Г. М. Айвазян

ОСЛАБЛЕНИЕ РАДИАЦИИ 0,4—13 µ В ЕСТЕСТВЕННЫХ ОБЛАКАХ И ТУМАНАХ*. II

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ПРОЗРАЧНОСТИ ОБЛАКОВ И ТУМАНОВ

§ 1. Результаты исследования в области 0,4-1,2 µ

В 1958 году с аппаратурой, описанной в первой части настоящей работы [1], записано около 300 спектральных распределений энергии источника в замутненной атмосфере, из которых 144 используются для выводов в настоящей работе. Каждая спектрограмма разбивалась на 25 равных частей и величина α_{λ} рассчитывалась по формуле (1) (см. [1]) для 25 значений λ , перекрывающих область спектра 500—1100 m_{μ} . В табл. 1 приведены деления барабана монохроматора и соответствующие им λ в m_{μ} , для которых проводились расчеты. В дальнейшем по полученным величинам α строились кривые зависимости коэффициента ослабления от длины волны λ .

Анализ кривых показал, что имеется большое разнообразие в характере хода кривых α_{λ} . Оказалось, что кривые α_{λ} могут меняться не только день ото дня, но и в течение дня от спектра к спектру, в то время как измеренная микроструктура не показывает существенных изменений. Одновременно с этим паблюдаются дни, когда за 1—1,5 часа ход кривой остается почти постоянным, а α_{λ} меняется только по абсолютной величине.

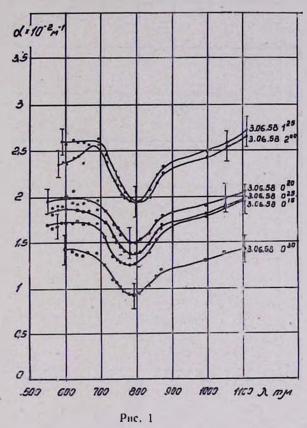
^{*} Настоящам работа включает материалы отчета автора по заданию "Эльбрус"—Эльбрусская экспедиция ИПГ АН СССР, г. Нальчик, 1958. 5—243

Делен. барабана	хв тр	Делев. барабана), в тµ	Делен. барабана	в <i>ш</i> и	Делен барабана) В тр
25.20	517	39,56	627	49,15	752	54,55	866
29,95	545	41.19	644	49,96	760	53,11	990
31,59	559	42,80	657	50,77	777	55,67	1045
33,13	572	44,29	683	51.53	790	56.19	1100
34,76	583	45,99	705	52,29	804		
36,30	595	47.68	728	53.14	833		
38,01	614	48,41	740	53,99	850		

Если облака и туманы по характеру стабильности хода кривых разбить на два класса:

а) облака и туманы, в которых за 1-1,5 часа ход кривой остается постоянным, а абсолютная величина а, меняется.

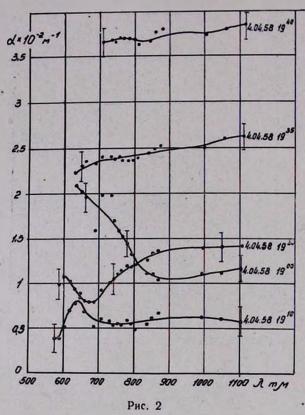
б) облака и туманы, в которых за 1-1,5 часа меняются как ход кривой ад, так и его абсолютная величина, то дни по этой классификации распределятся согласно табл. 2. Легко заметить, что преобладают туманы второго


Таблица 2 класса не учитывая еще то, что два дня из причисленных к І классу, можно с та-

няется по всей области 550-1100 тр.

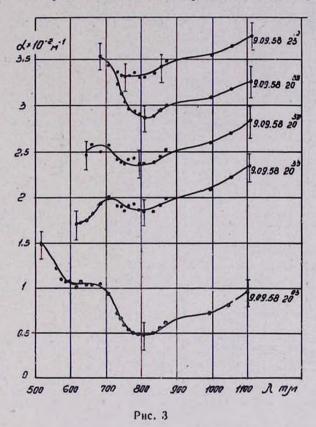
		Zio ilbitaticii dix k i kitaccy, momno c la-
I класс	II класс	ким же успехом отнести и ко II классу. На рис. 1 приведены кривые αλ для
03.06.58 20.07·58	04 · 04 · 58 05 · 04 · 58	одного из дней туманов I класса. По оси а с с цисс отложена длина волны в тр.,
30.07.58	02.06.58	а по оси ординат — а в обратных метрах
18.09.58	20.06.58	(M^{-1}) . Как видно из рис. 1, за 1.5 часа,
22-09.58	07.08.59	ход кривых остается постоянным, а ад
30.09.58	08.09.58	меняется по абсолютной величине в интервале $1-2.5\times10^{-2}$ м ⁻¹ .
	09.09.58	В туманах ІІ класса (см. рис. 2)
	11.09.58	встречяется сравнительно мало случаев,
	17.09.58 23.09.58	(около $20^{\circ}/_{\circ}$), когда ход кривой α_{λ} изме-

23.09.58

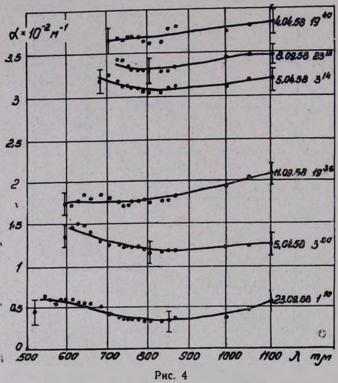

В основном изменения наблюдаются в области $550-850~m_{\rm P}$, что наглядно можно видеть на рис. 2, а еще лучше на рис. 3.

