имеется различие по абсолютной величине в области 500-750 тр. Большинство теоретических кривых

-74

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ ТУМАНАМИ. 11

(в 70% случаев) проходят выше экспериментальных, а различие по величине может доходить иногда до 15 раз. Для характеристики этого явления рассматривается отношение $\frac{\alpha_{\lambda T}}{\alpha_{\lambda}}$ при $\lambda = 750$ *m*µ. На случай, когда $\frac{\alpha_{\lambda T}}{\alpha_{\lambda}} = 1,5-2,5$ приходится $35^{\circ}/_{\circ}$ кривых (см. рис. 10, 22.09.58), а остальные $35^{\circ}/_{\circ}$

кривых распределяются: $30^{0}/_{0}$ — на случай, когда $\frac{\alpha_{\lambda T}}{\alpha_{\lambda}} = 3 - 6$ (см. рис. 10, 09.09.58) н $5^{0}/_{0}$ — на случай, когда $\frac{\alpha_{\lambda T}}{\alpha_{\lambda}} \lesssim 15$ (см. рис. 11, 04.08. 58). Таким образом, упорно прослеживается факт, что величины $\alpha_{\lambda T}$ в среднем 2—3 раза превосходят α_{λ} . Следует отметить, что подобное явление наблю-

Г. М. АПВАЗЯН

Zkr далось и в измерениях 1956 года, но тогла величины 31 не превосходили 2 раз, когда измерения проводились в туманах местного происхождения.

d= 10-2 -1 dar 5 4.5 8.09.58 21° 4 3 2.0 dat 2 22 09.58 20 1.5 1 49 600 700 500 Рис. 10.

Если сравнить адт и а, в области 750-- 1100 ти, то в 60% случаев кривые совпадают по лисперсии. хотя по абсолютной величине они отличаются в несколько раз.

Из всего вышесказанного нельзя заключить, что получено необходимое совпадение экспериментяльных данных с теоретическими. И наши результаты еще разубеждают в необходимости дальнейших исследований для выяснения причин расхождения теорин экспериментом. С Но одно лишь то, что во время экспериментальных измерений В области. 750-1100 ти не обнаружено ни одной кривой с ноомальным холом α1 (см. выше), а большин-

ство кривых с аномальным ходом совпадает по дисперсии (60%), уже говорит в пользу некоторого подтверждения выводов теории [2].

Таким образом, по вопросу ослабления радиации 0,4-1,2 и облаками и туманами можно прийти к следующим выводам:

1. В области спектра 550-750 тр облака и туманы нанболее прозрачны для радиацив λ = 750 mμ, которая в.

1,2-4 раза лучше проходит через туман, чем радиация $\lambda = 550 m\mu$.

2. В области спектра 750-1100 mµ облака и туманы наиболее прозрачны для радиации $\lambda = 750$ mµ. Причем, дисперсия аномального хода (см. [2]) может достигать $45^{0}/_{0}$.

Рис. 11

3. При выборе рабочей длины волны в области спектра 550—1100 $m\mu$ необходимо отдать предпочтение радиации $\lambda = 750 \ m\mu$, для которой туманы почти в 2 раза прозрачнее, чем для радиации $\lambda = 550$ и 1100 $m\mu$.

§ 2. Результаты исследования в области 1,5-13 µ

В 1953 году ИК спектрометром [1] записано 180 спектральных распределений интенсивности источника через об-

Г. М. АПВАЗЯН

лака и туманы, из которых 72 используются для выводов в настоящей работе. Расчеты проводились по формуле (1) (см. [1]) для 20 значений λ из диапазона 1,5—13 μ (см. табл. 4).

Таблица	4
---------	---

Делен. барабана	λвμ	Делен. барабана	λвμ	Делен. барабана	λвμ	Делен. барабана	λвμ
19,4	1.50	17.6	5,30	14.9	9,00	12,6	11.0
19,1	1,75	17,3	5,80	14.5	9,35	12.0	11,60
18,8	2,00	16.0	7,70	14,0	9,80	11.5	12.0
18.5	3,00	15.8	8,00	13.7	10,0	11,0	12,4
18,3	3,40	15.5	8,40	13.0	10,7	10,2	13,0

Величины α_{λ} рассчитывались в окнах пропускания, поэтому данных для области 5,8—7,7 µ, где имеется сильная полоса поглощения воды, у нас нет. Полученные α_{λ} использовались для построения кривых зависимости коэффициента ослабления от длины волны λ .

