20.840.40.6 ОГО ЧЕЗПЕРВИКАТЕР ИЗИЧЕТЬ И АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

СООБІДЕНИЯ БЮРАКАНСКОЙ ОБСЕРВАТОРИИ

выпуск VI

К ТЕОРИИ ФЛУКТУАЦИЙ В ВИДИМОМ РАСПРЕДЕЛЕНИИ ЗВЕЗД НА НЕБЕ

В. А. АМБАРПУМЯН

ПРЕДИСЛОВИЕ

Как видно из приложенного в конце настоящей работы списка литературы, теория флуктаций в видимом распределении звезд, вызываемых клочковатостью межзвездного поглощающего слоя, возникла и разработана в Советском Союзе. Она основана на развитых советскими астрономами представлениях о природе космического поглощения и пылевых туманностей. Оказалось, что с математической стороны при разрешении проблемы флуктуаций нам приходится в большинстве случаев иметь дело с цепями Маркова. Уравнения, получаемые при этом, во многих случаях подобны уравнениям, выведенным академиком Колмогоровым для некоторых типов стохастических процессов.

В настоящей работе прежние результаты работ автора и его учеников значительно расширены и рассмотрены некоторые новые задачи.

Бюракан, 1951, декабрь.

§ 1. ВВЕДЕНИЕ

Результаты звездных подсчетов показывают, что числа звезд до какой-либо определенной величины, приходящихся на один квадратный градус (или какой-либо другой стандартный телесный угол), испытывают значительные изменения, когда мы переходим от одной области неба к другой. При этом такие изменения бывают двух родов: во-первых, вти числа показывают более или менее плавную зависимость от галактической широты b и галактической долготы l, вовторых, имеются неправильные колебания в числах звезд при переходе от одного участка неба к другому, с ним соседнему, причем эти колебания совершаются на протяжении всего нескольких градусов, а иногда нескольких десятков минут дуги и меньше. Плавные изменения первого рода, происходящие на протяжении больших участков неба, мы можем считать регулярными, зависящими от основных особенностей строения Галактики и положения в ней наблюдателя. Изменения второго рода, происходящие при перемещении на небольшое угловое расстояние, мы будем называть флуктуациями в числах звезд. Эти флуктуации в числах звезд обусловлены действием трех причин. Первая из них-это наличие естественных случайных флуктуаций, возникающих в распределении звезд, в проекции на небесную сферу, вследствие того, что такие случайные отклонения от средней плотности существуют и в самом пространственном распределении.

Вторая причина заключается в клочковатой структуре поглощающего слоя в Галактике и в обусловленных этой структурой флуктуациях величины космического поглощения.

Работы Маркаряна¹, а также многочисленных авторов, изучавших отдельные "темные туманности", показали, что вторая из указанных причин, наряду с первой, играет существенную роль.

Наконец, третьей причиной флуктуаций следует счи-

тать наличие в Галактике звездных систем, входящих в нее в качестве ее составных частей — звездных скоплений и ассоциаций, т. е. таких групп звезд, одновременное присутствие которых в данной области неба не является следствием случайности, а обусловлено либо силами, связывающими членов группы между собой, либо же их общим происхождением. В некоторых случаях от этих групп можно отвлечься, поскольку благодаря своему характеру они легко распознаются (шарообразные скопления, многие открытые скопления), и соответствующие им числа звезд можно просто вычесть из наблюдаемого распределения, но в других случаях физические группы могут оказаться трудно отличимыми от случайных флуктуаций или от флуктуаций, возникающих в результате клочковатости поглощающего слоя. Повтому построение полной теории случайных флуктуаций в видимом распределении может помочь нам также в изучении физических группировок, поскольку случайные флуктуации должны подчиняться определенным статистическим закономерностям. Изучению этих закономерностей и посвящена настоящая работа. При этом мы уделили основное внимание вопросу о флуктуациях одной величины, характеризующей видимое распределение звезд (или звезд какого-либо определенного физического типа, внегалактических туманностей или какихлибо других объектов). Такой величиной является та доля поверхностной яркости неба, которая обусловлена звездами (или соответственно звездами определенного типа, внегалактическими туманностями и т. д.). Таким образом, речь будет итти в основном о парциальных поверхностных яркостях, обусловленных суммарным излучением объектов данного типа.

Вопросу о регулярных изменениях этих поверхностных яркостей была посвящена одна из наших предыдущих работ.² Здесь же мы займемся вопросом о флуктуациях этих яркостей.

§ 2. ОСНОВНЫЕ ПРЕДПОЛОЖЕНИЯ

Мы будем считать в дальнейшем, что звезды распределены в Галактике плоско-параллельными слоями. Это означает, что вероятность встретить какую-либо звезду в объеме $\mathrm{d}V$, взятом на расстоянии z от плоскости симметрии Галактики,

равна $w(z)\,\mathrm{d}V$. Таким образом, w(z) есть среднее число звезд в единице объема. Точно также предположим, что поглощающая материя сосредоточена в облаках, которые имеют линейные размеры, малые по сравнению с расстояниями между ними и также распределены в виде плоско-параллельных слоев, так что вероятность встретить облако в объеме $\mathrm{d}V$ равна $v(z)\,\mathrm{d}V$.

Функцию светимости B(i), представляющую вероятность того, что наудачу взятая звезда имеет светимость меньшую, чем i, мы будем считать независящей от координат. Точно также мы допустим, что "функция непрозрачности" $F(\sigma)$, выражающая вероятность того, что оптическая толщина случайно взятого облака при пересечении его лучом, имеющим случайное направление и расположение, меньше σ , не зависит от координат. Всем поглощающим облакам мы припишем одно и то же поперечное сечение S_0 . Тогда вероятность того, что какой-либо луч на влементе пути ds встретит поглощающее облако, будет равна:

$$dp = v(z)S_0 dz$$
.

Наряду с оптической толщиной с одного поглощающего облака мы часто будем употреблять также величину, представляющую собой коэфициент прозрачности, определяемый соотношением

$$d = e_{-2}$$

§ 3. ВНЕГАЛАКТИЧЕСКИЕ ТУМАННОСТИ

В случае внегалактических туманностей мы имеем то упрощающее обстоятельство, что совокупность светящихся объектов (галактик) расположена вне слоя поглощающих облаков. Повтому флуктуации парциальных поверхностных яркостей, обусловленных совокупностью внешних галактик, вызываемые галактическим поглощением, совершенно независимы от флуктуаций тех же парциальных поверхностных яркостей, вызываемых реальными колебаниями в пространственном распределении и светимостях втих объектов. Повтому представляется возможным сначала рассмотреть лишь флуктуа-

ции, вызываемые клочковатостью поглощающего слоя в Галактике.

Допустим поэтому, что совокупность внешних галактик обусловливает на значительном протяжении постоянную парциальную поверхностную яркость I_0 , которая наблюдалась бы нами при отсутствии поглощения. Колебания же наблюдальной парциальной поверхностной яркости I зависят от колебаний суммарной оптической толщины τ_b , проходимой лучом на галактической широте b, поскольку

$$I = I_0 e^{-\tau_b} \tag{3.1}$$

а в свою очередь τ_b представляет собой сумму случайного числа случайных величин — оптических толщин σ отдельных облаков.

Повтому нас должен интересовать закон распределения величины τ_b или, в случае трудности его определения, значения математических ожиданий различных степеней величины $e^{-\tau_b}$.

Для разрешения этой задачи решим другую, вспомогательную задачу. Возьмем объект, находящийся в направлении полюса Галактики на расстоянии z от нас и найдем вероятность того, что луч от этого объекта пройдет оптическую толщину, меньшую τ . Эта вероятность будет зависеть также от z и мы обозначим ее через u_z (τ).