Таким образом, большинство кривых ах резко меняется от спектра к спектру, в то время как микроструктура среды остается почти неизменной*. Поэтому чтобы выявить радиацию, для которой облака и туманы наиболее прозрачны, необходимо обратиться к статистическому методу

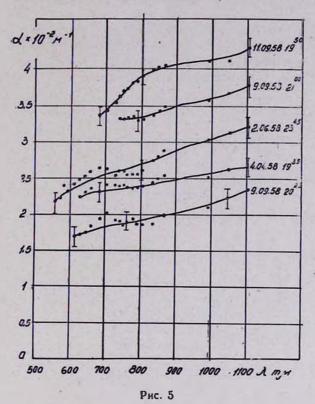
^{*} Необходимо учесть, что "поточные ловушки" не захватывают капель дизметром меньше 4 μ .


обработки экспериментального материала, тем более, что наблюдаемые величины α_{λ} находятся преимущественно в сравнительно узком интервале $2-4\times 10^{-2}$ м $^{-1}$.

Тогда по характеру хода спектрального коэффициента ослабления, кривые α_{λ} можно разбить на пять видов:

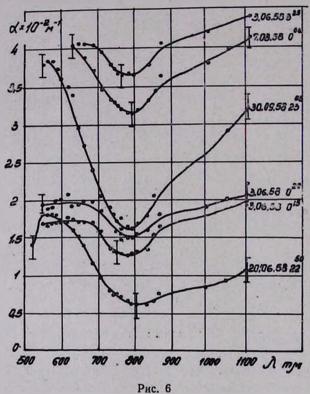

- а) нейтральный ход ах;
- б) уменьшение величины α_{λ} в коротковолновой области спектра (аномальный ход);
 - в) минимум кривой ад в области 750-850 тр;
- г) увеличение величины α_{λ} в коротковолновой области спектра (нормальный ход) и нейтральный ход в длинноволновой области;

- д) уменьшение величины ад в коротковолновой области спектра и нейтральный ход в длинноволновой области. Рассмотрим каждый из этих видов в отдельности.
 - а) Если принять количество обработанных спектрограмм


(144 шт.) за 100%, то на кривые с нейтральным ходом ах приходится 10% спектрограмм. На рис. 4 изображены кривые ах за несколько дней. Вертикальными отрезками на каждой кривой показаны погрешности, рассчитанные согласно кривой погрешностей (см. рис. 12 [1]). Все экспериментальные точки лежат в пределах погрешности измерения, поэтому ход ах можно считать независящим от длины волны радиации.

6) Абсолютная величина α_{λ} при $\lambda=550$ $m\mu$ всегда мала по сравнению с $\lambda=1100$ $m\mu$, а это означает, что туман более прозрачен для коротких длин воли, чем для длинных (см. рис. 5). Подобных кривых $5^0/_0$ от общего количества обработанных спектрограмм. Если дисперсия вычисляется по формуле: $Q=\left(1-\frac{\alpha_{600}}{\alpha_{1100}}\right)\cdot 100^0/_0$ (см. [2]), то величина Q

в некоторых случаях лостигает $25-30^{\circ}/_{\circ}$. Для кривых на рис. 5, величины Q меняются от 10 до $30^{\circ}/_{\circ}$.


в) Кривые α_{λ} с манимумом при $\lambda = 750-850$ m_{μ} встречаются в $55^{\circ}/_{\circ}$ случаев (см. рис. 6). Для характеристики дисперски в пределах каждой кривой рассматриваются величины $\frac{\alpha_{550}}{\alpha_{800}}$ и $\frac{\alpha_{1100}}{\alpha_{800}}$. В табл. 3 приведены эти значения для

кривых на рис. 6. Как видно из таблицы, величины $\frac{\alpha_{1100}}{\alpha_{900}}$ и $\frac{\alpha_{350}}{\alpha_{800}}$ достигают соответственно значений 1,88 и 2,34, а это

H						Таблица З			
	Дата	3.06.58 03.25	7.08.58 00.06	30-09.58 23.08	3-06.58 00.20	3.06.58 00.15	20.06.58 22.50		
	a ₅₅₀	1,11	1,30	2,30	1,26	1,22	2,34		
	α ₁₁₈₈ α ₈₀₀	1,19	1,30	1,88	1,35	1,37	1,47		

означает, что при одинаковых условиях прохождения радиации через туман, радиация $\lambda = 800~m\mu$ в 1.88 раз лучше проходит через туман, чем радиация $\lambda = 1190~m\mu$ и в 2,34 раза лучше, чем радиация $\lambda = 550~m\mu$.

- г) В области 550-750 $m\mu$ абсолютная величина α_{λ} уменьшается с увеличением λ , а начиная с $\lambda=750$ $m\mu$ и до $\lambda=1100$ $m\mu$, ход α_{λ} нейтрален (см. рис. 7). Подобные кривые встречаются в $25^{\circ}/_{\circ}$ случаев, а отношение $\frac{\alpha_{000}}{\alpha_{800}}$ меняется от 1,2 до 4 раз.
- д) Абсолютная величина α_{λ} , начиная с $\lambda=550$ $m\mu$ и до $\lambda=750$ $m\mu$, увеличивается, а в области 750-1100 $m\mu$ ход кривой α_{λ} нейтрален (см. рис. 8). Таких кривых всего $5^{0}/_{0}$