Как уже указывалось ранее [1], спектр от 1,5 до 13 р был разбит на две части и измерения ал проводились последовательно в областях 1,5—6 р и 7—13 р. Поэгому, для удобства рассмотрим сначала характер кривых ал в каждой из областей в отдельности.

1. В области 1,5-6 μ кривые a_{λ} встречаются двух видов: с нормальным и аномальным ходом. На долю кривых с нормальным ходом приходится $25^{\circ}/_{0}$ от общего количества рассмотренных спектрограмм (см. рис. 12). Величины $\frac{\alpha_{1,5}}{\alpha_{6,0}}$ для кривых на рис. 12 меняются от 1,63 до 2,5 раз. Кривыес аномальным ходом a_{λ} встречаются в 71°/₀ случаев (см. рис. 13). Различие между вели инами $\alpha_{1,5}$ и $\alpha_{6,0}$ большое, и отношение $\frac{\alpha_{6,1}}{\alpha_{1,5}}$ иногда достигает 4,4 раза. Таким образом, подавляющее большинство кривых имеет аномаль-

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ ТУМАНАМИ. II

ный ход α_{λ} , поэтому при работе в области спектра 1,5-6.0 μ необходимо ориентироваться на радиацию $\lambda = 1,5 \mu$.

2. В области спектра 7—13 μ кривые α_{λ} в 95% случаев имеют минимум при при $\lambda = 11-12$ μ (см. рис. 14). Постепенный спад кривой (улучшение прозрачности с увеличением λ) наблюдается во всей области 8—11 μ , а в дальнейшем, с увеличением λ значения α_{λ} резко возрастают. Хотя

Рис. 12

в некоторых случаях величины $\alpha_{12,0}$ и $\alpha_{13,0}$ отличаются друг от друга в пределах погрешности измерения, все же общая тенденция к увеличению значений α_{λ} после $\lambda = 12 \mu$ прослеживается. Для кривых на рис. 14 величины $\frac{\alpha_{8,0}}{\alpha_{12,0}}$ меняются от 1,95 до 3,9 раз. Таким образом, почти для всех.

рассмотренных спектрограмм по ослаблению радиации 8—13 μ облаками в туманами, радиация $\lambda = 11-12$ μ в несколько раз лучше проходит через туман, чем радиация -соседних длин волч.

Рис. 13

Рассмотрим теперь ослабление ИК радиации во всей области 1,5—13 μ . Для этого (см. выше) достаточно сравнить результаты одновременных измерений величин α_{λ} при $\lambda = 1,5 \mu$ и $\lambda = 12 \mu$. Анализ показал, что величины $\alpha_{1,5}$ могут быть больше или меньше величин $\alpha_{12,0}$. На случай, когда $\alpha_{1,5} > \alpha_{12,0}$ приходится 76% от общего количества кривых (см. рис. 15), т. е. подавляющее большинство, а отношение $\frac{\alpha_{1,5}}{\alpha_{12,0}}$, рассчитанное для всех кривых, может коле-

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4-13 µ ТУМАНАМИ. II 81

бяться от 1,2 до 3 раз (наиболее часто порядка двух раз).

Подводя итог экспериментальному исследованию BO всей области 1,5-13 р, следует констатировать факт, что облака и туманы наиболее прозрачны для радиации $\lambda = 11 - 12 \mu$.

Перейдем к сравнению экспериментальных кривых 🖘 ·с теоретическими алт и а, которые рассчитывались на основе измеренной микроструктуры замутнения (см. [1]). Напомним, что ал рассчитывались при помощи кривой К (р) Пендорфа (m = 1,33), а для расчетов а, использовались кривые К (ρ), построенные с учетом изменения m от λ (см. [3] рис. 6-15). На каждом рисунке (см. рис. 16-22) сплошной линией дана кривая а, пунктирной — алт и штрих-пунктирной — а.

