Г. М. Айвазян

ТЕОРЕТИЧЕСКИЙ РАСЧЕТ СПЕКТРАЛЬНОГО КОЭФФИЦИЕНТА ОСЛАБЛЕНИЯ РАДИАЦИИ 1,5—15 р. В ПОЛИДИСПЕРСНЫХ ОБЛАКАХ И ТУМАНАХ С УЧЕТОМ ИЗМЕНЕНИЯ КОМПЛЕКСНОГО ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ОТ ДЛИНЫ ВОЛНЫ РАДИАЦИИ*

При теоретических расчетах ослабления инфракрасной (ИК) радиации облаками и туманами обычно пользуются кривой К(р) Стреттона и Хаутона [1], рассчитанной для области спектра 0,4-0,7 µ, т. е. при m = 1,333 (где m - комплексный показатель преломления). Однако для радиации 1.5-15 н. комплексный показатель преломления не равен 1.333, а меняется в зависимости от длины волны раднации λ и принимает значения в интервале 1,16 ≤ m ≤ 1,48. В связи с этим неизвестно, насколько правомочно использование кривой Стреттона и Хаутона для расчетов ослабления. в ИК области спектра. Может оказаться, что изменение т от 1.16 до 1,48 не сильно влияет на абсолютное значение спектрального коэффициента ослабления ад. Тогда окажется возможным в пределах точности расчета 2, на оснозе измеренной микроструктуры тумана обоснованно пользоваться. кривой К(р) Стреттона и Хаутона и для ИК области спектра.

Кроме того, рассмотрев вопрос о радиационных свойствах облаков с учетом изменения оптических свойств воды К. С. Шифрин [10] получил** для монодисперсного облака

* Работа докладывалась оптическому семинару Эльбрусской экспедиции ИПГ АН СССР 18 иоября 1958 года и вошла в окончательный отчет по заданию "Эльбрус"—Эльбрусская экспедиция ИПГ АН СССР, Нальчик, 1958.

** Расчеты проводились по точным формулам и были очень трудосмкими. с радиусом r = 6,265 и минимум коэффициента ослабления для радиации $\lambda = 11$ ч. Но это всего лишь расчет для одного радиуса капли. Поэтому важно было знать, сохранится ли этот минимум и для облака, встречающегося в естественных условиях, т. е. тогда когда среда полидисперсна с конкретным распределением капель по размерам.

Для решения поставленных задач возникла необходимость в расчете, хотя бы приближенном*, кривых $K(\rho)$ для различных *m*, соответствующих дискретным λ из диапазона 1,5—15 μ .

В настоящей работе применен метод подобия, разработанный К. С. Шифриным [2] для построения кривых $K(\rho)$ в ИК области спектра. Используя полученные кривые $K(\rho)$ и распределения капель по размерам, встречающиеся в естественных облаках и туманах, мы рассчитали спектральные коэффициенты ослабления радиации 1,5—15 μ — α_{λ}^{*} и сравнили их с аналогичными расчетами α_{λ} , только с использованием кривой $K(\rho)$ Стреттона и Хаутоня.

§ 1. Построение кривых К(р) для ИК области спектра

Поток радиации, при прохождении через облако или туман, ослабляется поглощением и рассеянием на каплях воды. Коэффициент ослабления для монодисперсного тумана [2] вычисляется по формуле:

$$=\pi r^{2} N K(\rho)$$
$$\rho = \frac{2\pi r}{r},$$

(1)

где N-число капель в единице объема

a

r - радиус капли

х — длина волны в µ

К(р) — сложная функция r и λ.

В функцию К(р) в неявной форме входит *m*. Величина *m* учытывает поглощение и рассеяние и обычно представляется в виде:

 Строгий расчет кривых К(р) для ИК области спектра связан с определенными трудностями, поэтому до сих пор еще не осуществлен. m = n (1 - ix) или m = n - ix,

где п - показатель преломления,

x — индекс поглощения.

