Г. М. Айвазян

К ВОПРОСУ ОСЛАБЛЕНИЯ РАДИАЦИИ 400—1000 m_µ В ПОЛИДИСПЕРСНЫХ ОБЛАКАХ И ТУМАНАХ*

Во время исследований спектральной прозрачности облаков и туманов для радиации 400—1000 m возникает вопрос о сравнении экспериментальных данных с теоретическими. Как известно, теоретическая зависимость рассчитывается на материале измеренной микроструктуры тумана отдельно для каждого случая распределения капель по размерам, что связано с интегрированием и отнимает много времени. В настоящей работе предлагается простая форма теоретического расчета, позволяющая без интегрирования, по среднему параметру распределения:

- а) рассчитать спектральный коэффициент ослабления,
- б) оценить непосредственно величину дисперсии, т. е. на сколько процентов раднация одной длины волны лучше проходит через туман, чем радиация другой длины волны.

Задача решается при рассмотрении вопроса о возможных величинах дисперсии аномального** хода спектрального коэффициента ослабления радиации 400—1000 mµ в естественных облаках и туманах.

^{*} Работа докладывалась геофизическому семинару Эльбрусской экспедиции ИПГ АН СССР в августе 1953 года (частично в сентябре 1957 г.) и вошла в окончательный отчет по заданию "Эльбрус"—Эльбрусская экспедиция ИПГ АН СССР, г. Нальчик, 1958.

^{**} Под аномальным эффектом ослабления подразумевается уменьшение прозрачности с увеличением длины волны радиации.

§ 1. Теория рассеяния на каплях тумана

Световой поток интенсивностью I_0 , пройдя в тумане расстояние I, ослабляется, как известно, по закону:

 $I = I_0 e^{-\alpha l}, \tag{1}$

где 2— коэффициент ослабления, который учитывает поглощение и рассеяние. В области спектра 400—1000 mp абсолютное поглощение мало, поэтому в дальнейшем под 2 будет подразумеваться коэффициент рассеяния.

Для сферических капель коэффициент рассеяния [1]

рассчитывается по формуле:

$$\alpha = \pi r^2 N K(\rho)$$

$$\rho = \frac{2\pi r}{\lambda},$$
(2)

где N — число капель радиуса r в единице объема, а $K(\rho)$ — сложная функция параметров r н λ , впервые вычисленная Стреттоном и Хаутоном [2] для капель воды с комплексным показателем преломления m=1,33. График зависимости $K(\rho)$, из работы [3] изображен на рис. 1.

Рис. 1. Кривая $K(\rho)$ по Хаутону и Чалкеру с аппроксимацией Ван-дер-Холста (пунктир)

Как известно, полидисперсный туман характеризуется широким спектром размеров капель. Поэтому спектр капель разбивается на интервалы r, r+dr (всего у интервалов), и спектральный коэффициент рассеяния рассчитывается как сумма по всем у интервалам:

$$\alpha_{\lambda} = \pi \sum_{r} r_{\nu}^{2} n_{\nu} \cdot K(\rho) \tag{3}$$

Так как коэффициент рассеяния связан с поверхностью капель, то для характеристики дисперсности среды можно рассмотреть, в виде некоторого приближения, средне-квадратичный радиус среды, r_2 . Тогда предположим, что α_{λ} можно представить в виде:

$$\alpha_{\lambda} = \pi r_2^2 \, N K(r_2 \lambda) \tag{4}$$

Ниже мы сравним расчеты α_{λ} по формулам (3) и (4) и покажем, что для определенных значений r_{2} , вместо формулы (3) можно приближенно пользоваться формулой (4).

Для вычисления α_{λ} по формуле (3) необходимо знать n_{\star} , т. е. функцию распределения капель по размерам. А. Х. Хргиан и Н. П. Мазин [4] показали, что экспериментальные данные по распределению капель сравнительно хорошо аппроксимируются формулой:

$$n(r) = A r^2 e^{-br}, (5)$$

где A и b — постоянные, зависящие от физических характеристик самого облака. Распределение (5) является частным видом четырехпараметрической функции [6] вида:

$$\frac{dn}{dr} = Ar^k e^{-\beta r^{\dagger}}.$$
(6)

При k=2 и $\gamma=1$ из формулы (6) получаем распределение (5).

§ 2. Результаты расчетов

Из многочисленных спектров распределений капель по размерам, полученных в Эльбрусской экспедиции ИПГ АН

СССР под руководством канд. тех. наук Л. М. Левина отобрано 12 опытов с мелкокапельной структурой d < 10 μ (см. табл. 1 и 2), где d_2 —средне-квадратичный диаметр капель. Каждый опыт (см. табл. 2) представляет осреднение 4-8 спектров (см. табл. 1), измеренных один за другим за время не менее часа в устойчивом облаке. Это позволило строить выводы не на случайном материале отдельных спектров, а основываться на явление, встречающееся в естественных условиях за продолжительное время.