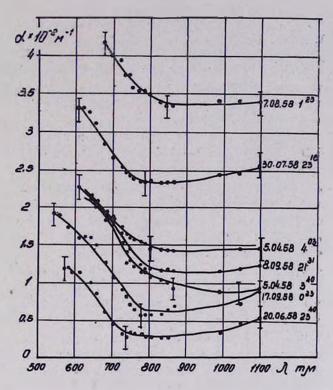


Рис. 7

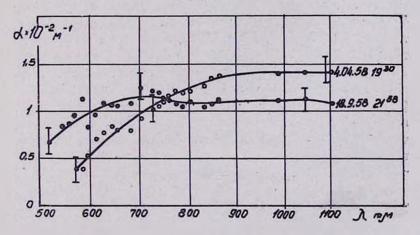
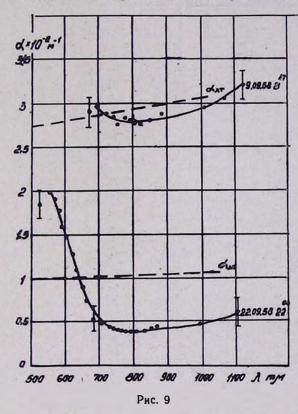
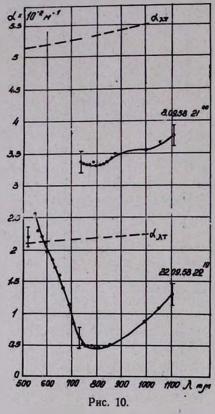


Рис. 8


от общего количества обработанных спектрограмм, а величина достигает 2,9 раза.

Таким образом, при работе во всей области $550-1100~m\mu$, необходимо ориентироваться на радиацию $\lambda=750-850~m\mu$, которая в несколько раз лучше проходит через туман, чем радиация $\lambda=550~\mu$ 1100 $m\mu$.

Рассмотрим теперь характер хода α_{λ} в каждой из областей 550-750 m_{μ} и 750-1100 m_{μ} . В области 550-750 m_{μ} кривые с нейтральным ходом встречаются в $10^{0}/_{0}$ случаев (вид a), с нормальным ходом $\alpha_{\lambda}-80^{0}/_{0}$ случаев (виды b, b), т. е. преобладают кривые с нормальным ходом a_{λ} и только в $20^{0}/_{0}$ случаев может иметь место аномальный и нейтральный ход. Для области $a_{\lambda}=100$ 0 $a_{\lambda}=100$ 0 $a_{\lambda}=100$ 0 $a_{\lambda}=100$ 0 (виды $a_{\lambda}=100$ 0) (виды $a_{\lambda}=100$ 0) (виды $a_{\lambda}=100$ 0) $a_{\lambda}=100$ 0 $a_{\lambda}=100$ 0


Остановимся теперь на вопросе совпадения экспериментальных кривых α_{λ} с теоретическими $\alpha_{\lambda T}$, которые рассчитывались с привлечением микроструктурного материала по облакам и туманам (см. тьбл. 1 [1]). Как видно из таби. 1, кривые ад измерялись в облаках и туманах со средне-квадратичным диаметром d_2 , изменяющимся в интервале 5.8 $\mu \leqslant d_2 \leqslant$ 19,3 μ . Тогда, согласно нашей работе [2] (см. рис. 5), в области спектра 550-1100 мр кривые ад должны иметь аномальный или нейтральный ход, а дисперсия при аномальном ходе не должна превышать 20%. Сравнение же экспериментальных и теоретических кривых показало, что кривые сходятся лишь в 30% случаев, причем, в $15^{\circ}/_{\circ}$ случаев α_{λ} и $\alpha_{\lambda\tau}$ совпадают как по величине, так и по дисперсии во всей области 550-1100 мр (см. рис. 9, 09.09.58), а в остальных 15°/₀ случаев кривые совпадают по дисперсии в области 750-1100 тр (см. рис. 9, 22.09.58), и имеется различие по абсолютной величине в области 500-750 тр. Большинство теоретических кривых

(в 70% случаев) проходят выше экспериментальных, а различие по величине может доходить иногда до 15 раз. Для характеристики этого явления рассматривается отношение $\frac{\alpha_{\lambda \tau}}{\alpha_{\lambda}}$ при $\lambda = 750~m\mu$. На случай, когда $\frac{\alpha_{\lambda \tau}}{\alpha_{\lambda}} = 1,5-2,5$ приходится 35% кривых (см. рис. 10, 22.09.58), а остальные 35%

кривых распределяются: $30^{\circ}/_{0}$ — на случай, когда $\frac{\alpha_{\lambda\tau}}{\alpha_{\lambda}} = 3-6$ (см. рис. 10, 09.09.58) и $5^{\circ}/_{0}$ — на случай, когда $\frac{\alpha_{\lambda\tau}}{\alpha_{\lambda}} \lesssim 15$ (см. рис. 11, 04.08. 58). Таким образом, упорно прослеживается факт, что величины $\alpha_{\lambda\tau}$ в среднем 2—3 раза превосходят α_{λ} . Следует отметить, что подобное явление наблю-

далось и в измерениях 1956 года, но тогда величины $\frac{a_{kr}}{a_{\lambda}}$ не превосходили 2 раз, когда измерения проводились в туманах местного происхождения.

Если сравнить $\alpha_{\lambda\tau}$ и α_{λ} в области 750-1100 $m\mu$, то в $60^{\circ}/_{\circ}$ случаев кривые совпадают по лисперсни, хотя по абсолютной величине они отличаются в несколько раз.