Рассмотрим пока совпадение экспериментальных и теоретических кривых в области 8-13 µ, так как эта область, 6-243

согласно теория [3], интересна "окном прозрачности" при $\lambda = 10 - 12 \mu$ и поэтому важно знать насколько точно эксперимент подтверждает выводы теории. Для области 8-13 µ можно с уверенностью утверждать, что ход кривой а, почти всегда совпадает с a_{in}^* и нет никакого сходства с кривой a_{in} (см. рис. 16-20). Этот вывод подтверждается еще

и тем, что 95% кривых α_{λ} (см. выше) имеют минимум при $\lambda = 12 \mu$. Для большинства экспериментальных кривых характерным является то, что минимум кривых α_{λ} почти всегда смещен в сторону длинных волн и вместо $\lambda = 11 \mu$, как следовало ожидать из теории [3], приходится при $\lambda = 12 \mu$. Не будь этого смещения, мы бы имели горяздо лучшее совпадение α_{λ} и $\alpha_{\lambda \pi}^{*}$ и по величине, хотя бы в пределах погрешности измерения. Кривые $\alpha_{\lambda \pi}^{*}$ в 43% случаев совпа-

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ ТУМАНАМИ. II 83

дают с кривыми α_{λ} (см. рис. 16, 17), а в остальных 57% случаев смещены в целом по отношению к кривым $\alpha_{\lambda\tau}^*$ вверх или вниз. Причем 27% кривых α_{λ} проходят ниже $\alpha_{\lambda\tau}^*$ (см. рис. 18), и отношение $\frac{\alpha_{\lambda\tau}}{\alpha_{\lambda}}$ меняется в пределах 1,32— —2,1 раза, а 36% кривых α_{λ} проходят выше $\alpha_{\lambda\tau}^*$ (см. рис. 19) и отношение $\frac{\alpha_{\lambda}}{\alpha_{\lambda\tau}}$ изменяется от 1,3 до 2,6 раз.

Все это указывает на то, что экспериментальные измерения, правда, с некоторым приближением, подтверждают теорию ослабления радиации 8—13 µ в естественных облаках и туманах (см. [3]). А это означает, что при теоретических расчетах ослабления радиации 8—13 µ в обла-6*

Г. М. АНВАЗЯН

ках и туманах невозможно пользоваться кривой $K(\rho)$ Пенпорфа при m = 1,33, а следует применять только кривые $K(\rho)$ (см. [3] рис. 6—15), построенные с учетом изменения m от λ . Кроме того, так как функция $m(\lambda)$, используемая для расчетов кривых $K(\rho)$ в работе [3] (см. рис. 1), определена зля толщи воды, а мы получили совпадение экспериментальных кривых с теоретическими, то это прямо указывает на то, что функция $m(\lambda)$ верна и для капель воды;

Рис. 17

т е. оптические свойства воды — преломление и поглощение, не зависят от того, находится ли вода в капельном состоянии или это слой воды определенной толщины.

Если в области спектра 8—13 µ кривые а_{λт} и а_{λт} резко расходятся (см. [3]), то в области 1.5—6 µ они почти всегда совпадают. Поэтому нет неоходимости для области

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 и ТУМАНАМИ. П

1,5—6 μ рассчитывать $\alpha_{\lambda\tau}$, когда гораздо проще пользоваться кривой $\alpha_{\lambda\tau}$. Что касается совнадения экспериментальных и теоретических кривых в области 1,5—6 μ , то в 7 i⁰/₀ случаев кривые α_{λ} и $\alpha_{\lambda\tau}$ совнадают по дисперсии, хотя различие по абсолютной величине больше. Как правило, кривые

 a_{λ} проходят ниже теоретических, а отношение $\frac{a_{\lambda T}}{a_{\lambda}}$ при $\lambda = 4 \mu$ меняется от 1,74 до 3,4 раза. Здесь наблюдается та же картина, что и для области 0,4—1,2 μ , с той лишь разинцей, что в данном случае отношение $\frac{a_{\lambda T}}{a_{\lambda}}$ гораздо меньше, чем это имеется для области 0,4—1,2 μ (см. выше).