Таблица 1

№ опыта	Число, ме- сяц. год	Время	N B 1 c.u³	Кол-во спектров	d _z Β μ	Q ₁	Q ₂	k
1 2 3 4 5 6 7 8 9 10 11	15.09.54 13.09.54 29.07.54 29.07.54 17.07.55 17.08.55 17.08.55 01.09.55 01.09.55 02.09.55 05.09.55 08.10.55	19.15 20.15 16.57 18.15 16.40 17.34 17.38 18.39 18.00 19.30 18.15 19.15 19.45 20.30 18.45 19.45 19.00 20.45 18.30 20.15 18.45 19.45 17.45 19.00	666 66 615 222 437 400 310 350 242 324 491 162	7 8 7 8 7 5 4 8 7 5 6	6.56 7,55 6.83 9.87 6.3 7,71 8.22 9.6 8.13 8.14 7,35 9.36	9,5 7 8,7 3,5 10,2 6,3 5,8 4,3 6 5,9 7,6	18.5 14 16.8 7.8 19.2 12.5 11.8 9.1 12 12 14.6 7.8	8 6 2 6 6 6 6 8 8 4 8 8

Если принять в формуле (6) $\gamma = 1$, то значения k для всех спектров окажутся в интервале $2 \le k \le 8$.

Для построения кривой спектрального коэффициента рассеяния, по формуле (3) и отдельному опыту из табл. 2 рассчитывались 13 значений α_{λ} , соответствующих 13 значениям λ из диапазона $400-1000~m\mu$ (с интервалом 50 $m\mu$). Кривые α_{λ} для 6 опытов приведены на рис. 2. Цифрами обозначены номера опытов согласно табл. 2. Легко заметить, что все кривые α_{λ} имеют аномальный ход.

^{*} Подробное оп сание методики забора проб и обработки микроструктурного материала см. в работе [7].

Средняя концентрация частиц в процентах

Диаметр капель	Номера опытов											
B fr	1	2	3	4	5	6	7	8	9	10	11	12
4 – 6	50.73	38,73	55,4	17.9	56,48	32,5	32.5	16.7	25.2	34,5	31,2	11,
6-8	34,2	30,83	25,6	18.7	30.00	31.3	30.3	25,6	29,1	28,2	39.00	27,
8-10	12,7	18,88	10,9	25,7	9,35	19,00	20,00	27,6	25.6	19,2	22.7	28,
10—12	2,5	8,33	4,6	20.4	3,15	11,4	9,6	22,6	12,6	9,8	5.85	18.
12-14	0,5	3,11	1,7	8,45	0,78	3,88	3,93	7,3	3,5	5,14	1,02	9,
1416		1,03	0,89	4,5	0,13	1,14	2,22	2.08	0,65	2,03	0,18	3,
1618		0,12	0,57	2.5	0,01	0,4	0,88	0,53	0.18	0,64	0,04	0,
18-20		0,06	0,19	0,86	0,02	0.04	0.45	0.1	0.02	0,14		0,
20-22			0.11	0,48	10,0		0.15	0.03		0,17		0,
22-24				0,25	0,01	0,04	0,04					
24 – 26			0,02				0,05					
26—28						0,04	0.05			0,6		
28-30							0.02					

Для оценки дисперсии в пределах каждой кривой рассматривается величина:

$$Q = \left(1 - \frac{\alpha_{400}}{\alpha_x}\right) \cdot 100^{0} /_{0},\tag{7}$$

показывающая на сколько процентов коэффициент рассеяния при $\lambda = 400~m\mu$, т. е. α_{400} меньше коэффициента рассеяния для любой длины волны α_x , где $x > 400~m\mu$.

Рис. 2. Спектральная зависимость коэффициента рассеяния

В табл. 1 приведены значения Q_1 и Q_2 , рассчитанные соответственно для x_1 —750 $m\mu$ и x_3 =1000 $m\mu$. Максимального значения Q_1 и Q_2 достигают в пятом опыте: соответственно 10,2 и 19,2%. Это означает, что при одинаковых условиях прохождения радиации через туман, синие лучи (λ —400 $m\mu$) ослабляются на 10,2%0 слабее, чем красные лучи

чи ($\lambda = 700 \ m\mu$) и на $19,2^{\circ}/_{\circ}$ слабее, чем инфракрасные лучи ($\lambda = 1000 \ m\mu$).