Из всего вышесказанного нельзя заключить, что получено необходимое совпадение экспериментяльных ных с теоретическими. И наши результаты еще раз**убеждают** в необходимости дальнейших исследований для выяснения. причин расхождения теоэкспериментом. Но одно лишь то, что во время экспериментальных измерений В области. 750-1100 тр не обнаружено ни одной кривой с ноомальным холом (см. выше), а большин-

ство кривых с аномальным ходом совпадает по дисперсии $(60^{\circ})_{0}$, уже говорит в пользу некоторого подтверждения выводов теории [2].

Таким образом, по вопросу ослабления радиации $0.4-1.2~\mu$ облаками и туманами можно прийти к следующим выводам:

1. В области спектра 550-750~mр облака и туманы наиболее прозрачны для радиации $\lambda = 750~m$ р, которая в

- 1,2-4 раза лучше проходит через туман, чем радиация $\lambda=550~m\mu$.
- 2. В области спектра $750-1100~m\mu$ облака и туманы наиболее прозрачны для радиации $\lambda=750~m\mu$. Причем, дисперсия аномального хода (см. [2]) может достигать $450/_0$.

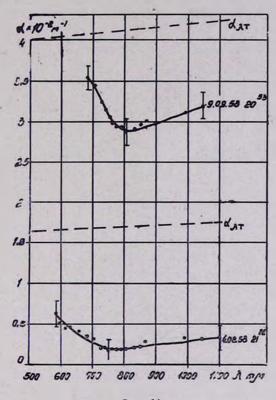


Рис. 11

3. При выборе рабочей длины волны в области спектра $550-1100~m\mu$ необходимо отдать предпочтение радиации $\lambda=750~m\mu$, для которой туманы почти в 2 раза прозрачнее, чем для радиации $\lambda=550~u$ 1 100 $m\mu$.

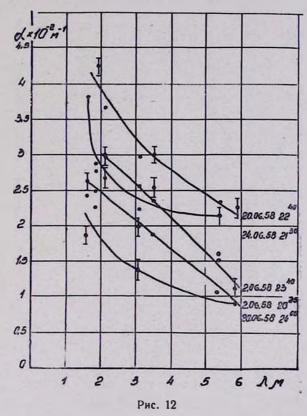
§ 2. Результаты исследования в области 1,5-13 µ

В 1953 году ИК спектрометром [1] записано 180 спектральных распределений интенсивности источника через об-

лака и туманы, из которых 72 используются для выводов в настоящей работе. Расчеты проводились по формуле (1) (см. [1]) для 20 значений λ из диапазона 1,5—13 μ (см. табл. 4).

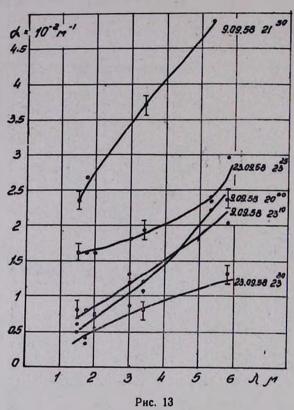
Таблица 4

Делен. барабана	λвμ	Делен. барабана	λвμ	Делен. барабана	λвμ	Делен. барабана	λвμ
19,4	1.50	17.6	5,30	14.9	9.00	12,6	11.0
19,1	1,75	17,3	5.80	14.5	9.35	12.0	11,60
18.8	2.00	16.0	7,70	14,0	9,80	11.5	12,0
18.5	3,00	15.8	8,00	13.7	10.0	11,0	12,4
18.3	3.40	15.5	8,40	13.0	10,7	10,2	13,0

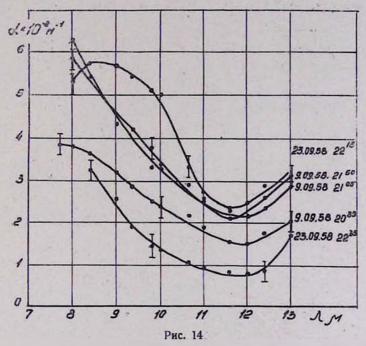

Величины α_{λ} рассчитывались в окнах пропускания, поэтому данных для области 5,8—7.7 μ , где имеется сильная полоса поглощения воды, у нас нет. Полученные α_{λ} использовались для построения кривых зависимости коэффициента ослабления от длины волны λ .

Как уже указывалось ранее [1], спектр от 1,5 до 13 μ был разбит на две части и измерения α_{λ} проводились последовательно в областях 1,5—6 μ и 7—13 μ . Поэгому, для удобства рассмотрим сначала характер кривых α_{λ} в каждой из областей в отдельности,

1. В области 1,5—6 μ кривые α_{λ} встречаются двух видов: с нормальным и аномальным ходом. На долю кривых с нормальным ходом приходится $25^{\circ}/_{0}$ от общего количества рассмотренных спектрограмм (см. рис. 12). Величины $\frac{\alpha_{1,5}}{\alpha_{6,0}}$ для кривых на рис. 12 меняются от 1,63 до 2,5 раз. Кривыес аномальным ходом α_{λ} встречаются в $71^{\circ}/_{0}$ случаев (см. рис. 13). Различие между величинами $\alpha_{1,5}$ и $\alpha_{6,0}$ большое, и отношение $\frac{\alpha_{6,1}}{\alpha_{1,5}}$ иногда достигает 4,4 раза. Таким образом, подавляющее большинство кривых имеет аномаль-

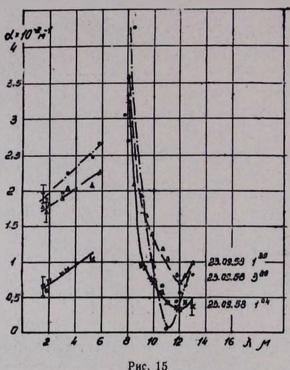

ный ход α_{λ} , поэтому при работе в области спектра $1.5-6.0~\mu$ необходимо ориентироваться на радиацию $\lambda=1.5~\mu$.