Сосчитаем величину $u_{z+dz}(\tau)$, т. е. вероятность того, что луч от более высокой точки z+dz проходит оптическую толщину τ . Это может быть в двух случаях: или луч на пути от z+dz до z не встречает ни одного облака, а на расстоянии от z до 0 проходит толщину τ или же на пути от z+dz до z он проходит через одно облако, оптическая толщина которого σ , а на пути от z до 0 проходит оптическую толщину меньшую $\tau-\sigma$. При этом σ может иметь различные значения. Поэтому на основании теорем о сложении и умножении вероятностей будем иметь:

$$u_{z+dz}(\tau) = u_z(\tau) [1 - v(z) S_0 dz] + v(z) S_0 dz \int_0^{\tau} u_z(\tau - \sigma) dF(\sigma) (3,2)$$

Отсюда получаем уравнение

$$\frac{\mathrm{d}\mathbf{u}_{z}}{\mathrm{d}z} = - \mathbf{v}(z) \mathbf{S}_{0} \left[\mathbf{u}_{z} \left(\tau \right) - \int_{0}^{\tau} \mathbf{u}_{z} \left(\tau - \sigma \right) \mathrm{d}\mathbf{F}(\sigma) \right]$$
 (3.3)

Обозначим

$$\int_{0}^{z} v(z) S_{v} dz = \nu(z)$$
 (3,4)

где $\nu(z)$, очевидно, равно среднему числу облаков на пути луча, идущего параллельно оси z от 0 до z. Вместо z удобно рассматривать в качестве вспомогательного параметра $\nu = \nu(z)$ и вместо $\nu(z)$ писать $\nu(z)$. Тогда

$$\frac{\mathrm{d}\mathbf{u}_{v}(\tau)}{\mathrm{d}\mathbf{v}} = -\mathbf{u}_{v}(\tau) + \int_{0}^{\tau} \mathbf{u}_{v}(\tau - \sigma) \, \mathrm{d}\mathbf{F}(\sigma) \tag{3.5}$$

Это и есть уравнение, которому удовлетворяет функция распределения $u_{\cdot,}(\tau)$. Нас будут интересовать значения этой функции на внешней границе слоя облаков, где у примет некоторое наибольшее значение v_0 . Мы видим, что функция распределения оптических толщин $u_{\cdot,\cdot,}(\tau)$ не зависит от строения слоя облаков, τ . е. от детвлей поведения функции v(z), дающей концентрацию облаков, а только от значения $v=v_0$, τ . е. интеграла (3,4) на внешней границе слоя.

Поскольку решение уравнения (3,5) в общем случае $(\tau. e. при произвольном виде функции <math>F)$ нельзя представить в конечном виде, мы ограничимся прямым выводом из него нужных нам величин, $\tau. e.$ математических ожиданий различных степеней величины $Q=e^{-\tau}$. представляющей собой ковфициент прозрачности суммарного слоя облаков, простирающегося по толщине от 0 до z.

Среднее значение поверхностной яркости

$$\overline{I} = I_0 \int e^{-\tau} du_{\nu_0}(\tau) = I_0 \, \overline{Q}$$

также как и среднее значение к той степени той же яркости

$$\overline{l^k} = l_a^k \int e^{-k\tau} du_{\gamma_0}(\tau) == l_a^k \overline{Q}^k$$
 (3,6)

как мы видим, выражается через средние \overline{Q}_{H} $\overline{Q^{k}}$.

Для вычисления этих величин помножим обе части (3,5) на е $-k^{-}$ и проинтегрируем по τ . Имеем после перестановки порядка интегрирования в правой части:

$$\frac{d}{d\nu} \int_{0}^{\infty} e^{-k\tau} u_{\nu}(\tau) d\tau = -\int_{0}^{\infty} e^{-k\tau} u_{\nu}(\tau) d\tau +$$

$$+ \int_{0}^{\infty} e^{-kx} dF(x) \int_{0}^{\infty} e^{-k\tau} u_{\nu}(\tau) d\tau$$

и, поскольку из

$$\int_{0}^{\infty} e^{-k\tau} u_{\tau}(\tau) d\tau =$$

$$=\frac{1}{k}\left(1-e^{-k\tau}\right)u_{\nu}\left(\tau\right)\Big|_{0}^{\infty}-\frac{1}{k}\int_{0}^{\infty}\left(1-e^{-k\tau}\right)du_{\nu}\left(\tau\right)$$

а также из $u_{\gamma}(\infty) = \int_{0}^{\infty} du_{\gamma}(\tau) = 1$ следует, что

$$\int_{0}^{\infty} e^{-k\tau} u_{\nu}(\tau) d\tau = \frac{1}{k} \int_{0}^{\infty} e^{-k\tau} du_{\nu}(\tau)$$

Получаем

$$\overline{e^{-k\overline{\sigma}}} = \int_{0}^{\infty} e^{-k\sigma} dF(\sigma) = \overline{q^k}$$
 (3,8)

есть среднее значение — k той степени прозрачности одного облака.

Сравнивая (3,7) с (3,6), получаем

$$\frac{\mathrm{d}}{\mathrm{d} y} \ \overline{\mathrm{Q}^{k}} = -\left(1 - \overline{\mathrm{q}^{k}}\right) \ \overline{\mathrm{Q}^{k}} \tag{3.9}$$

Полученное диференциальное уравнение для $\overline{Q^k}$ имеет решение

$$\overline{Q^k} = C e^{-\gamma (1-\overline{q^k})}$$

и так как при v=0 должно быть $\overline{Q^k}=1$, окончательно находим $e^{-k\tau}=\overline{Q^k}=e^{-v\left(1-\overline{q^k}\right)}$

$$I^{k} = \overline{I}_{a}^{k} e^{-\gamma_{0}(1-\overline{q^{k}})}$$
 (3.10)

Эта формула справедлива для любого значения у, в частности для границы слоя облаков в Галактике, где у = y_0

$$\overline{I^{\mathbf{k}}} = \overline{I_{\mathbf{v}}^{\mathbf{k}}} e^{-v_{\mathbf{v}}(1-\overline{q^{\mathbf{k}}})}$$
(3,11)

Мы вывели эту формулу для области близ полюса Галактики $\left(b=\frac{\pi}{2}\right)$. Но, очевидно, что со статистической

точки эрения нет принципиальной разницы между характером явления в направлении на полюс Галактики и в направлении, соответствующем любой галактической широте. Вся разница будет лишь в том, что если для направления на полюс Галактики на границе слоя $V = V_0$, то в направлении с широтой в среднее число облаков, пересекаемых лучом до границы слоя облаков будет

$$y = \frac{y_0}{\sin b}$$

Повтому для любого направления в Галактике мы имеем согласно (3,10)

$$\overline{l^k} = l_a^k e^{-\frac{v_a}{\sin b} (1 - \overline{q^k})}$$
 (3,11)

Зная I^k , мы легко можем вывести любые нужные нами величины. Прежде всего:

$$\overline{I}^{k} = I_{0}^{k} e^{-\frac{y_{0}}{\sin b} (1 - \overline{q})}$$
(3,12)

Далее, для среднего квадратичного отклонения имеем:

(3,13)

$$\frac{1}{(I-\overline{I})^2} = \frac{1}{|I|^2} - \frac{1}{\overline{I}} = \frac{1}{I_0} \left(e^{-\frac{v_0}{\sin b} (1-\overline{q}^2)} - e^{-\frac{2v_0}{\sin b} (1-\overline{q})} \right)$$

Так как само значение I_0 непосредственно не определяется из наблюдений, то целесообразно в этом случае (также как весьма часто и в дальнейшем) ввести относительное значение среднего квадрата отклонения:

$$\frac{\overline{(I-\overline{I})^2}}{\overline{I}^2} = e^{-\frac{b_0}{\sin b}} \frac{[(1-\overline{q^2})-2(1-\overline{q})]}{[1-2\overline{q}+\overline{q^2}]} - 1 =$$

$$= e^{-\frac{b_0}{\sin b}} \frac{(1-2\overline{q}+\overline{q^2})}{-1}$$
(3.14)

которое уже не содержит I_0 . Левая часть (14) может быть непосредственно получена из наблюдений. Наконец, (3,14) можно переписать в виде:

$$\frac{\overline{(1-1)^2}}{\overline{1}^2} = e^{\nu_0 \operatorname{cosec} b (1-q)^2} - 1$$
 (3,15)

Уже на этом примере видно, что задачи рассматриваемого типа приводят для относительного значения среднего квадратичного отклонения к выражениям, совершенно необычным для флуктуационных задач, встречающихся в физике.