Согласно табл. 1, найдена корреляция величин Q_1 и Q_2 со среднеквадратичным диаметром среды. Значения Q_1 (d_2) и Q_2 (d_2) для всех опытов (см. табл. 1) приводятся на рис. 3 (точки). На этом же рисунке сплошной линией нанесены

Рис. 3. Зависимость Q от d_2 , $1-x_1\!=\!750$ $m\mu$, $2-x_2=\!1000$ $m\mu$

функции Q_1 (d_2) и $Q_2(d_2)$, рассчитанные по формуле (4) для тех же опытов. Если расчеты по формулам (3) и (4) совпадают, то точки должны ложиться на плавные кривые. Легко заметить, что имеется хорошее совпадение данных. Кроме того, сравнение величин α_{400} , рассчитанных по формулам (3) и (4), показало, что различие это незначительно и не превышает $\pm 2^0/_0$. А при проверке тождественности формул (3) и (4) на 88 спектрах получел результат идентичный вышеуказанному. Таким образом, для радиации 400-1000~m μ и полидисперсных тумянов с $d_2 > 6.3~\mu$, можно пользоваться формулой (4) с точностью $\pm 2^0/_0$. Причем, рас-

четы по формуле (4) верны независимо от вида функции распределения капель по размерам, так как при доказательстве тождественности (3) и (4) использовались распределения с произвольным значением k в формуле (6).

Рис. 4, Зависимость Q_2 от d_2

Остановимся на возможности экстраполяции формулы (4) на распределения с $d_2 < 6,3$ μ , или все равно, что на применении (4) для обычных распределений и радиации с $\lambda > 1,0$ μ . В данном случае значения Q (d_2) по формуле (3) рассчитывались следующим образом. Для i значений d_2 (обозначим их d_{2i}) из диапазона $0,2\mu < d_{2i} < 9\mu$ (через $0,2\mu$) и длин волн $\lambda' = 400$ $m\mu$ и $\lambda'' = 1000$ $m\mu$ определялись величины ρ_i^0 (см. (2)) — соответственно ρ_i^0 и ρ_i^0 . По известному распределению d_2 = const и значениям ρ_i^0 и ρ_i^0 находились λ_i^0 и λ_i^0 . В дальнейшем для каждого из λ_i^0 по формуле (3) и рас-

пределению $d_2 = \text{const}$ определялись α_{k_i} и α_{k_i} . Дисперсия вычислялась по формуле:

$$Q_i = \left(1 - \frac{\alpha_{\lambda_i'}}{\alpha_{\lambda_i''}}\right) \cdot 100^{\circ}/_{o}$$

и величины Q_i относились к заранее известным d_{2^i} . Полученная таким образом зависимость $Q\left(d_{2}\right)$ сравнивалась с функцией $Q(d_2)$, рассчитанной по (4) для тех же пределов. Ня рис. 4 приведены функции $Q(d_2)$, рассчитанные по формуле (3) для распределений с d_2 =6,02 μ и d_2 =5,15 μ . Сплошной линией изображена функция $Q(d_2)$ по формуле (4). Нетрудно убедиться, что для $d_2 = 6.02 \,\mu$ расчеты по формулам (3) и (4) совпадают (точки ложатся на кривую) только для $d_2 > 6$ μ . С уменьшеняем d_2 (т. е. для $d_2 < 6$ μ) кривые резко расходятся. Для распределения с $d_3 = 5,15 \, \mu$, расчеты по (3) и (4) вообще не совпадают. Из этого следует, что формулой (4) можно пользоваться только для радиации 400-1000 my и распределений с $d_2 > 6,3$ у, если для расчетов используется кривая К(о) Хаутона и Чалкера (см. рис. 1).

Рассмотрим теперь как меняется теоретический хол спектрального коэффициента рассеяния в зависимости от d_2 среды (см. рис. 4). В облаках и туманах с $d_2 > 17-18$ μ коэффициент рассеянии не меняется от длины волны радиации ($100-1000~m_{\perp}$), т. е. следует ожидать нейтральное рассеяние. В среде с d_2 в интервале $6 < d_2 < 17$ μ всегда следует ожидать аномальный ход спектрального коэффициента рассеяния, а дисперсия не может превышать $18-20^{\circ}/_{\circ}$. Это означает, что для распределений капель по размерам, наиболее часто встречающихся в естественных условиях ($d_2=6-12~\mu$), синие лучи ($\lambda=40.0~m\mu$) несколько лучше должны проходить через туман, чем инфракрасные ($\lambda=1000~m\mu$).

В практике часто встречается, когда за короткий промежуток времени требуется теоретически оценить величину и дисперсию коэффициента рассеяния для различных длин волн. С этой целью по формуле (4) рассчитаны функции $Q(d_2)$ для длин волн: 570 $m\mu$, 670 $m\mu$, 750 $m\mu$ и 1000 $m\mu$

см. рис. 5). Теперь, зная пяраметры распределения, достаточно по формуле (4) рассчитать α_{400} , чтобы по кривым на рис. 5 определить величину коэффициента рассеяния и дисперсию для интересующих нас длин волн.