Таким образом, по ослаблению радиации 1,5—13 µ можно прийти к следующим выводам:

1. В области спектра 1,5—6.0 μ облака и туманы нанболее прозрачны для радиация $\lambda = 1,5 \mu$; по сравнению с раднацией $\lambda = 6,0 \mu$ она почти в 4 раза лучше проходит через облако или туман.

Рис. 19

2. В области спектра 8—13 μ , облака и туманы наиболее прозрачны для радиации $\lambda = 11 - 12 \mu$, которая по сравнению с радиацией $\lambda = 8,0 \mu$ в 3—4 раза лучше проходит через облако или туман.

3. При работе во всей области 1,5-13 μ необходимо ориентироваться на радиацию $\lambda = 11-12$ μ , для которой облака и туманы почти в 2 раза прозрачнее, чем для рациации $\lambda = 1,5$ μ .

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4-13 и ТУМАНАМИ. II

§ 3. Результаты исследования по всей области 0,4-13 µ

Чтобы из области 0,4—13 μ выявить радвацию с наименьшим ослаблением проходящей через облако или туман, достаточно сравнить величины одновременных изменений α_{λ} для $\lambda = 0,75$ μ и $\lambda = 12,0$ μ (см. выше). Сравнение величин $\alpha_{0.75}$ и $\alpha_{12,0}$ показало, что имеется три вида соотношений:

1. $\alpha_{0,75} > \alpha_{12,0}$, т. е. радиация $\lambda = 12,0$ µ лучше проходит через туман, чем радиация $\lambda = 0,75$ µ.

2. $\alpha_{0,75} < \alpha_{12,0}$, т. е. облака и туманы более прозрачны для радиации $\lambda = 0.75$ µ, чем для радиации $\lambda = 12.0$ µ.

3. а_{0,75}≈а_{12,0}, т. е. нельзя отдать предпочтение ни одной из длин волн.

На случай, когда $\alpha_{0,75} > \alpha_{12,0}$ приходится $34_{0,0}^{0}$ от общего количества рассмотренных кривых (см. рис. 20). Радиация $\lambda = 12,0$ µ в среднем 1,75 раза лучше проходит через туман, чем радиация $\lambda = 0,75$ µ. На случай, когда $\alpha_{0,75} < \alpha_{12,0}$ приходится $38_{0,0}^{0}$ кривых (см. рис. 21), причем, величина $\frac{\alpha_{12,0}}{\alpha_{0,75}}$ в среднем равна 4,5 раза. И, наконец, на случай, когда $\alpha_{0,75} \approx \alpha_{12,0}$ приходится $28_{0,0}^{0}$ из рассмотренных кривых (см. рис. 22).

Как показывают результаты сравнения, нам не удалось обнаружить существенного превосходства ИК лучей ($\lambda = 11 - 12 \mu$) над "видимым" светом ($\lambda = 0.75 \mu$). Наоборот, в некотором смысле преимущество даже склоняется на сторону радиации $\lambda = 0.75 - 0.85 \mu$.

Остановимся теперь на сравнении наших результатов с результатами других авторов. Как указывалось в первой части настоящей работы [1], существует сравнительно мало работ (из исследований 30—40-х гг.), в которых совместно с измерениями «», определялась микроструктура замутнения. В тех же работах, где она и определялась, применялись примитивные методы забора проб, что не могло в сильной степени не исказить истинную картину распределения. Если к этому еще добавить, что измерения «», проводились в различных по структуре туманах и с различной аппаратурой, то станет ясно, что очень трудно среди немногих, по-

г. м. айвазян

Рис. 20

Рис. 21

88

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ ТУМАНАМИ. II

рою противоречащих друг другу работ* выделить факты, подтверждающие или отрицающие наши выводы.