Однако заметим, что результат решения рассмотренной выше задачи трудно сравнить с наблюдениями, так как пока мы еще не имеем возможности непосредственно наблюдать суммарную звездную величину всех внешних галактик для какого-нибудь участка неба.

Между тем, небольшое изменение в постановке задачи приводит, как это показано в следующем параграфе, к результатам, которые могут быть легко сравнены с наблюдениями.

§ 4. ФЛУКТУАЦИИ В ЧИСЛАХ ВНЕГАЛАКТИЧЕСКИХ ТУМАННОСТЕЙ

Работы Шапли и Хаббла содержат подсчеты чисел внегалактических туманностей до некоторых предельных величин на большом числе участков неба. Для сравнения втих данных с теоретическими выводами следует построить теорию флуктуаций в числах внегалактических туманностей, блеск которых превосходит некоторую определенную границу.

Как известно, число внегалактических туманностей на один квадратный градус ярче видимой величины m в каком-либо участка неба определяется формулой:

$$N = N_1 \cdot 10^{0.6 \text{ m}} \tag{4.1}$$

Если поглощение, выраженное в звездных величинах и обусловленное поглощающими облаками в Галактике, обозначим через Δm , то

$$m = m_0 + \Delta m$$

где m_0 — "исправленная" для данного направления предельная видимая величина. Тогда

$$N = N_1 \cdot 10^{0.6 \, \Delta m} \cdot 10^{0.6 \, m_0}$$

Мы можем принять, что для данного m_0 число N для всего неба (или для достаточно больших областей неба) должно быть постоянным, независящим от космического поглощения в Галактике. Это значит, что мы должны иметь:

$$N_1 \cdot 10^{0.6 \, \Delta m} = N_0 = Const.$$

Откуда

$$N_1 = N_0 \cdot 10^{-0.6 \, \Delta m} \tag{4.2}$$

Но поглощение Am выражается через оптическую толщину, проходимую лучом, следующим образом:

$$\Delta m = \frac{\text{Mod}}{0.400} \tau = 1,086 \tau$$

Поэтому

$$N_1 = 10$$
 $\frac{-\frac{3}{2} \text{ Mod } \tau}{= e} - \frac{3}{2} \tau$ (4,3)

Вводя (4,3) в (4,1), находим

$$N = N_0 e^{-\frac{3}{2}}$$
 (4,4)

Повтому вычисление средних значений различных степеней N (при заданной предельной величине III) сводится к вычислению средних значений различных степеней величи-

 $-\frac{3}{2}$ т ны е . Таким образом, мы приходим к задаче, которая была разобрана в предыдущем параграфе, с той разницей, что там мы вычисляли средние значения различных целых степеней е , а здесь нам нужны средние значения целых

 $-\frac{3}{2}$ - . Сравнивая (4,4) с (3,1) и используя (3,10), мы получаем отсюда:

$$\overline{N}^{k} = N_{o}^{k} e^{-\nu \left(1 - \overline{q^{1/s^{k}}}\right)} \cdot 10^{0.6 \text{ km}}$$
 (4.5)

Исходя из (4,5), для относительного значения среднего квадратичного отклонения находим:

$$\frac{\overline{(N-\bar{N})^2}}{\bar{N}^3} = \frac{\bar{N}^2}{\bar{N}^2} - 1 = e^{\gamma_0 \csc b} (1-q^{3/2})^2$$
 (4,6)

Определяя из наблюдений относительное значение среднего квадратичного отклонения на данной галактической широте, мы тем самым получаем возможность вычисления значения показателя в правой части уравнения (4,6), т. е.

$$\frac{\nu_0}{\sin b} \quad \overline{\left(1-q^{3/2}\right)^2}$$

Производя эти вычисления для разных галактических

широт, мы можем произвести различные определения одной и той же величины

$$f_2 = \nu_0 \sqrt{(1 - q^{3/2})^3} \tag{4.7}$$

Окончательное значение f₂ должно быть выбрано путем осреднения. Наиболее удобным способом определения f₂ является составление эмпирического графика зависимости

$$\log\left[\frac{\overline{N^2}}{N}-1\right]$$
 от cosec b. Согласно (4,6) эта зависимость

должна быть прямолинейная и f_3 определяется из углового коэфициента соответствующей прямой.

С другой стороны, на основании (4,5)

$$\overline{N} = N_0 e^{-\gamma_0 \operatorname{cosec} b \left(1 - q^{3/2} \right)}$$
 (4,8)

откуда

$$\log \overline{N} = \log N_0 - \nu_o cosec \ b \, \overline{\left(1 - q^{3/2}\right)}$$

Сопоставляя значения \overline{N} для разных широт b, мы определяем из графика зависимости $\log \overline{N}$ и cosec b значение углового коэфициента

$$f_1 = v_0 \left(1 - q^{a_2} \right) \tag{4.9}$$

Найдя, таким образом, из наблюдений f_1 и f_2 , мы тем самым будем иметь определенные статистические характеристики совокупности поглощающих облаков. Однако это не дает еще возможности найти отдельно значения v_0 , $q^{3/2}$ и q^3 . Только имея из каких-либо данных еще одно соотношение между этими тремя величинами, мы можем определить каждую из них.

Допустим на одну минуту, что значения q для разных поглощающих облаков мало отличаются от среднего значения $q = q_0$ (т. е. что дисперсия q очень мала).

Тогда можно написать приближенно

$$f_2 = \nu_o \left(1 - q_o^{3/2} \right)^2 \tag{4.10}$$

$$f_1 = v_0 \left(1 - q_{ii}^{3/2} \right) \tag{4.11}$$

В таком случае, зная численные значения f_1 и f_2 , можем вычислить ν_0 и q_0 . Например, мы найдем, что

$$1 - q_0^{3/2} = -\frac{f_2}{f_1}$$

откуда

$$q_0^3 = 1 - \frac{f_2}{f_1}$$
 (4,12)

На самом же деле, однако, вследствие наличия дисперсии в ${\bf q}$

$$\overline{(1\!-\!q^{3/2})^2}>\overline{(1\!-\!q^{3/2})}\cdot ^2$$

Повтому

$$\frac{f_2}{f_1} = \frac{\overline{\left(1 - q^{3/2}\right)^2}}{\overline{\left(1 - q^{3/2}\right)}} > \overline{1 - q^{3/2}}$$

$$\overline{q^{3/2}} > 1 - \frac{f_2}{f_1}$$

т. е.

т. е. определенное выше значение $q_0^{3/2}$ является на самом деле лишь нижней границей для величины $\overline{q}^{3/2}$.

Несмотря на вто, вычисление q_0 на основании (4,12) должно дать представление о порядке неличины встречающихся среди облаков значений ковфициента проэрачности. Идя по этому пути, мы получили для q_0 , используя подсчеты Хаббла $q_0 = 0.78$ и согласно данным Шапли $q_0 = 0.81$.

Aля того же, чтобы раздельно определить v_0 и какоєлибо из средних значений q, нужно использовать дополнительные данные. Такими данными могут, в частности, служить звездные подсчеты, на анализе которых мы остановимся в следующих параграфах.