» — показатель поглощения.

Величину *т* нельзя рассчитать теоретически, поэтому ее определяют экспериментально — непосредственным измерением *n* н ×

Функция m (λ) для воды в области спектра 1,5—15 μ (данные заимствованы из работы [3]), изображена на рис. 1. Как видно из рис. 1, кривая m (λ) резко меняется в зависимости от λ и имеет минимум при $\lambda \Rightarrow 11 \mu$ (m = 1,16).

Рис. 1. Преломление тепловой радиации водой

В последнее время детальный расчет функции $K(\rho)$ при m = 1,333 осуществлен Пендорфом [5] (см. рис. 2). Функция $K(\rho)$ представляется осциллирующей кривой, которая для больших ρ ассимптотически стремится к $K(\rho)=2$. 2—243

BUHT DEALTSHI CHANG

Но нас интересуют кривые $K(\rho)$ для m близких к единице и не равных 1,33. Для приближенного расчета $K(\rho)$ при $m \sim 1$ можно воспользоваться свойством подобия диффракционных кривых — методом подобия [2] (стр. 218—219). Метод подобия позволяет определить положение максимумов и минимумов кривых $K(\rho)$ для различных m и находить значения $K(\rho)$ в экстремумах кривых. Для ясности обратимся к методу подобия.

Как известно, для больших прозрачных капель коэффициент ослабления [2] выражается:

$$\alpha = 2\pi r^2 \left\{ 1 - \frac{4 m^2}{\rho (m+1)^2 (m-1)} \sin \left[2\rho (m-1) \right] \right\}$$
 (2)

При т~1 из формулы (2) получаем:

$$\alpha = 2\pi r^2 \left(1 - \frac{1}{\delta} \sin 2\delta \right), \qquad (3)$$

гле

$$\delta = \rho (m-1).$$

Таким образом, в случае т ~1 поведение а описывается только одним параметром с. Сведение задачи к одному независимому параметру с называется правилом подобия.

Если имеет место правило подобия, то положение максимумов и минимумов кривой К (р) можно определить из условия экстремального значения а.

Формулу (3) можно переписать в виде:

$$\alpha = \alpha_0 \left(1 - \frac{1}{\delta} \sin 2 \delta \right).$$

Тогда условие экстремального значения защищется:

$$\frac{da}{d\delta} = a_0 \left(\frac{1}{\delta^2} \sin 2\delta - \frac{2}{\delta} \cos 2\delta \right) = 0,$$

что приводит к уравнению* вида:

$$tg \ 2\delta = 2\delta. \tag{4}$$

Корни уравнения (4) протабулированы (см. табл. 1) и

			Таолица
Экстремумы	2 3	5	ç.
I max I min II max II min III max III max IV max IV min V max V min VI max VI min VI max	4,49 7,72 10,9 14,0 17,2 20,4 23,5 26,7 29,8 33,0 36,1 39,2 42,4	2.25 3.86 5.45 7,00 8.60 10,20 11.80 13.35 15.00 16.50 18,00 19.60 21.20	2,00 3,80 5,40 7,00 8,60
	Экстремумы I max I min II max II min III max III max III min IV max IV min V max V min VI max VI min VII max VII min	Экстремумы 2 % I max 4,49 I min 7.72 II max 10.9 II min 14.0 III max 10.9 II min 20.4 IV max 23.5 IV max 23.5 IV min 26.7 V max 29.8 V min 36.1 VI max 36.1 VI min 39.2 VII max 42.4 VII min 45.5	Экстремумы 2 % % 1 max 4.49 2.25 1 min 7.72 3.86 11 max 10.9 5.45 11 min 14.0 7.00 11 max 17.2 8.60 11 min 20.4 10.20 1V max 23.5 11.80 1V max 29.8 15.00 V min 36.1 18.00 VI max 36.1 19.60 VI max 42.4 21.20 VII min 45.5 22.80