Однако за последнее время появилась работа Арнульфа, Брикарда и др. [4], представляющая, без сомнения, интерес. Авторы измеряли прозрачность туманов инфракрасным спектрометром для избранных длин волн в интервале 0,4—10 µ. Одновременно с измерением а, они брали пробы тумана на паутину и микрофотографированием определяли концентрацию и распределение капель по размерам. По распределениям, приведенным на рис. 11, можно заключить, что их распределения ненамного отличаются от наших.

Кривые α_{λ} [4] в ИК области спектра построены по двум точкам $\lambda = 3,7 \mu$ и $\lambda = 10 \mu$ (см. рис. 9 и 10), поэтому мы лишены возможности сравнить результаты по ходу кривых α_{λ} . Если же сравнить величны α_{λ} для $\lambda = 3,7 \mu$ и $\lambda = 10 \mu$, то наши результаты полностью совпадают с результатами работы [4], т. е. что радиация $\lambda = 10 \mu$ всегда лучше проходит через облако или туман, чем радиация $\lambda = 3,7 \mu$. В области спектра 0,4—1,0 μ кривые α_{λ} [4, 5] всегда имеют нейтральный ход, тогда как у нас большинство кривых имеет минимум при $\lambda = 0,75 - 0,85 \mu$. Что касается сравнения величин α_{λ} при $\lambda = 0,75 \mu$ и $\lambda = 10 \mu$, то в 17% случаев, в работе [4] (см. рис. 9), облака и туманы прозрачнее для радиации $\lambda = 10 \mu$, а в 11% (см. рис. 10), случаев величи-

[•] В последние годы много работ посвящено прозрачности слабой дымки и почти нет работ по прозрачности туманов.

ны $\alpha_{0,75}$ и $\alpha_{10,0}$ равны или рознятся не на много. Авторы не указывают каков же ход α_{λ} для остальных 72^{0} случаев. Об этом можно судить из начала статьи, где авторы указывают, что обнаружили рост пропускання дымки с увеличением длины волны от видимой части спектра к $\lambda = 10$ µ и, что подобный рост не обнаружен для туманов. Таким образом и в работе [4] вопрос о том, имеет ли вообще преимущество ИК радиация перед "видимым" светом при прохождении радиации через туман, остается открытым.

заключение

Основное, что удалось нам показать в результате проведенной экспериментальной работы, это то, что эксперимент, правда, с некоторым приближением, подтверждает теорию ослабления радиации 8—13 μ в естественных облаках и туманах. Гораздо лучшие результаты, очевидно, можно было получить при наличии материала не одного, а многих лет наблюдений. Кроме того, в своих измерениях мы были ограничены дистанцией 100 ж и все выводы относятся к туманам слабой или в основном средней плотности. Для этих условий достоверным является тот факт, что из области спектра 1,5—13 μ туманы наиболее прозрачны для радиации $\lambda = 12 \mu$. Нерешенным, по нашему мнению, следует считать вопрос имеет ли вообще преимущество радиации $\lambda = 10-12 \mu$ перед радиацией $\lambda = 0,75 \mu$ при прохождении через облако или туман^{*}.

В заключение автор пользуется случаем выразить свою искреннюю благодярность руководителю работы проф. Г. К. Сулаквелидзе, за внимание и поддержку при выполнении задания; проф. С. Ф. Родионову и канд.-физ. мат. наук Е. И. Бочарову—за ряд ценных советов; канд. тех. наук Л. М. Левину — за организацию микроструктурных измерений на трассе и внимание к работе; канд. физ.-мат. наук О. Д. Бартеневой — за предоставленный для наблю-

* В ближайшее время автор опубликует работу, в которой практически решается этот вопрос: о преимуществе ИК лучей перед "видимым" светом можно говорить только для определенных с среды.

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ ТУМАНАМИ. II 91

дений "Звездный фотометр" ГГО; инженеру С. М. Айвазяну, ст. лаборантам В. И. Шипаеву, А. И. Яковлеву и О. В. Вартазарову—за участие в накоплении и в обработке оптического и микроструктурного материала.