. Рис. 5. Зависимость Q от d_2 для $d_2 > 6$ μ

выводы

- 1. При расчетах ослабления радиации $400-1000~m\mu$ в полидисперсных облаках и туманах с $d_2 > 6 \mu$, вместо обычной формулы (3) можно пользоваться аппроксимационной формулой (4) с точностью $\pm~2^{0}/_{0}$. Причем, можно считать, что величина и дисперсия коэффициента рассеяния не зависят от вида функции распределения капель по размерам.
- 2. Для распределений капель по размерам, встречающихся в естественных условиях (6 $\mu \leqslant d_2 \leqslant 15~\mu$) и подчиняющихся формуле (6) (изменение k в интервале $0 \leqslant k \leqslant 10$), теоретическая кривая спектрального коэффициента рассея-

ния ($\lambda = 100 - 1000 \ m$ у) всегда имеет аномальный ход, а величина дисперсии не превышает $20^{\circ}/_{\circ}$.

В заключение автор пользуется случаем поблагодарить Л. М. Левина за предоставленный для расчетов микроструктурный материал и за ряд ценных замечаний, высказанных при ознакомлении с настоящей работой.

Հ. Մ. ԱՑՎԱԶՏԱՆ

ՊՈԼԻԴԻՍՊԵՐՍ ԱՅԻՆ ԱՄՊԵՐՈՒՄ ԵՎ ՄԱՌԱԽՈՒՂՆԵՐՈՒՄ $400-1000~m_{
m \mu}$ ՃԱՌԱԳԱՅԻՄԱՆ ԹՈՒԼԱՑՄԱՆ ՀԱՐՑԻ ՄԱՍԻՆ

Udhnynid

Պոլիղիսպերսային ամպերում և մառախուղներում 400—1000 ուջ ճառագայինան Բուլացման սպեկտրալ գործակիցը ընդհանրապես հաշվում են (3) բանաձևով։ Դա առնչված է ինտեդրման հետ և շատ ժամանակ է խլում։

Ներկա աշխատությունում առաջարկվում է նոր մեթոդ (տես բանաձև (4)), որը հնարավորություն է տալիս առանց ինտեդրման, այլ միջին պարամետրով, որը բնութագրում է կաթիլների րաշխումը ըստ չափերի, հեշտությամբ որոշել ցրման սպեկտրալ դործակիցը և անմիջականորեն որոշել դիսպերսիայի մեծությունը, այսինքն, որոշել թե մի երկարության ալիբի ճառագայթումը բանի տոկոսով ավելի լավ է անցնում մառախուղի միջով, բան՝ մյուսինը։ Բայլի դրանից, ներկա աշխատությունում բննարկվում է այն հարցը, թե ինչպիսիք կարող են լինել ցրման դործակցի անոմալ դիսպերսիայի մեծությունները, երը 400—1000 անահագայթումը անցնում է բնական (պոլիդիսպերսիային) ամպերի և մառախուղների միջով։

Աշխատությունում ցույց է տրված, որ հրբ մառախուղի միջքառակուսային տրամագիծ $d_2 > 6$, , այդ դնպքում (3) և (4) բանաձևհրով հաշվումների տարբերությունը $\pm 2^0/_0$ չի անցնում, իսկ ցըրման գործակցի մեծությունը և դիսպերսիան ընդհանրապես, կաթիլները ըստ չափերի բաշխելու ֆունկցիայի տեսակից կախում չունեն (տես (6))։

Հայտնագործված է, որ բնական ամպերում և մառախուղներում $(6\mu{\leqslant}d_2{\leqslant}15\mu$ և բաշխումը ենβարկվում է (6) բանաձևին) 400—

1000 mp ձառագայիման թուլացման դեպքում, ցրման սպեկտրալ գործակցի տեսական կորագիծը մշտապես ունենում է անոմալ ընթացը, իսկ դիսպերսիայի մեծությունը չի կարող լինել 20 % բարձրո

ЛИТЕРАТУРА

- 1. Шифрин К. С. Рассеяние света в мутной среде. ГИТТЛ, 1951.
- 2. Stratton J. and Houghton H. Phys. Rev. 38, 159, 1931.
- g. Houghton H. and Chalker W. 10SA, 39, 955, 1949.
- 4. Хргиан А. Х. и Мазин И. П. Труды ЦАО вып. 7, 56, 1952.
- 5. Левин Л. М. ДАН, 6, 1045, 1954.
- 6. Шифрин К. С. Труды ГГО вып. 46 (108), стр. 18, 1955.
- 7. Левин Л. М. и Старостина Р. Ф. Труды ГЕОФИАН № 7А, 1954.