• Формулы (4)—(6), а также табл. 1 переданы автору проф. К. С. Шифриным во время консультации в ГГО, за что автор пользуется случаем выразить свою искреннюю признательность. 2*

19

Г. М. АПВАЗЯН

приводятся в таблицах Е. Янке и Ф. Эмде [6]. Таким образом, зная значения с в любом из максимумов или минимуммов можно определить положения экстремумов для любых *т* из выражений:

$$\rho_{\max} = \frac{\delta_{\max}}{m-1} \qquad \rho_{\min} = \frac{\delta_{\min}}{m-1} \tag{5}$$

Расчеты показали [2], что уравнением (4) нельзя пользоваться для нахождения с, когда $\rho < 24$, так как для $\rho < 24$ формула (2) дает плохое совпадение с расчетами по точным формулам. Поэтому К. С. Шифрин [2] поставил обратную задачу. Приняв кривую K (ρ) Хаутона и Чалкера при m = 1,33 за "стандартную", оч по формулам (5) определил значения с до третьего максимума. Полученные им данные приводятся в последнем столбце табл. 1 и обозначены δ^* . При сравнении с и δ^* легко заметить, что только со второго максимума можно пользоваться значениями с, удовлетворяющими формуле (2).

Далее, необходимо определить величины К (р) в экстремумах кривых. Как показали расчеты, проведенные К. С. Шифриным [2] для значений m-1 от 0 до 0,55, величьны К (о) в главном максимуме меняются лнаейно B т-1. Согласно К. С. Шифрину, они зависимости ОТ меняются линейно от m-1 и для других экстремумов. lоэтому, зная значения $K(\rho)$ при m-1=0 и при m-1=0,33, можно линейной интерполяцией найти величины К (р) экстремумов, для интересующих нас значений m-1 в интервале 0—0,55. Значения К (р) в экстремумах при *m*−1=0,33 можно взять из кривой Пендорфа (см. рис. 2). Для m-1=0 значения К (р) в экстремумах находились следующим образом. В случае экстремума в формуле (3) sin 28 - 1, т. е.

$$a = 2\pi r^2 \left(1 \pm \frac{1}{3} \right)$$

тогда, согласно формуле (1) получаем:

$$\mathcal{K}(\rho) = 2\left(1 \pm \frac{1}{\delta}\right). \tag{6}$$

Данной формулой можно пользоваться для нахождения значений K(p) в экстремумах когла, m-1=0, так как формула (3) получена при условни $m \sim 1$.

Используя метод подобия, мы построили кривые К (φ) для 16 значений длин волн, перекрывающих область спектра 1,5—15 µ. В табл. 2 приведены значения длин волн и соот-

Таблина 2

₩.	λвμ	m	N	λвμ	m		
1	1,5*	1,323	9	7.0	1.327		
2	2,0*	1,304	10	8,0	1,292		
3	3,0*	1,415	11	9.0*	1,270		
4	3.2*	1,480	12	10,0	1.210		
5	3.4*	1,438	13	11.0*	1.157		
6	4,5*	1.342	14	12.0	1.210		
7	5.47*	1,297	15	13.0	1.300		
8	6,0*	1,312	16	15.0	1,410		

ветствующие им m [8], для которых производились расчеты. Как видно из табл. 2, для некоторых длин волн величины m отличаются друг от друга не более чем на 0,005. Учитывая точность построения кривых $K(\varphi)$ методом подобия, представляется возможным объединить некоторые λ по m и для них построить одну кривую. Таким образом, кривые $K(\varphi)$ построены только для 10 значений длин волн (в табл. 2 они обозначены звездочками).

Для определения положения экстремумов, т. е ρ_{max} и ρ_{min} в зависимости от *m*, использовалась формула (4) и величины *m*—1 из табл. 2. До II минимума применялись значения δ^* , а начиная с III максимума п выше — значения 3 (см. табл. 1). Величины экстремальных значений ρ до V максимума приведены в табл. 3.