Само собой разумеется, что наряду с флуктуациями, вызываемыми изменениями в поглощении, должны существовать также и естественные флуктуации в числах внегалактических объектов, обусловленные случайными колебаниями их чисел в пространстве. Совместный учет обоих этих факторов может быть произведен без особого труда.

Для этого мы должны рассматривать введенные выше значения N, вычисляемые согласно формуле (4,4) как средние значения по отношению к возможным естественным флуктуациям чисел внегалактических туманностей, при заданном значении случайной переменной т.

Поэтому вероятность того или иного значения фактически наблюдаемого числа п внегалактических туманностей будет определяться в виде интеграла от произведения вероятности этого значения п при заданном N (которое зависит от т) на плотность вероятности различных значений т. Иными словами:

$$P(n) = \int P_{N(\tau)}(n) du_{\nu}(\tau) \qquad (4.1^{\circ})$$

где P_{N(т)} (п) есть вероятность значения п при заданном N (или т). Согласно формуле Пуассона

$$P_{N(\tau)}(n) = e^{-N(\tau)} \frac{[N(\tau)]^n}{n!}$$

Подставляя это выражение в (4,13), мы получаем для математических ожиданий первой и второй степеней п:

$$\overline{n} = \Sigma P(n) n = \int \Sigma n P_{N(\tau)}(n) du, (\tau) = \int N du, (\tau) = \overline{N}$$

$$\overline{n^2} = \Sigma P(n) n^2 = \int \Sigma n^2 P_{N(\tau)}(n) du, (\tau) = \int (N^2 + N) du, (\tau)$$

$$= \overline{N^2} + \overline{N}$$

$$(4.15)$$

так как при законе Пуассона имеем, как обычно

$$\Sigma n^2 P_{N(\tau)}(n) = [N(\tau)]^2 + N(\tau)$$
 (4.15)

Величины N и N^2 в формулах (4,14) и (4,15) должны быть внесены из (4,5). Из этих формул непосредственно получаем:

$$(n-n)^2 = \overline{n^2} - \overline{n}^2 = \overline{N^2} + \overline{N} - \overline{N}^2 = \overline{(N-N)^2} + \overline{N}$$
 (4,17) т. е. средний квадрат отклонений в данном случае равен сумме средних квадратов отклонений, обусловлевных двумя

рассматриваемыми причинами. Так и должно было полу-

читься, поскольку эти причины действуют независимо друг от друга.

Для относительного значения среднего квадратичного

отклонения мы, в результате, вместо (4,6) найдем:

$$\frac{(\overline{n-\overline{n}})^3}{\overline{n}^2} = e^{\nu_0 \operatorname{cosec} b \cdot \overline{(1-q^{3/2})^2}} - 1 + \frac{1}{N_0} e^{\frac{\nu_0}{\sin b} \cdot (1-q^{3/2})}$$
(4,18)

При убывании галактической широты последний член полученного выражения растет быстрее, чем первый. Когда для подсчетов взяты достаточно большие площадки на высоких широтах, им можно пренебречь, так как № велико. Однако при убывании в он становится в конце концов больше первого члена и им нельзя пренебрегать. Иными словами на самых низких галактических широтах случайные колебания в числах туманностей играют большую роль, чем колебания в прозрачности поглощающего слоя.

§ 5. ФЛУКТУАЦИИ ПОВЕРХНОСТЕЙ ЯРКОСТИ МЛЕЧНОГО ПУТИ

Для анализа флуктуаций поверхностной яркости Млечного Пути мы сделаем сначала допущение, что эти флуктуации вызываются только флуктуациями в распределении поглощающих облаков. Что же касается естественных пространственных флуктуаций в распределении самих звезд, то ими мы будем пренебрегать. Такое пренебрежение справедливо, когда число звезд весьма велико по сравнению с числом облаков и если вместе с тем по сравнению с числом облаков и если вместе с тем по сравнению с числом облаков велико число звезд наивысшей светимости. На самом деле это последнее условие не выполняется. Повтому нам нужно будет учесть в дальнейшем и влияние флуктуаций в числах звезд. Но пока, как выше указывалось, мы будем учитывать лишь влияние дискретности структуры поглощающего слоя.

Пусть мы имеем слой, в котором равномерно распределены поглощающие облака. Мы уже упоминали, что эту равномерность следует понимать в том смысле, что вероятность встретить облако в элементарном объеме dV равна

v dV. гле v — постоянная. Пусть ф(q) есть вероятность того. что ауч. саучайно ориентированный в пространстве, испытает при прохождении через облако такое поглощение, что его первоначальная интенсивность помножится на множитель (ковфициент прозрачности облака), меньший чем о. Возможность различных значений коэфициента прозрачности всего облака, как целого, связана не только с тем, что луч может пройти через облако в разных местах и в разных направлениях, но и с тем, что сами облака могут быть различны. Однако мы допустим, как и раньше, что "функция прозрачности" Ф(О), определяющая распределение вероятностей возможных значений о, одинакова повсюду внутри слоя. В этом смысле слой облаков будем считать однородным. Каждому значению коэфициента прозрачности О соответствует такое значение о оптической толщины облака вдоль рассматриваемого луча, что

$$q = e^{-\tau} \tag{5.1}$$

()чевидно, что между функцией $\varphi(q)$ и ранее введенной функцией $F(\sigma)$ существует простая связь

$$\varphi(e^{-\sigma}) = 1 - F(\sigma)$$

Пусть совокупность звезд, дискретностью распределения которых мы пока пренебрегаем, определяет собой некоторый макроскопический объемный коэфициент излучения η . Тогда интенсивность луча, идущего к наблюдателю и расположенного целиком внутри слоя, будет

$$I = \int_{0}^{\infty} e^{-t(s)} \eta ds$$
 (5,2)

где t(s) есть случайная переменная, равная суммарной оптической толщине всех облаков, встречающихся на пути луча от наблюдателя (s=o) до точки s:

$$t(s) = \Sigma \; \sigma_i$$

Интеграл (5,2) дает интенсивность луча, идущего параллельно плоскости Галактики. Само собой разумеется, что трудно говорить о реальной однородности слоя облаков и звезд вдоль всего бесконечного луча. Однако легко видеть, что существенным является лишь требование о сохранении условий однородности только до достаточно больших оптических расстояний, так как более отдаленные части луча вследствие значительного поглощения будут мало влиять на значение интеграла (5,2).

Задача заключается теперь в том, чтобы определить функцию распределения интенсивности, т. е. такую функцию $\Psi(I)$, которая дает вероятность того, что интенсивность дуча будет меньше данного значения I. Таким образом, мы здесь встречаемся с задачей о распределении значений определенного интеграла, под знаком которого находится функция, принимающая случайные значения. Уравнение для функции $\Psi(1)$ легко получить, если воспользоваться следующим принципом инвариантности: вследствие однородности в макроскопическом смысле) слоя поглощающих облаков функция $\Psi(I)$ не изменится, если наблюдатель передвинется вдоль луча в том или ином направлении на конечный отрезок. При этом следует разъяснить, что фактически для каждого конкретного случая при таком передвижении наблюдателя интенсивность изменится, но функция распределения вероятностей $\Psi(I)$ останется неизменной. Этот принцип справедлив только потому, что луч проходит весь свой бесконечный путь в однородной среде. Выше указывалось, что существование гравицы Галактики на конечном расстоянии от наблюдателя нарушает это условие однородности. Но из-за наличия поглощения даже значительные отклонения от однородности на больших расстояниях от наблюдателя скажутся уже сравнительно мало (грубо говоря, по той же причине, по которой распределение плотностей и температур в глубоких слоях Солнца практически несущественно для распределения интенсивности по диску Солнца).