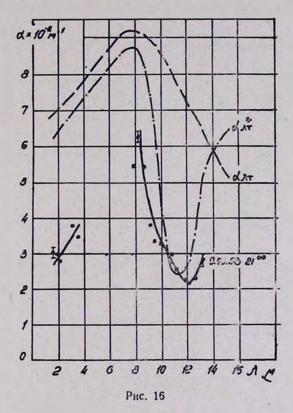
2. В области спектра 7-13 μ кривые α_{λ} в $95^{0}/_{0}$ случаев имеют минимум при при $\lambda=11-12$ μ (см. рис. 14). Постепенный спад кривой (улучшение прозрачности с увеличением λ) наблюдается во всей области 8-11 μ , а в дальнейшем, с увеличением λ значения α_{λ} резко возрастают. Хстя


в некоторых случаях величины $\alpha_{12,0}$ и $\alpha_{13,0}$ отличаются друг от друга в пределах погрешности измерения, все же общая тенденция к увеличению значений α_{λ} после $\lambda=12~\mu$ прослеживается. Для кривых на рис. 14 величины $\frac{\alpha_{8,0}}{\alpha_{12,0}}$ меняются от 1,95 до 3,9 раз. Таким образом, почти для всех

рассмотренных спектрограмм по ослаблению радиации $8-13~\mu$ облаками и туманами, радиация $\lambda=11-12~\mu$ в несколько раз лучше проходит через туман, чем радиация соседних длин волн.

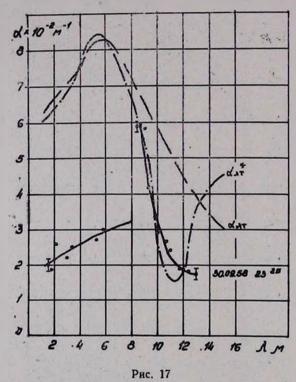
Рассмотрим теперь ослабление ИК радиации во всей области 1,5—13 μ . Для этого (см. выше) достаточно сравнить результаты одновременных измерений величин α_{λ} при $\lambda=1,5$ μ и $\lambda=12$ μ . Анализ показал, что величины $\alpha_{1,5}$ могут быть больше или меньше величин $\alpha_{12,0}$. На случай, когда $\alpha_{1,5}>\alpha_{12,0}$ приходится $76^0/_0$ от общего количества кривых (см. рис. 15), т. е. подавляющее большинство, а отношение $\frac{\alpha_{1,5}}{\alpha_{12,0}}$, рассчитанное для всех кривых, может коле-


баться от 1,2 до 3 раз (наиболее часто порядка двух раз). Подводя итог экспериментальному исследованию во всей области 1,5—13 μ , следует конствтировать факт, что облака и туманы наиболее прозрачны для радиации $\lambda=11-12~\mu$.


Перейдем к сравнению экспериментальных кривых с теоретическими $\alpha_{\lambda\tau}$ и $\alpha_{\lambda\tau}^*$, которые рассчитывались на основе измеренной микроструктуры замутнения (см. [1]). Напомним, что $\alpha_{\lambda\tau}$ рассчитывались при помощи кривой $K(\rho)$ Пендорфа (m=1,33), а для расчетов $\alpha_{\lambda\tau}^*$ использовались кривые $K(\rho)$, построенные с учетом изменения m от λ (см. [3] рис. 6-15). На каждом рисунке (см. рис. 16-22) сплошной линией дана кривая α_{λ} , пунктирной — $\alpha_{\lambda\tau}$ и штрих-пунктирной — $\alpha_{\lambda\tau}^*$.

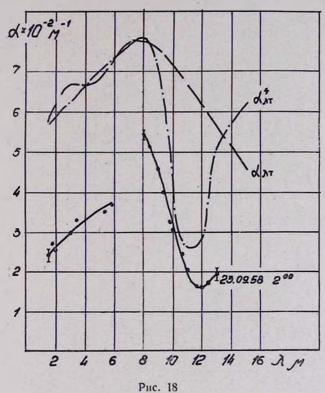
Рассмотрим пока совпадение экспериментальных и теоретических кривых в области $8-13~\mu$, так как эта область, 6-243

согласно теорин [3], интересна "окном прозрачности" при $\lambda = 10 - 12~\mu$ и поэтому важно знать насколько точно эксперимент подтверждает выводы теории. Для области 8-13 µ можно с уверенностью утверждать, что ход кривой а почти всегда совпадает с а и нет никакого сходства с кривой ал (см. рис. 16-20). Этот вывод подтверждается еще