Обратимся теперь к определению величины $K(\rho)$ в экстремумах. Для нахождения $K(\rho)$ до II минимума использовалась кривая $K(\rho)$ при m = 1,21 К. С. Шифрина [2] (см. рис. 3). Линейной интерполяцией экстремальных значений $K(\rho)$ при m = 1,21 и m = 1,33 (кривая Пендорфа) определялись $K(\rho)$ до II минимума для заранее известных m - 1. Начиная с III и до V максимумов величины $K(\rho)$ в экстрему-

Таблица З

N	λвμ	<i>m</i> —1	P _{max}	P ^I Pmin	P ^{II} Pmax	P ^{II} Pmin	P ^{III} Pmax	P ^{III} Pmin	P ^{IV} max	ρ ^{IV} min	۹ <mark>۷</mark>
1	1,5	0,323	6,19	11,8	16,7	21,6	26,6	31,6	36,5	41,2	46,2
2	2,0	0,304	6.57	12,5	17,8	23,0	28,3	33,5	38,8	43,7	49,0
3	3,0	0,415	4,83	9,15	13,0	16,9	20,7	24,6	28,4	32.0	35,9
4	3,2	0,480	4,17	7,93	11,2	14,6	17,9	21,2	24,6	27,7	31,0
5	3,4	0,438	4,56	8,67	12,3	16,0	19,7	23,3	27,0	30,4	34,0
6	4,5	0,342	5,85	11,1	15,8	20,5	25,2	29,8	34,5	38,8	43,5
7	5,47	0,297	6,73	12,8	18,2	23,6	29,0	34,4	39,7	44,7	50,2
8	6,0	0,312	6,4	12,2	17,3	22,4	27,6	32,7	37,8	42.6	47.8
9	9;0	0,270	7,4	14,1	20,0	25,9	31,9	37,8	43,7	49.2	55,0
10	10,0	. 0,210	9,5	.18,1	25,7	33,4	41,0	48,5	56,0	63.2	71.0
11	11,0	0,157	12,7	24.2	34,4	44,5	54,7	65,0	75,0		
	Col La Col Col Col	105355 CE 12 E	And the second	- Server States	No. Contraction	a start and the	C STREET	and the second	A CARLES AND	and the second s	and the second second

мах определялись линейной интерполяцией значения $K(\rho)$ при m-1=0 (см. формулу (6)) и при m-1=0.33 (кривая Пендорфа). На рис. 4 изображены кривые, при помощи которых определялись значения $K(\rho)$ в экстремумах до V максимума. Пунктиром нанесена кривая значений $K(\rho)$ для главных максумумов, полученная Шифриным [2] по данным δ^* (см. табл. 1).

Как известно, для $\lambda > 6\mu$ и для распределений капель по размерам, встречающихся в естественных облаках и туманах, величины $\rho < 6$. Поэтому погребовалось более тщательное построение кривых $K(\rho)$ для различных m в области, где $\rho < 6$. С этой целью использовались графические данные $K(\rho)$ при m=1,55 и m=1,44, рассчитанные Синклером [7] (см. рис. 5). Пунктиром нанесена кривая $K(\rho)$ Шифрина при m=1,21. Линейной интерполяцией указанных кривых определялись величины $K(\rho)$ для $\rho < 6$.

Кривые K (р) для 10 значений m, построенные на основе всего вышеизложенного, изображены на рис. 6—15.

Рис. 5. Коэффициент ослабления для различных т

Рис. 11. Коэффициент ослабления для капель воды (т=1,342)

Рис. 13. Коэффициент ослабления для кансль воды (m=1,312)

Погрешность, допущенная при построении кривых $K(\mathfrak{s})$ не превышает $10^{\circ}/_{\circ}$. Поэтому данные на рис. 6-15, не могут претендовать на большую точность. Но, по нашему мнению, ими можно свободно пользоваться при расчетах коэффициента ослабления в естественных облаках и туманах, где микроструктуру тумана удается определить с точностью порядка 15-20°/₀ [8].