Для вывода нужного нам уравнения, из которого будет

определяться функция распределения $\Psi(I)$, мы поставим сначала следующий вопрос: дано, что

$$\int_{\Delta s}^{\infty} e^{-[t(s)-t(\Delta s)]} r_i ds$$

имеет значение меньшее, чем I. Какие значения и с какими вероятностями примет в этом случае интеграл

$$\int_{0}^{\infty} e^{-t(s)} \eta ds$$

выражающий ту же интенсивность, но для наблюдателя, отодвинутого назад на расстояние Δs . При этом в первом из этих интегралов $t(\Delta s)$ есть оптическая толща отрезка от 0 до Δs . Очевидно, что с вероятностью $1-\kappa \Delta s$ будут возможны значения меньшие

При этом $\alpha\Delta s$ есть вероятность встретить на отрезке одно облако. Но, с другой стороны, с вероятностью $\alpha\Delta s$ dq (q) существует возможность, что на отрезке $\alpha\Delta s$ встретится одно облако с прозрачностью, заключенной в пределах между q и q dq dq, и тогда интенсивность в точке $\alpha\Delta s$ будет меньше, чем qI. При этом надо иметь в виду всевозможные случаи, когда q находится в различных интервалах.

Поэтому, если мы спросим какова вероятность неравенства

$$\int_{0}^{\infty} e^{-t(s)} \eta ds < X$$

если вероятность неравенства $\int_{\Delta_s}^{\infty} e^{-[1(s)-1(\Delta s)]} \eta ds < 1$ равна

 $\Psi^*(I)$, то следует ответить, что она согласно теоремам сложения и умножения вероятностей равна

$$(1 - \varkappa \Delta s) \, \Psi \, (X - \eta \, \Delta s) \, + \varkappa \Delta s \, \int \! \Psi \, \left(\frac{X}{q} \right) d\phi(q).$$

При втом мы отбрасываем члены второго и более высокого порядка, связанные с тем, что на промежутке Δs могут встретиться два (или больше) облака, поскольку в дальнейшем при $\Delta s \rightarrow o$ они потеряют свое значение.

В силу принципа инвариантности мы можем считать, что найденная вероятность равна $\Psi^*(X)$. Отсюда получаем равенство:

$$\Psi(X) = (1 - \varkappa \Delta s) \Psi(X - \eta \Delta s) + \varkappa \Delta s \int \Psi\left(\frac{X}{q}\right) d\varphi(q)$$

Написав в том же приближении

$$\Psi(X - \eta \Delta s) = \Psi(X) - \eta \Delta s \Psi'(X)$$

и произведя сокращение, получаем

$$\Psi(X) + \frac{\eta}{\varkappa} \Psi'(X) = \int \Psi\left(\frac{X}{q}\right) d\varphi(q)$$
 (5,3)

Введем вместо X, означающего некоторое значение интенсивности, новую переменную у

$$X = \frac{\eta}{z} \quad y \tag{5.4}$$

Тогда уравнение (5,3) примет вид

$$\Psi(y) + \Psi'(y) = \int \Psi\left(\frac{y}{q}\right) d\varphi(q). \tag{5.5}$$

Величина у является той же интенсивностью, выраженной в единицах, равных $\frac{\eta}{z}$. Введя плотность вероятности для величины у

$$f(y) = \Psi'(y) \tag{5.6}$$

и продиференцировав (5,5), найдем:

$$f(y) + f'(y) = \int f\left(\frac{y}{q}\right) \frac{d\varphi(q)}{q}$$
 (5,7)

Из этого уравнения легко найти все математические ожидания μ_0 различных степеней интенсивности у, выраженные через математические ожидания q различных степеней

коэфициента прозрачности q. Действительно, помножая (40) на y^n и интегрируя от () до ∞ по y и, принимая во внимание, что f(y) в бесконечности весьма быстро стремится к нулю, а также переставив в правой части полученного равенства порядок интегрирования, после некоторых переделок получим рекуррентное соотношение:

$$\mu_n = \frac{n\mu_{n-}}{1 - \overline{q^n}} \cdot \tag{5.8}$$

Отсюда, в частности, имеем:

$$\overline{y} = \mu_1 = \frac{1}{1 - \overline{q}} \tag{5.9}$$

Что касается до относительного значения среднего квадрата отклонения, то для него получаем:

$$\frac{\overline{(y-y)^2}}{\overline{y}^2} = \frac{\overline{y}^2}{\overline{y}^2} - 1 = \frac{\overline{(1-q)^2}}{1-\overline{q}^2}$$
 (5,10)

Особенно простой вид принимает выражение (5,10) в том случае, когда все поглощающие облака имеют один и тот же коэфициент прозрачности q. Тогда:

$$\frac{(y-y)^2}{\overline{y}^2} = \frac{1-q}{1+q}$$
 (5,11)

Из (5,11) видно, что, имея из наблюдений относительное значение среднего квадратичного отклонения от средней интенсивности в Млечном Пути, мы можем определить q в этом предположении. На самом деле величина q имеет определенную дисперсию. Поэтому значение q, определенное из (5,11), как это видно из (5,10), будет соответствовать некоторому среднему значению q, но при этом не просто среднему арифметическому или среднему квадратичному.

Во всяком случае, однако, можно на основании (5,10) сказать, что

$$\frac{\overline{(y-y)^2}}{\overline{y}^2} = \frac{1-2\overline{q}+\overline{q}^2}{1-\overline{q}^2} > \frac{1-2\overline{q}+\overline{q}^2}{1-\overline{q}^2} = \frac{1-\overline{q}}{1+\overline{q}} \quad (5,12)$$

т. е. если q_0 есть вычисленное на основании (5,11) значение q, то

 $\frac{1-q_0}{1+q_0} > \frac{1-q}{1+q}$

откуда следует, что

$$q_0 < \overline{q}$$

т. е. вычисленное на основании (5,11) значение q меньше, чем математическое ожидание.

Надо заметить, что при сравнении с наблюдениями следует учитывать, что полученные формулы относятся только к прямому свету звезд. Между тем непосредственно наблюдаемая и измеряемая поверхноствая яркость Млечного Пути включает в себе также и галактический рассеянный свет, т. е. свет звезд, рассеиваемый совокупностью пылевых облаков. Только в том случае, когда поверхностная яркость получается посредством суммирования блеска отдельных звезд, получаемые формулы применимы прямо. Однако можно наметить также путь учета галактического рассеянного света.

§ 6. УЧЕТ РАССЕЯННОГО ГАЛАКТИЧЕСКОГО СВЕТА

В рамках сделанных выше предположений о том, что числа звезд даже наивысшей светимости велики по сравнению с числом поглощающих облаков и о плоско-параллельных слоях, можно принять, что общая освещенность в каждой точке плоскости Галактики одна и та же.

Правда, интенсивность света, идущего из различных направлений, будет разная, вследствие наличия флуктуаций, но в результате интегрирования по всем направлениям эти флуктуации сгладятся. Если поглощающие облака освещены одинаково, то поверхностная яркость каждого из них будет равна постоянной величине В, умноженной на нексторый коэфициент диффузного отраження г в направлениях, лежащих в плоскости Галактики. Итак каждое из облаков будет вносить дополнительную интенсивность гВ, причем вообще значение г будет различно для различных облаков.

Русаков показал, что учет рассеянного света может

быть произведен наиболее простым образом, если мы примем, что г и q постоянны.

Тогда доходящая до нас интенсивность п-го облака, расположенного на луче зрения, будет вследствие поглощения сведена к

и, суммируя, мы найдем для рассеянного света

$$I_{pac} = rB(1 + q + q^2 + \cdots) = \frac{rB}{1 - q}$$
 (6,1)

Эта интенсивность, прибавляясь к прямому свету звезд, будет во всех случаях одна и та же и повтому приведет к уменьшению размеров флуктуаций в яркости Млечного Пути.