Հ. Մ. ԱՑՎԱԶՑԱՆ

ԲՆԱԿԱՆ ԱՄՊԵՐՈՒՄ ԵՎ ՄԱՌԱԽՈՒՂՆԵՐՈՒՄ 0,4—13 բ ՃԱՌԱԳԱՅԹՄԱՆ ԹՈՒԼԱՑՈՒՄԸ․ II. ԱՄՊԵՐԻ ԵՎ ՄԱՐԱԽՈՒՂՆԵՐԻ ԹԱՓԱՆՑԻԿՈՒԹՅԱՆ ԻՔՍՊԵՐԻՄԵՆՏԱԼ ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐԸ

Ամփոփում

Հոդվածում բերվում են ամպերի և մարախուղների խափանցիկու կան էջսպերիմենտալ հետաղոտու կունների արդլունջները 0,4—13 և ճառադալ կման համար, մե խոդիկալով և ապարատուրալով, որը նկարադրված է այս աշխատու կան առաջին մասում (ահա էջ 39)։

Եզրակացություն անելու համար, ներկա հոդվածում օգտագործվել են մառախուղում ճառագալթնման սպեկտրալ ինտենսիվության 144 գրանցում՝ սպեկտրի 0,4—1,2 և սահմանում և 72 գրանցում՝ սպեկտրի 1,5—13 և սահմանում։ Հետաղոտությունների արգյուն ջները կարելի է հանգեցնել հետևլալին.

1. Սպեկտրի 550—750 mp սահմանում ամպերը և մառաիսուղները ավելի Թափանցիկ են $\lambda = 750$ mp ճառագայխման համար, որը 1,2-ից մինչև 4 անգամ ավելի լավ է անցնում մառաիսուղի միջով, ջան $\lambda = 550$ mp ճառաղայխումը։

2. Սպեկտրի 750—1000 mչ սահմանում ամպերը և մառաիսուղները ավելի թափանցիկ են $\lambda = 750$ mչ ճառագալինման համար։ Անոմալ դիսպերսիան կարող է հասնել 45%.

3. Սպեկտրի 750—1000 mչ սահմանտոմ 60º/₀-ի դեպքում, տեսական կորադիծը համընկնում է էջսպերիմ ենաալ ա հետ, այն ժամանակ, նրբ ըստ բացարձակ մեծության, տարբերությունը հասնում է մինչև մի քանի անդամի։

4. Սպեկտրի 1,5–6 և սահմանում տմպերը և մառախուղները ավելի Թափանցիկ հն և = 1,5 և ճառագալԹման համար, և = 6 և ճառագալԹման համեմատուԹլամբ նա 4 անգամ ավելի լավ է անցնում մառախուղի միջով։

г. м. айвазян

6. Մառախուղներում ինֆրակարմիր ճառազալիժման թուլացման տեսական հաշվարկման ժամանակ, հարկավոր է օգտվել միալն К(բ) կորագծերով, որոնչը կառուցված են հաշվի առնելով m-ի փոփոխութլունը չ-ից։

7. Իսկ b B b քննարկեն ճառագալինան Թուլացումը ամրողջ 0,4—13 μ սահմանում, չենք կարող ասել, Թև մեզ հաջողվեց հայտնաբերել ինֆրակարմիր ($\lambda = 11-12 \mu$) ճառագալԹների էական դերաղանցուԹյուն՝ կարմիր ($\lambda = 0,75 \mu$) լուլսի հանդեպ։ Անցման պալմանները համարլա Թե հավասար են։

ЛИТЕРАТУРА

- Айвазни Г. М. Ослабление радиации 0,4—13 µ в естественных облаках и туманах. I (настоящий сборник стр. 39).
- 2. Айвазян Г. М. К вопросу ослабления радиации 400—1000 *т*µ в полкдисперсных облаках и туманах (настоящий сборник, стр. 3).
- 3. Айвазян Г. М. Теоретический расчет спектрального коэффициента ослабления радиации 1,5—15 µ в полидисперсных облаках и туманах с учегом изменения комплексного показателя преломления ст длины волны радиации (настоящий сборник, стр. 15).
- 4. Arnulf A., Bricard J., Cure E., Veret C. JOSA, 47, No 6, 491, 1957.
- 5. Бочаров Е. И. Известия АН СССР, серия геофизическая. 5, 678, 1958.