§ 2. Расчет спектрального коэффициента ослабления

При помощи полученных кривых $K(\rho)$ (см. рис. 6—15) для ИК области спектра, мы рассчитали спектральные коэффициенты ослабления и сравнили их с результатами расчетов по кривой Пендорфа прн m=1,33. Для расчетов использовался экспериментальный материал по микроструктуре естественных облаков и туманов, полученный в разное время в Эльбрусской экспедиции ИПГ АН СССР под руководством канд. тех. наук Л. М. Левина.

Как известно, полндисперсный туман отличается от монодисперсного широким спектром размеров капель, что исключает возможность применения формулы (1) для расчетов α в полидисперных туманах. Поэтому спектр капельразбивается на интервалы r, r+dr и рассматривается осредненный радиус r, и количество капель n, в единице объема для каждого интервала. Для среды с каплями порядка от r' до r'' спектральный коэффициент ослабления рассчитывается как сумма по всем у интервалам:

$$\alpha_{\lambda} = \pi \sum_{r \neq n_{\tau}} r_{\tau}^{2} n_{\tau} K(r, \lambda)$$
(7)

Расчеты проводились по формуле (7) для длин волн, приведенных в табл. 2 и восьми распределений капель по размерам (см. табл. 4). В табл. 4 даны следующие исходные данные для расчетов: концентрация частиц в процентах— n_E , число капель в 1 cm^3 — N, и средне-квадратичный диаметр капель— d_2 . Таким образом, расчеты охватывали распределения с d_2 от 6,56 до 13,7µ. Не останавливаясь подробно на всех видах распределений капель по размерам:

Ταδλυμα 4

31

Номера опытов	1	2	3	4	5	6	7	8
d _a B µ	6,56	6.83	8,13	9,6	9,35	10,25	12.6	13,7
N	666	615	242	350	70,6	122	292	133
k -	8	2	8	8	0	0	0	8
dвµ		Конце	нграци	я част	нцв⁰/	0 – n _E		
$\begin{array}{r} 4-6\\ 6-8\\ 8-10\\ 10-12\\ 12-14\\ 14-16\\ 16-18\\ 18-20\\ 20-22\\ 22-24\\ 24-26\\ 26-28\\ 24-20\\ 26-28\\ 24-30\\ 30-32 \end{array}$	50.7 34.2 12.7 2.5 0.5	53.4 25.6 10.9 4.6 1.7 0.89 0.57 0.19 0.11	25.2 29.1 25.6 12.6 3.5 0.65 0.18 0.02	16.7 25.6 22.6 7.3 2.08 0.53 0.1 0.03	43.0 12.3 12.2 12.5 9.78 4.96 2.98 1.56 0.64 0,21	48.8 13.9 5.4 4.0 5.08 8.85 7.30 4.26 1.80 0.49 0.21 0,12	35.1 14.6 12.4 9.2 9.0 8.4 5.0 3.2 1.70 0.7 0.5 0.2	20.8 8.46 7.82 10.8 13.1 12.5 10.5 7.0 3.98 2.33 1.20 0.75 0.45 0,40

встречающихся в естественных условиях, отметим лишь, что все рассмотренные 8 опытов описываются функцией распределения вида [9]:

$$\frac{dn}{dr} = Ar^{k}e^{-\beta r^{\intercal}},$$

При $\gamma = 1$, величина k для рассмотренных опытов принимает значения в интервале 0-8 (см. табл. 4).