Однако мы выше видели, что необходимо учесть различие значений q для различных облаков. Точно также могут отличаться друг от друга значения г.

Задача может быть решена если будет задан закон распределения величин ги q. Не ставя вопрос в столь общем виде, мы можем ограничить себя предположением, что г пропорционально 1—q

$$r = r_0 (1-q)$$
 (6,2)

Тогда принцип инвариантности сразу дает ответ на вопрос о возможных интенсивностях рассеянного света. Пусть интенсивность некоторого луча рассеянного света в некоторой точке равна I_0 . Пройдя через очередное облако, его интенсивность вследствие ослабления и прибавления отраженного света станет равной

$$I_1 = qI_0 + r_0(1-q)B$$

Написав это равенство з виде

$$I_1 - r_0 B = q (I_0 - r_0 B)$$

мы приходим к выводу, что абсолютное значение величины $I - r_0 B$ после прохождения каждого облака помножается на q, т. е. среднее значение $I - r_0 B$ вообще убывает, что противоречит принципу инвариатности. Только если

$$I - rB = 0$$

оно останется неизменным. Отсюда следует, что с вероятностью, равной единице

$$I = r_0 B \tag{3.3}$$

т. е. и в этом случае мы не будем иметь никаких флуктуаций в поверхностных яркостях рассеянного света.

В дальнейшем, однако, следует учесть, что освещенность облаков должна быть на самом деле разной. Причиной этого является то, что наше предположение о том, что звезд даже самых высоких светимостей много по сравнению с числом облаков, является весьма грубым. Уже тот факт, что одни из облаков наблюдаются нами в виде светлых (освещенных) туманностей, а другие лишь как темные, говорит о необходимости более строгого подхода к этому вопросу.

§ 7. РЕШЕНИЕ УРАВНЕНИЯ

Возвращаясь к уравнению $(\bar{5},7)$, мы должны отметить, что в частном случае, когда дисперсия в прозрачностях q настолько мала, что ею можно пренебречь, оно допускает точное решение в виде ряда. Если q имеет только одно значение q_0 во всех случаях, то $\phi(q)$ равно нулю для значений q между 0 и q_0 и равно единице, начиная от q_0 до единицы. Повтому уравнение (5,7) в этом случае получает вид

$$f(y) + f'(y) = \frac{1}{q_0} f\left(\frac{y}{q_0}\right) \tag{7.1}$$

Его решение имеет вид:

$$f(y) = C_0 \left[e^{-y_0} + \sum_{i=1}^{\infty} \frac{e^{-\frac{y}{q_0}}}{q_0^i \left(1 - \frac{1}{q_0^2}\right) \left(1 - \frac{1}{q_0^2}\right) \cdots \left(1 - \frac{1}{q_0^1}\right)} \right] (7,2)$$

где Со должно быть определено из условия нормирования:

$$\int_{0}^{1} f(y) dy = 1$$

Отсюда легко получаем:

$$C_0 = \frac{1}{1 + \sum_{i=1}^{\infty} \left(1 - \frac{1}{q_0}\right) \left(1 - \frac{1}{q_0^2}\right) \dots \left(1 - \frac{1}{q_0^i}\right)} (7,3)$$

Это решение было впервые дано в работе Русакова.

§ 8. ОБОБЩЕНИЕ МЕТОДА ПОВЕРХНОСТНЫХ ЯРКОСТЕЙ

Выше мы подвергли анализу флуктуации в поверхностных яркостях. Но поверхностная яркость является лишь одним из параметров, характеризующих звездное поле в данной точке небесной сферы. Вообще, для каждой точки неба звездное поле характеризуется распределением приходящихся на один квадратный градус звезд по видимым величинам. Оно может, в частности, характеризоваться функцией N(m), дающей число звезд до величины m на единицу телесного угла или же функцией A(m), дающей число звезд от $m-\frac{1}{2}$

до $m + \frac{1}{2}$ в единице телесного угла. Величина поверхностной яркости I является суммой видимых яркостей звезд в единице телесного угла

$$1 = \int_{-\infty}^{\infty} 10^{-0.4 \, \text{m}} \, \text{A (m) dm}$$
 (8,1)

т. е. одним из значений функций a(k), получаемой из A(m) путем преобразования Лапласа:

$$\dot{a}(k) = \int_{-\infty}^{\infty} e^{-km} A(m) dm \qquad (8,2)$$

Если трудно подвергнуть непосредственному анализу флуктуации значений A(m), то возникает вопрос: нельзя ли

подвергнуть изучению флуктуации a(k) вообще, а не только одно из значений этой функции, т. е. І. Иными словами нельзя ли провести изучение флуктуаций такой функции. задание которой вполне эквивалентно заданию A(m)? Тем самым вопрос о флуктуациях в звездном поле будет поставлен во всей широте; а не узко, как это было до сих пор, пока мы ограничивались изучением флуктуаций лишь одного параметра (8.1).

Оказывается, что возможность хотя бы частичного исследования этих флуктуаций имеется. Заметим, что при решении задачи мы будем исходить из тех же предположений, что и раньше, в частности, из однородности как слоя облаков, так и слоя звезд в плоскости Галактики.

Основой нашего исследования будет служить первое интегральное уравнение звездной статистики, написанное в виде:

$$N(m) = \int_{-\infty}^{\infty} D(m - M) \Phi(M) dM \qquad (8,3)$$

где $\Phi(M)$ есть функция светимости, так, что $\Phi(M)$ dM есть вероятность того, что взятая наудачу в пространстве звезда имеет абсолютную величину, заключенную между M и M+dM, а D(x) есть функция распределения видимых модулей расстояний, т. е. D(x) равно числу звезд, видимые модули расстояний которых меньше x. Под видимым модулем расстояния мы подразумеваем полную разность m-M, из которой не исключено поглощение, в отличие от исправленного модуля расстояния, который равен

$$x_0 = 5 \lg r - 5 \tag{8.4}$$

где τ — расстояние, и который отличается от видимого модуля на поглощение Δm , испытываемое светом звезды:

$$x = x_e + \Delta m \tag{8.5}$$

Помножая (8,3) на е -- кіп и интегрируя, мы получаем, как

обычно при лапласовском преобразовании выражений типа (8,3)

$$\int_{-\infty}^{\infty} e^{-km} N(m) dm =$$

$$= \int_{-\infty}^{\infty} \Phi(M) e^{-kM} dM \int_{-\infty}^{\infty} D(m-M) e^{-k(m-M)} dm$$

Или

$$a(k) = d(k) \varphi(k) \tag{8.6}$$

где $\pi(k)$, d(k) и $\phi(k)$ суть лапласовские преобразованные от функций N(m), D(x) и $\phi(M)$.

В частности

$$\int_{-\infty}^{\infty} e^{-km} N(m) dm = \frac{1}{k} \int_{-\infty}^{\infty} e^{-km} A(m) dm = \frac{a(k)}{k}$$
 (8,7)

поскольку

$$A(m) = \frac{dN(m)}{dm}$$
 (8,8)

Внося (8,7) в (8,6) получаем:

$$a(k) = k\varphi(k) d(k) \tag{8,9}$$

Очевидно, что $k\phi(k)$ есть величина, которая не подвержена флуктуациям, происходящим вследствие дискретной структуры поглощающего слоя. Поэтому мы можем из (8,9) заключить, что изучение флуктуаций в a(k) сводится к изучению флуктуаций в d(k). Поэтому в дальнейшем мы будем заниматься флуктуациями в значениях функции d(k).