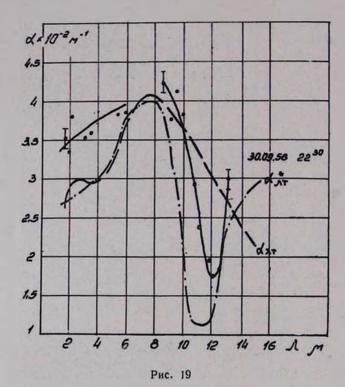
и тем, что 95% кривых ах (см. выше) имеют минимум при λ = 12 μ. Для большинства экспериментальных кривых характерным является то, что минимум кривых ад почти всегда смещен в сторону длинных волн и вместо $\lambda = 11 \, \mu$, как следовало ожидать из теории [3], приходится при $\lambda = 12 \mu$. Не будь этого смещения, мы бы имели горяздо лучшее совпадение α_{λ} и $\alpha_{\lambda_{T}}^{\bullet}$ и по величине, хотя бы погрешности измерения. Кривые а в 43% случаев совпадают с кривыми α_{λ} (см. рис. 16, 17), а в остальных $57^{0}/_{0}$ случаев смещены в целом по отношению к кривым $\alpha_{\lambda\tau}^{*}$ вверх или вниз. Причем $27^{0}/_{0}$ кривых α_{λ} проходят ниже $\alpha_{\lambda\tau}^{*}$ (см. рис. 18), и отношение $\frac{\alpha_{\lambda\tau}^{*}}{\alpha_{\lambda}}$ меняется в пределах 1,32—2,1 раза, а $36^{0}/_{0}$ кривых α_{λ} проходят выше $\alpha_{\lambda\tau}^{*}$ (см. рис. 19) и отношение $\frac{\alpha_{\lambda}}{\alpha_{\lambda\tau}^{*}}$ изменяется от 1,3 до 2,6 раз.

Все это указывает на то, что экспериментальные измерения, правда, с некогорым приближением, подтверждают теорию ослабления радиации 8—13 µ в естественных облаках и туманах (см. [3]). А это означает, что при теоретических расчетах ослабления радиации 8—13 µ в обла-6*


ках и туманах невозможно пользоваться кривой K (р) Пенлорфа при m=1,33, а следует применять только кривые K (р) см. [3] рис. 6-15), построенные с учетом изменения m от λ . Кроме того, так как функция m (λ), используемая для расчетов кривых K (р) в работе [3] (см. рис. 1), определена для толщи воды, а мы получили совпадение экспериментальных кривых с теоретическими, то это прямо указывает на то, что функция m (λ) верна и для капель воды;

т е. оптические свойства воды — преломление и поглощение, не зависят от того, находится ли вода в капельном состоянии или это слой воды определенной толщины.

Если в области спектра 8—13 μ кривые $\alpha_{\lambda\tau}$ и $\alpha_{\lambda\tau}$ резко расходятся (см. [3]), то в области 1.5—6 μ они почти всегда совпадают. Поэтому нет неоходимости для области


 $1.5-6~\mu$ рассчитывать $\alpha_{r\tau}$, когда гораздо проще пользоваться кривой $\alpha_{\lambda\tau}$. Что касается совпадения экспериментальных и теоретических кривых в области $1.5-6~\mu$, то в $71^0/_0$ случаев кривые α_{λ} и $\alpha_{\lambda\tau}$ совпадают по дисперсии, хотя различие по абсолютной величине больше. Как правило, кривые

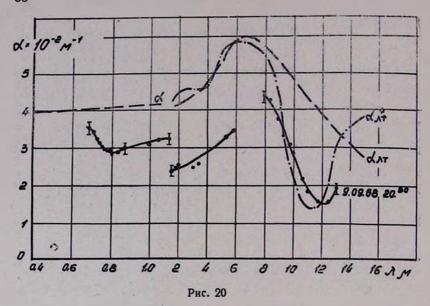
 α_{λ} проходят ниже теоретических, а отношение $\frac{\alpha_{\lambda \tau}}{\alpha_{\lambda}}$ при $\lambda=4$ μ меняется от 1,74 до 3,4 раза. Здесь наблюдается та же картина, что и для области 0,4—1,2 μ , с той лишь разницей, что в данном случае отношение $\frac{\alpha_{\lambda \tau}}{\alpha_{\lambda}}$ гораздо меньше, чем это имеется для области 0,4—1,2 μ (см. выше).

Таким образом, по ослаблению радиации 1,5—13 µ можно прийти к следующим выводам:

1. В области спектра 1,5—6.0 μ облака и туманы наиболее прозрачны для радиации $\lambda=1,5$ μ ; по сравнению с радиацией $\lambda=6,0$ μ она почти в 4 раза лучше проходит через облако или туман.

- 2. В области спектра 8-13 μ , облака и туманы наи 5олее прозрачны для радиации $\lambda=11-12$ μ , которая по сравнению с радиацией $\lambda=8,0$ μ в 3-4 раза лучше проходит через облако или туман.
- 3. При работе во всей области 1,5-13 μ необходимо ориентироваться на радиацию $\lambda=11-12$ μ , для которой облака и туманы почти в 2 раза прозрачнее, чем для радиации $\lambda=1,5$ μ .

§ 3. Результаты исследования по всей области 0,4-13 µ


Чтобы из области 0.4-13 μ выявить радвацию с наименьшим ослаблением проходящей через облако или туман, достаточно сравнить величины одновременных изменений $\alpha_{0.75}$ для $\lambda=0.75$ μ и $\lambda=12.0$ μ (см. выше). Сравнение величин $\alpha_{0.75}$ и $\alpha_{12.0}$ показало, что имеется три вида соотношений:

- 1. $\alpha_{0,75} > \alpha_{12,0}$, т. е. радиация $\lambda = 12,0$ μ лучше проходит через туман, чем радиация $\lambda = 0,75$ μ .
- 2. $\alpha_{0,75} < \alpha_{12,0}$, т. е. облака и туманы более прозрачны для радиации $\lambda = 0.75$ μ , чем для радиации $\lambda = 12,0$ μ .
- 3. $\alpha_{0,75} \!\!\approx\! \alpha_{12,0}$, т. е. нельзя огдать предпочтение ни одной из длин волн.