Результаты расчетов спектральных коэффициентов ослабления изображены графически: на рис. 16—для d_2 =6,56 µ и d_2 =6,83 µ; на рис. 17—для d_2 =8,13 µ и d_2 =9,6 µ; на рис. 18—для d_2 =9,35 µ и d_2 =10,25 µ и на рис. 19—для d_2 =12,6 µ и d_2 =13,7 µ. По оси абсцисс отложены значения λ в µ, по оси ординат α_{λ} в обратных метрах (M^{-1}). Пунктирной линией на всех графиках нанесен расчет спектрального коэффициента ослабления α_{λ} по кривой K (р) Пендорфа (см. рис. 2); сплошной линией — спектральный коэффициент ослабления α_{λ}^{*} , рассчитанный по кривым K (р) с учетом изменения m от λ (см. рис. 6—15).

Рис. 16. Ход спектрального коэффициента ослабления: $1-\alpha_{1}$, $1^*-\alpha_{2}^*$ 1 и 1^* $d_2=6.56 \mu$; 2 и $2^*-d_2=6.83 \mu$

Как видно из кривых на рис. 16, при малых значениях λ имеется почти полное совпадение кривых α_{λ} и α_{λ} . Обе кривые достигают своего максимального значения при $\lambda = 3,5-4,5 \mu$ и дялее, с возрастанием величины α_{λ} и α_{λ} уменьшаются. Начиная с $\lambda \sim 8\mu$ и выше наблюдается существенное различие хода кривых α_{λ} и α_{λ} : с увеличением длины волны значения α_{λ} (1 и 2) продолжают постепенно убывать, а кривые α_{λ} (1* и 2*) проходят ниже кривых α_{λ} и от $\lambda = 11 \mu$, величины α_{λ} увеличиваются.

Таким образом. в ИК области спектра, при учете изменения комплексного показателя преломления от λ в по-

лидисперных туманах, при $\lambda = 10 - 12 \mu$ обнаруживается минимум коэффициента ослабления — "окно пропускания". Причем, величина α_{λ} в "окне пропускания" в несколько раз меньше величины α_{λ} , рассчитанной по кривой $K(\rho)$ Стреттона и Хаутона.

Рис. 17. Ход спектрального коэффициента ослабления $1-a_2$, $1^*-a_2^*$ 1 к $1^*-d_2=8,13\mu$; 2 к $2^*-d_2=9,60\mu$

Аналогична картина и при расчетах для больших (см. рис. 17—19), с той лишь разницей, что с увеличением d_2 максимумы кривых α_{λ} и α_{λ} смещаются в сторону больших , тогда как минимум α_{λ} постоянно остается при $\lambda = 11$ µ. Так, если при $d_2 = 6,56$ µ максимумы α_{λ} и α приходятся на $\lambda = 3,5-4,5$ µ, то для $d_2 = 9,6$ µ они лежат в пределах $\lambda = 5-6$ µ, а для $d_2 = 12,5$ µ при $\lambda = 8,5-9,5$ µ. 243—3

Рис. 18. Ход спектрального коэффициента ослабления. 1-а, 1*-а, 1 н 1*-d2=9,35 µ; 2 и 2*-d2=10,25 µ

1- α_{λ} , 1*- σ_{1}^{*} 1 н 1*- d_{2} =13,7 µ; 2 н 2*- d_{2} =12,6 µ

- 11

Для характеристики различий в ходе кривых α_{λ} и α_{λ} , рассматривается величина $\gamma = \frac{\alpha_{\lambda}}{\alpha_{\lambda}}$, показывающая во сколько раз величина α_{λ} меньше α_{λ} для каждой длины волны. Значения γ для всех кривых из рис. 16—19 приведены в табл. 5. Легко заметить, что для малых λ величина $\gamma \sim 1$. Начиная с $\lambda \sim 6 \mu \gamma$ увеличивается и достигает максимума при $\lambda = 11 \mu$. В частности, при $d = 6.56 \mu \gamma_{max} = 4.05$, а при $d_2 = 8.13 \mu \gamma_{max} = 4.12$. Таким образом, в минимуме спектрального коэффициента ослабления (см. рис. 16—17) величина α_{λ} почти в 4 раза меньше величины α_{λ} . А это означает, что метеорологическая дальность видимости* в тумане для ИК радиации 10—12 μ улучшается почти в 4 раза, по сравнению с расчетами по кривой K (ρ) Стретгона и Хаутона.