Рассматривая интеграл

$$d(k) = \int_{-\infty}^{\infty} e^{-kx} D(x) dx$$
 (8,10)

обратим внимание на то, что вместо видимого модуля расстояния X можно ввести истинный модуль X_0

$$x_0 = x - \Delta m$$

в качестве переменной интегрирования. Поскольку вследствие дискретной структуры поглощенного слоя $\Delta m = x - x_0$ меняется только в тех точках, где имеются поглощающие облака, а между ними остается постоянной, имеем

$$dx = dx_0$$

и поэтому

$$d(k) = \int_{-\infty}^{\infty} e^{-k (x_0 + \Delta m)} D(x_0) dx_0 \qquad (8.11)$$

Если $D(x_0)$ есть полное число звезд в единичном телесном угле до расстояния, соответствующего исправленному модулю x_0 , то оно выражается при наших предположениях, через постоянную пространственную плотность ρ_0 следующим образом:

$$D(x_0) = \frac{1}{3} \rho_0 r^3 \tag{8,12}$$

Согласно (8,4)

$$r = 10^{0.2x_0 + 1}$$
; $dr = \frac{0.2}{Mod} rdx_0$

где г выражено в парсеках.

Повтому (8,11) перепишется в виде:

$$d(k) = \frac{5 \text{ Mod}}{3} \rho_0 \int_0^\infty e^{-k(x_0 + \Delta m)} r^2 dr$$

Заменяя также

$$e^{-kx_0} = \left(\frac{r}{10}\right)^{-5 \, k \, \text{Mod}}$$

а также принимая во внимание, что Δm , т. е. полное поглощение луча во всех облаках, находящихся в данном направлении до расстояния г, выраженное в звездных величинах, можно представить через суммарную оптическую толщину т тех же облаков

$$\Delta m = \frac{0,434}{0,400} \tau = 1,086 \tau$$

мы получим:

$$d(k) = \frac{5}{3!} \rho_0 \text{ Mod } \left(\frac{1}{10}\right)^{-5k} \int_0^{\infty} e^{-1,086 \text{ k T(r)}} r^{2-5 \text{ k Mod dr}} (8,13)$$

Мы видим, что d(k) имеет вид

$$d(k) = C \int_{0}^{\infty} e^{-p\tau} rs dr \qquad (8,14)$$

где

$$C = \frac{5}{3} \rho_0 \text{ Mod } .10^{5k \text{ Mod}}$$
; $p = 1.086 \text{ k}$; $s = 2 - 5 \text{ k Mod } (8,15)$

Среднее значение d(k) мы вычисляем исходя из того, что среднее значение интеграла равно интегралу от среднего, т. е.

$$\overline{d(k)} = C \int_{0}^{\infty} e^{-p\tau} r^{s} dr \qquad (8,16)$$

поскольку случайные значения привимает лишь множитель $e^{-p\tau}$

Но согласно (3,10) имеем
$$= e^{-\gamma_0(1-q^p)}$$
 (8,17)

где через у_о обозначено среднее число облаков, встречаемых лучом на расстоянии г. В обозначениях § 4

$$v_0 = zr$$

и поэтому

$$\overline{d(k)} = C \int_{0}^{\infty} e^{-\kappa r (1 - q^{p})} r^{s} dr = \frac{C\Gamma(s+1)}{\left[\kappa (1 - q^{p})\right]^{s+1}}$$
(8,18)

Вычислим теперь математическое ожидание квадрата d(k):

$$d(k)^{2} = C^{2} \left[\int_{0}^{\infty} e^{-p\tau} r^{s} dr \right]^{2}$$
 (8,19)

Квадрат интеграла мы можем представить как двойной интеграл

$$\overline{d(k)^2} = C^2 \int_0^\infty \int_0^\infty e^{-p(r+r)} r^s r'^s dr dr'$$

и распространяя усреднение только на тот множитель подинтегрального выражения, который является случайной функцией, получаем

$$\overline{d(k)^2} = C^2 \int_0^\infty \int_0^\infty e^{-p(\tau+\tau')} r^s r'^s dr dr'$$
 (8,20)

или

$$\overline{d(k)^2} = 2 C^2 \int_0^{\infty} dr \int_0^r e^{-p(\tau + \tau')} r^s r'^s dr dr'$$
 (8,21)

Поскольку теперь под знаком интеграла r > r', постольку и $\tau > \tau'$. Поэтому написав

$$e^{-p(\tau+\tau')} = e^{-2p\tau'} e^{-p(\tau-\tau')}$$

мы видим, что наше выражение распадается на произведение двух независимых случайных функций, одна из которых выражается через оптическую толщину отрезка пути (o,r'), а другая через оптическую толщину отрезка пути (r', r). Повтому согласно (8,17)

$$e^{-p(r+r')} = e^{-\nu r' (1-q^p)} e^{-\nu (r-r')(1-q^p)}$$
 (8,22)

Подставляя (8,12) в (8,11), приходим к интегралу:

$$\overline{d(k)^2} = 2 C^2 \int_0^\infty e^{-\nu r \left(1 - \overline{q^p}\right)} r^s dr \int_0^r e^{-\nu' \left(\overline{q^p} - \overline{q^{2p}}\right)} r'^s dr' \quad (8,23)$$

Этот интеграл можно выразить через некоторые простые функции. Он принадлежит к типу интегралов:

g (a, b;
$$\alpha$$
) = $\int_{0}^{\infty} dy \int_{c}^{y} e^{-(ax + by)} x^{\alpha-1} y^{\alpha-1} dx$ (8,24)

Для вычисления g(a, b; z) введем ax = t. Тогда

$$a^{\alpha}g(a,b;\alpha) = \int_{a}^{\infty} e^{-by} y^{\alpha-1} dy \int_{a}^{ay} e^{-t} t^{\alpha-1} dt$$

Диференцируя по а, найдем

$$\frac{\partial}{\partial a} \left[a^{\alpha} g(a, b; \alpha) \right] = \int_{0}^{\infty} e^{-by} y^{\alpha} dy \frac{\partial}{\partial (ay)} \int_{0}^{ay} e^{-t} t^{\alpha - 1} dt =$$

$$= \int_{0}^{\infty} e^{-by} y^{\alpha} \left[e^{-t} t^{\alpha - 1} \right] dy =$$

$$= a^{\alpha - 1} \int_{0}^{\infty} e^{-(a + b) y} y^{2\alpha - 1} dy = a^{\alpha - 1} (a + b)^{-2\alpha} \Gamma(2\alpha)$$

Таким образом

$$\frac{\partial}{\partial a} \left[a^{\alpha} g(a, b; \alpha) \right] = a^{\alpha - 1} (a + b)^{-2\alpha} \Gamma(2\alpha)$$

Отсюда находим

$$a^{2} g(a, b; \alpha) = \Gamma(2 \alpha) \int_{0}^{a} u^{2-1} (b + u)^{-2} du + C$$

Но так как при a=0 мы имеем $a^{\alpha}g(a,b;\alpha)=0$ то

$$g(a, b; \alpha) = \Gamma(2\alpha) a^{-\alpha} \int_{a}^{a} u^{\alpha-1} (b+u)^{-2\alpha} du$$

Введем под знаком интеграла новую переменную: u = bx

Тогда

$$g(a, b; \alpha) = \Gamma(2 \alpha) a^{-\alpha} b^{-\alpha} \int_{0}^{\frac{a}{b}} x^{\alpha - 1} (1 + x)^{-2\alpha} dx$$
 (8,25)

101-3

Поскольку находящийся в правой части интеграл не выражается через влементарные функции, мы можем обозначить:

$$\int_{0}^{z} x^{\alpha - 1} (1 + x)^{-2x} dx = H(\alpha, z)$$
 (8,26)

Тогда вместо (8,25) мы будем иметь:

$$g(a, b; \mathbf{z}) = \Gamma(2\alpha) a^{-\alpha} b^{-\alpha} H\left(\alpha, \frac{a}{b}\right)$$
 (8.27)