На случай, когда $\alpha_{0,75} > \alpha_{12,0}$ приходится $34^0/_0$ от общего количества рассмотренных кривых (см. рис. 20). Радиация $\lambda=12,0$ μ в среднем 1,75 раза лучше проходит через туман, чем радиация $\lambda=0,75$ μ . На случай, когда $\alpha_{0,75} < \alpha_{12,0}$ приходится $38^0/_0$ кривых (см. рис. 21), причем, величина $\alpha_{0,75} = \alpha_{12,0}$ в среднем равна 4,5 раза. И, наконец, на случай, когда $\alpha_{0,75} \approx \alpha_{12,0}$ приходится $28^0/_0$ из рассмотренных кривых (см. рис. 22).

Как показывают результаты сравнения, нам не удалось обнаружить существенного превосходства ИК лучей ($\lambda=11-12~\mu$) над "видимым" светом ($\lambda=0.75~\mu$). Наоборот, в некотором смысле преимущество даже склоняется на сторону радиации $\lambda=0.75-0.85~\mu$.

Остановимся теперь на сравнении наших результатов с результатами других авторов. Как указывалось в первой части настоящей работы [1], существует сравнительно мало работ (из исследований 30—40-х гг.), в которых совместно с измерениями а, определялась микроструктура замутнения. В тех же работах, где она и определялась, применялись примитивные методы забора проб, что не могло в сильной степени не исказить истинную картину распределения. Если к этому еще добавить, что измерения а, проводились в различных по структуре туманах и с различной аппаратурой, то станет ясно, что очень трудно среди немногих, по-

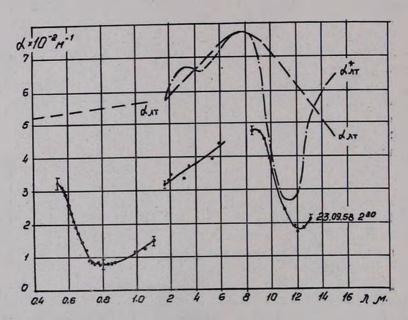
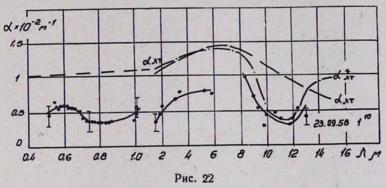



Рис. 21

рою противоречащих друг другу работ* выделить факты, подтверждающие или отрицающие наши выводы.

Однако за последнее время появилась работа Арнульфа, Брикарда и др. [4], представляющая, без сомнения, интерес. Авторы измеряли прозрачность туманов инфракрасным спектрометром для избранных длин волн в интервале 0,4—10 µ. Одновременно с измерением ал они брали пробы тумана на паутину и микрофотографированием определяли концентрацию и распределение капель по размерам. По распределениям, приведенным на рис. 11, можно заключить, что их распределения ненамного отличаются от наших.

Кривые α_{λ} [4] в ИК области спектра построены по двум точкам $\lambda=3.7~\mu$ и $\lambda=10~\mu$ (см. рис. 9 и 10), поэтому мы лишены возможности сравнить результаты по ходу кривых α_{λ} . Если же сравнить величны α_{λ} для $\lambda=3.7~\mu$ и $\lambda=10~\mu$, то наши результаты полностью совпадают с результатами работы [4], т. е. что радиация $\lambda=10~\mu$ всегдя лучше проходит через облако или туман, чем радиация $\lambda=3.7~\mu$. В области спектра $0.4-1.0~\mu$ кривые α_{λ} [4, 5] всегда имеют нейтральный ход, тогда как у нас большинство кривых имеет минимум при $\lambda=0.75-0.85~\mu$. Что касается сравнения величин α_{λ} при $\lambda=0.75~\mu$ и $\lambda=10~\mu$, то в $17^{0}/_{0}$ случаев, в работе [4] (см. рис. 9), облака и туманы прозрачнее для радиации $\lambda=10~\mu$, а в $11^{0}/_{0}$ (см. рис. 10), случаев величи-

^{*} В последние годы много работ посвящено прозрачности слабой дымки и почти нет работ по прозрачности туманов.

ны $\alpha_{0,75}$ и $\alpha_{10,0}$ равны или рознятся не на много. Авторы не указывают каков же ход α_{λ} для остальных 72^{0} случаев. Об этом можно судить из начала статьи, где авторы указывают, что обнаружили рост пропускання дымки с увеличением длины волны от видимой части спектра к $\lambda=10$ и, что подобный рост не обнаружен для туманов. Таким образом и в работе [4] вопрос о том, имеет ли вообще преимущество ИК радиация перед "видимым" светом при прохождении радиации через туман, остается открытым.

заклю чение

Основное, что удалось нам показать в результате проведенной экспериментальной работы, это то, что эксперимент, правда, с некоторым приближением, подтверждает теорию ослабления радиации $8-13~\mu$ в естественных облаках и туманах. Гораздо лучшие результаты, очевидно, можно было получить при наличии материала не одного, а многих лет наблюдений. Кроме того, в своих измерениях мы были ограничены дистанцией $100~\mu$ и все выводы относятся к туманам слабой или в основном средней плотности. Для этих условий достоверным является тот факт, что из области спектра $1,5-13~\mu$ туманы наиболее прозрачны для радиации $\lambda=12~\mu$. Нерешенным, по нашему мнению, следует считять вопрос имеет ли вообще преимущество радиации $\lambda=10-12~\mu$ перед радиацией $\lambda=0,75~\mu$ при прохождении через облако или туман*.