С увеличением d_2 , величины \tilde{i}_{max} несколько уменьшаются и для $d_2 = 13.7$ и уже имеем $\tilde{i}_{max} = 2.23$. В настоящей работе мы воздерживаемся от рыяснения закономерности изменения \tilde{i}_{max} от d_2 , так как для достоверных выводов необходимы дополнительные расчеты.

Что касается применимости кривой Стреттона и Хаутона для расчетов в ИК области спектра, то, как показали расчеты (см. табл. 5), с допущением определенной погрешности, можно пользоваться кривой $K(\rho)$ при m = 1,33. Так, если принять значения α_{\star}^* за $100^{\circ}/_0$ и допустить приемлемой погрешность $\pm 20^{\circ}/_0$. то, по-видимому, кривой Стреттона и Хаутона можно пользоваться для распределений с $d_2 = 6,56 - 13,7$ ч до $\lambda \sim 8$ ч, так как для $\lambda > 8$ ч погрешности уже резко возрастают.

Как показали вышеприведенные расчеты, интересной областью для целей теплолокации является область спектра $10-12 \mu$, где обнаруживается "окно пропускания", и применение кривых K(p) с учетом изменения m от λ является обязательным.

* Метеорологическая дальность видимости рассчитывается как 3

3*

21

Таблица 5

										A							
1	d.	Длина волны вч															
	вћ	1,5	2,0	3,0	3,2	3,4	4,5	5,47	6,0	7,0	8,0	9,0	10.0	11,0	12,0	13,0	15,0
					1 10		0.04	1.04	1.07	1.02	1.04	1.07	0.00	4.05	0.00	0.40	0 47
	6,56	1,05	1,00] 1,11	1,19	1 1,11	0,94	1,04	1,27	1,20	1,64	1,27	2,90	4,())	2,00	0,60	0,47
	6,83	1,05	1.00	1,06	1,09	1,03	0,95	1,01	1,20	1,16	1,03	1,23	2,50	3,65	2,55	1,00	0,58
	8,13	1,08	1,05	1,07	1,09	1,13	0,99	1,02	1,14	1,15	1,04	1,31	2,90	4,12	2,88	1,05	0,58
	9,6	1,08	1,06	1.01	1,00	1,07	1,00	1,00	1,09	1,11	1,04	1,30	2,80	4,00	2,83	1,09	0,62
	9,35	1,02	1,04	1,03	0,99	0,96	1,00	0,95	1,03	1,05	1,00	1,19	2,18	3,14	2,50	1,10	0,68
	10,25	1,00	1,02	1,11	1,10	1,06	0,98	0,92	1,00	1,02	0,98	1,03	1,79	2,63	2.24	1,09	0,72
	12,6	1,02	*1,04	1.08	1,07	1,03	1,00	0,95	1,01	1,03	0,99	1,11	1,80	2,58	2,16	1,08	0,73
	13,7	1,00	1,04	1.09	1,06	1,07	1,02	0,95	0,99	1,00	0,94	1,05	1,55	2,23	1,93	1.07	0,76

Значения $\gamma = \frac{d_{\lambda}}{a_{\lambda}}$

выводы

1. Сравнение спектральных коэффициентов ослабления a_{λ} н a_{λ} показало, что, при учете комплексного показателя преломления в ИК области спектра, в полидисперсных облаках и туманах существенно меняется ход кривой спектрального коэффициента ослабления. В области спектра $10-12 \mu$ обнаруживается "окно пропускания", что не имеет места при расчетах по кривой $K(\varphi)$ Стреттона и Хаутона. Причем, величина a_{λ} в окне пропускания почти в 4 раза меньше величины a_{λ} для этой же области спектра.

2. Для области спектра 1,5—2,0 μ наблюдается некоторое уменьшение коэффициента ослабления, но величина а при этом в 8—10 раз больше величины α_{λ} при $\lambda = 10 - 12 \mu$.

3. Кривой $K(\rho)$ Стреттона и Хаутона можно пользоваться для расчетов коэффициента ослабления радиации $1,5 \leq \lambda \leq 8$ µ в облаках и туманах с $d_3 = 6,56 - 13,7$ µ, допуская при этом погрешность не превышающую $\pm 20^{\circ}/_{0}$.

2. 17. 11.54,11.9,811.5

ՊՈԼԻԴԻՍՊԵՐՍԱՅԻՆ ԱՄՊԵՐՈՒՄ ԵՎ ՄԱՌԱԽՈՒՂՆԵՐՈՒՄ 1,5—15 և ՃԱՌԱԳԱՑԹՄԱՆ ԹՈՒԼԱՑՄԱՆ ԳՈՐԾԱԿՑԻ ՏԵՍԱԿԱՆ ՀԱՇՎԱՐԿ՝ ՃԱՌԱԳԱՅԹՄԱՆ ԱԼԻՔԻ ԵՐԿԱՐՈՒԹՅՈՒՆԻՑ ԿԱԽՎԱԾ ԲԵԿՄԱՆ ԿՈՄՊԼԵՔՍԱՅԻՆ ՑՈՒՑԻՉԻ ԴԵՊՔՈՒՄ

Ամփոփում

2ոդվածի հիմնական արդյունքը կայանում է նրանում, որ պոլիդիսպերսային ամպերում և մառախուղներում ինֆրակարմիր ճառագայխման խուլացման հարցը քննարկելու դեպքում, նկատի ունենալով ճառադայխման ալիքի երկարուխյունից և բնկման կոմպլեքսային ցուցանիշի m փոփոխումը, սպեկտրի $\lambda = 10-12$ և շըրջանում, մեր կողմից հայտնաբերվել է «խափանցիկ պատուհան», որի էջսպերիմենտալ հաստատումը կարևոր նշանափուխյուն կունենա մառախուղի մեջ ջերմապելինդացիայի և ջերմալոկացիայի նպատակների համար։

Ինչպես հայտնի է, ինֆրակարմիր ճառագայինան համար Մի-ի ճիշտ բանաձևերով K(զ) ֆունկյիաների հաշվարկը դժվար է և

Г. М. АПВАЗЯН

 $2 nquwdnud unufumbu gnugg <math>\xi$ тришд, пр былышпициврний ($d_2 = 6,56-13.7 \mu$) рифрыциривр былыциуввий ($1.5-8 \mu$) Васиндини былиривинов от былыши, K(p) (те иц. 5-13) царияндир фаририви, цирыр ξ одинци вирипали и ише и с (m = 1.33) цариядони васу типи ирии аг индир рии $\pm 20 \%$ (тьи ил. 5):

ЛИТЕРАТУРА

- 1. Stratton J. and Houghton H. Phys. Rev. 33, 159, 1931.
- 2. Шифрин К. С. Рассеяние свега в мутной среде. ГИГТ.Л. 1951.
- 3. Шифрин К. С. Труды ГГО вып. 43 (108), стр. 34, 1955.
- 4. Houghton H. and Chalker W. JOSA 39, 955, 1949.
- 5. Penndorf R. J. Meteorol. 13, 2, 219, 1956.
- 6. Янке Е. и Энде Ф. Таблицы функций с формулами и кривыми. ГИТТЛ, 1949.
- 7. Sinclair D. JOSA 37, 9, 475, 1947.
- 8. Левин Л. н. н Старостина Р. Д. Труды ГЕОФИАН № 7А, 1954.
- 9. Шифрин К. С. Труды ГГО, вып. 46 (103), стр. 18, 1955.
- 10. Шифрин К. С. ДАН СССР, 94, 4, 673, 1954.