В заключение автор пользуется случаем выразить свою искреннюю благодярность руководителю работы проф. Г. К. Сулаквелидзе, за внимание и поддержку при выполнении задания; проф. С. Ф. Родионову и канд.-физ. мат. наук Е. И. Бочарову—за ряд ценных советов; канд. тех. наук Л. М. Левину—за организацию микроструктурных измерений на трассе и внимание к работе; канд. физ.-мат. наук О. Д. Бартеневой—за предоставленный для наблю-

^{*} В ближайшее время автор опубликует работу, в которой практически решается этот вопрос: о пренмуществе ИК лучей перед "видимым" светом можно говорить только для определенных d_* среды.

дений "Звездный фотометр" ГГО; инженеру С. М. Айвазяну, ст. лаборантам В. И. Шипаеву, А. И. Яковлеву и О. В. Вартазарову—за участие в накоплении и в обработке оптического и микроструктурного материала.

4. Մ. ԱՑՎԱԶՑԱՆ

ՔՆԱԿԱՆ ԱՄՊԵՐՈՒՄ ԵՎ ՄԱՌԱԽՈՒՂՆԵՐՈՒՄ 0,4—13 բ ՃԱՌԱԳԱՅԹՄԱՆ ԹՈՒԼԱՑՈՒՄԸ. II. ԱՄՊԵՐԻ ԵՎ ՄԱՐԱԽՈՒՂՆԵՐԻ ԹԱՓԱՆՑՒԿՈՒԹՅԱՆ ԷՔՍՊԵՐԻՄԵՆՏԱԼ ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐԸ

Ufhnhnif

Հոդվածում բերվում են ամպերի և մարախուղների խափանցիկության էջսպերիմենտալ հետազոտությունների արդյունջները 0,4—13 և ճառադայթման համար, մեխոդիկալով և ապարատուրալով, որը նկարագրված է այս աշխատության առաջին մասում (աևս էջ 39)։

Եզրակացություն անելու համար, ներկա հոդվածում օգտադործվել են մառախուղում ճառագալթման սպեկարալ ինտենսիվությում 144 գրանցում՝ սպեկտրի 0,4—1,2 և սահմանում և 72 գրանցում՝ սպեկտրի 1,5—13 և սահմանում։ Հետազոտությունների արդյունըները կարելի է հանգեցնել հետևլային.

- 1. Սպեկտրի 550—750 mp. սահմանում ամպերը և մառախուղները ավելի Թափանցիկ են \ = 750 mp. ճառագայինման համար, որը 1,2-ից մինչև 4 անգամ ավելի լավ է անցնում մառախուղի միջով, քան \ = 550 mp. ճառադալինումը։
- 3. Սպևկտրի 750—1000 mp սահմանում 60º/₀-ի դեպքում, տևսական կորադիծը համընկնում է էքսպերիմենաալ գ, հետ, այն ժա֊ մանակ, ևրբ ըստ բացարձակ մեծության, տարբերությունը հաս֊ նում է մինչև մի քանի անգամի։
- 4. Սպեկտրի 1,5 6 չ սահմանում տմպերը և մառախուղները ավելի Թաւիանցիկ են \) = 1,5 չ ճառագալԹման համար, \) = 6 չ ճառագալԹման համար կամ է անգամ ավելի լավ է անցնում մառախուղի միջով։

- 5. Սպեկտրի 8—13 և սահմանում փորձերը համոզեցուցիչ կերպով հաստատեցին տեսականորեն մեր նախագուշակած «խափանցիկության պատուհան»-ը \(\cdot\) = 10—13 և սահմանում (տես էջ 15)։ \(\cdot\) = 11—12 և ճառագալխումը համարլա 2 անդամ ավնլի լավ է անցնում մառախուղի միջով, ջան \(\cdot\) = 1,5 և ճառադալխումը և 3—4 անգամ ավելի լավ, ջան \(\cdot\) = 8 և ճառագալխումը։
- 6. Մառախուղներում ինֆրակարմիր ճառազալԹման Թուլացման տեսական հաշվարկման ժամանակ, հարկավոր է օգտվել տ-ի փոփոխուԹլունը .-ից։
- 7. Իսկ եթե քննարկեն ճառագալիման թուլացումը ամբողջ $0.4-13\,\mu$ սահմանում, չենք կարող ասել, թե մեզ հաջողվեց հայտերեր ինֆրակարմիր ($\lambda=11-12\,\mu$) ճառագայթների էական դերազանցություն՝ կարմիր ($\lambda=0.75\,\mu$) լուլսի հանդեպ։ Անցման պալմանները համարա թե հավասար են։

ЛИТЕРАТУРА

- 1. Айвазин Г. М. Ослабление радиации 0.4—13 µ в естественных облаках и туманах. I (настоящий сборник стр. 39).
- 2. Айвозян Г. М. К вопросу ослабления радиации 4CO—1000 mµ в полидисперсных облаках и туманах (настоящий сборник, стр. 3).
- Айвазян Г. М. Теоретический расчет спектрального коэффициента ослабления радиации 1,5—15 µ в полидисперсных облаках и туманах с учегом изменения комплексного показателя преломления от длины волны радиации (настоящий сборник, стр. 15).
- 4. Arnulf A., Bricard J., Cure E., Veret C. JOSA, 47, No. 6, 491, 1957.
- 5. Бочаров Е. И. Известия АН СССР, серия геофизическая. 5, 678, 1958.