Сравнивая с (8,24) мы можем, поэтому, написать:

$$\int_{0}^{\infty} \int_{0}^{y} e^{-(ax+by)} x^{\alpha-1} y^{\alpha-1} dx dy = \Gamma(2\alpha)a^{-\alpha}b^{-\alpha}H\left(\alpha,\frac{a}{b}\right)$$

Поэтому, на основании (8,23), получаем:

$$\overline{d(k)^{2}} = 2 C^{2} \Gamma (2s + 2) \left[\nu \left(1 - q^{\overline{p}} \right) \right]^{-2s - 2} \times \left[\nu \left(\overline{q^{p}} - \overline{q^{2p}} \right) \right]^{-2s - 2} H \left(2s + 2, \frac{\overline{q^{p}} - \overline{q^{2p}}}{1 - \overline{q^{p}}} \right)$$
(8,28)

Путем сравнения (8,28) и (8,18) находим:

$$\frac{\overline{d(k)^{2}} - \overline{d(k)}^{2}}{\overline{d(k)}^{2}} = \frac{2\Gamma(2s+2)}{[\Gamma(s+1)]^{2}} = \frac{H\left(2s+2, \frac{q^{p}-q^{2p}}{1-\overline{q^{p}}}\right)}{(\overline{q^{p}} - \overline{q^{2p}})^{2s+2}}$$

По теореме умножения Гаусса имеем:

$$\Gamma(2s+2)=\pi^{-\frac{1}{2}}2^{2s+1}\Gamma(s+1)\Gamma(s+\frac{3}{2})$$

Повтому, окончательно получаем для среднего квадратичного отклонения

$$\frac{[d(k) - \overline{d(k)}]^2}{\overline{d(k)}^2} =$$

$$= \frac{\pi^{-\frac{1}{2}} 2^{2s+2} \Gamma(s+\frac{3}{2})}{\Gamma(s+1)} \frac{H\left(2s+2, \frac{\overline{q^{p}} - \overline{q^{2p}}}{1-\overline{q^{p}}}\right)}{\left(\overline{q^{p}} - \overline{q^{2p}}\right)^{2s+2}}$$
(8,29)

где р и s имеют значения, данные в (8,15).

Таким образом, нам удалось найти относительное значение среднего квадрата отклонения не только для поверхностной яркости, но и для любого значения лапласовской преобразованной от функции $N\left(m\right)$.

§ 9. УЧЕТ ЕСТЕСТВЕННЫХ ФЛУКТУАЦИЙ В РАСПРЕДЕЛЕНИИ ЗВЕЗД. СЛУЧАЙ УДАЛЕННОЙ ЗВЕЗДНОЙ СИСТЕМЫ

В предыдущих параграфах мы развили метод расчета флуктуаций поверхностной яркости Млечного Пути, вызываемых клочковатостью поглощающего слоя. Однако, как мы уже указывали, на флуктуациях поверхностной яркости сказываются и колебания пространственной плотности звезд. Вследствие сложности учета этого эффекта мы разберем сначала простой случай отдаленной звездной системы, когда при расчете видимых яркостей можно считать, что все члены этой системы находятся на практически одинаковых расстояниях от наблюдателя. При этом условии видимые яркости эвезд зависят только от их абсолютной яркости и от поглощения испытанного их светом. Попрежнему мы будем предполагать, что речь идет об однородной системе, имеющей вдоль луча зрения бесконечную оптическую глубину. Если для такой системы мы обозначим через $\Psi(I)$ вероятность того, что суммарная видимая яркость всех звезд, приходящихся на некоторую площадь S проекции, меньше чем і, то можно утверждать, что эта функция будет инвариантной по отношению к воображаемому прибавлению к системе слоя толщиной ds, в котором звезды разных светимостей и облака различных прозрачностей встречаются с той же частотой, что в объеме первоначальной системы. Из добаночного слоя толщиной ds на область с сечением S будет проектироваться объем Sds. Если через па и пь обозначим соответственно средние числа облаков и звезд, приходящихся на единицу объема, то при этом мы

Если теперь $\phi(q)$ есть вероятность того, что поглощающее облако в данном направлении имеет прозрачность меньшую чем q, а B(i) есть вероятность для звезды иметь яркость меньшую, чем i, то принцип инвариантности в сочетании с теоремами сложения и умножения вероятностей приводит к следующему равенству

$$\Psi(I) = \Psi(I)(1 - n_a S_0 ds - n_b Sds) + n_a S_0 ds \int \Psi\left(\frac{I}{q}\right) d\varphi(q) + n_b Sds \int \Psi(I - i) dB(i)$$

или после сокращений:

$$\Psi(I) = \frac{n_a S_0}{n_a S_0 + n_b S} \int \Psi\left(\frac{I}{q}\right) d\varphi(q) + \frac{n_b S}{n_a S_0 + n_b S} \int \Psi(I - i) dB(i)$$
(9,1)

Обозначим:

$$\frac{n_a S_0}{n_a S_0 + n_b S} = 1 - \lambda; \quad \frac{n_b S}{n_a S_0 + n_b S} = \lambda \tag{9.2}$$

Тогда уравнение (9,1) перепишется в виде:

$$\Psi(I) = (1 - \lambda) \int \Psi\left(\frac{I}{q}\right) d\varphi(q) + \lambda \int \Psi(I - i) dB(i) \qquad (9,3)$$

Это и есть функциональное уравнение для функции распределения $\Psi(I)$. Интегрирование в его последнем члене распространяется только на область 0 < i < I, поскольку случай, когда i > I не благоприятствует выполнению условия о том, что наблюдаемая суммарная интенсивность меньше i, вследствие чего соответствующая этой возможности вероятность должна вовсе не входить в правую часть уравнения (84). Диференцируя (9,3), мы получим для плотности распределения уравнение:

$$\Psi(I) = (1 - \lambda) \int \Psi\left(\frac{I}{q}\right) d\varphi(q) + \lambda \int \Psi(I - i) dB(i) \qquad (9,4)$$

Из этого уравнения легко определяются последовательно математические ожидания разных степеней І. Так, помножая его на ІdІ, интегрируя по І от () до ∞, мы получим:

$$\bar{I} = (1 - \lambda) \int_{0}^{1} q d\varphi(q) \int_{0}^{\infty} \bar{\Psi}\left(\frac{I}{q}\right) \frac{I}{q} d\frac{I}{q} + \lambda \int_{0}^{\infty} dB(i) \int_{0}^{\infty} \Psi(I - i) I dI$$

или, принимая во внимание, что независимо от обозначения переменной интегрирования

$$\int_{0}^{\infty} \Psi(x) x dx = \int_{0}^{\infty} \Psi\left(\frac{I}{q}\right) \frac{I}{q} d \frac{I}{q} = \bar{I}$$

а также вводя в последнем члене новую переменную интегрирования I-i=y, найдем:

$$\bar{I} = (1 - \lambda)\bar{q}\bar{I} + \lambda\bar{I} + \lambda\bar{i}$$
 (9,5)

поскольку

$$\int_{0}^{\infty} i dB(i) = \bar{i}$$

ив (9,5) имеем

$$\bar{I} = \frac{\lambda \,\bar{i}}{(1 - \lambda)(1 - \bar{q})} \tag{9.6}$$

Помножая (9,4) на l^2 dl и интегрируя по всему промежутку, мы точно так же найдем:

$$\begin{split} \overline{l^2} &= (1-\lambda)\int\limits_0^1 q^2 d\phi(q)\int\limits_0^\infty \Psi\left(\frac{I}{q}\right)\frac{I^2}{q^2}\;\mathrm{d}\;\frac{I}{q}\;+\\ &+\lambda\int\limits_0^\infty \mathrm{d}B(i)\int\limits_i^\infty \Psi\left(l-i\right)I^2 \mathrm{d}I \end{split}$$

С помощью тех же подстановок получаем:

$$\overline{I}^{3} = (1 - \lambda) \overline{q^{2}} \overline{I}^{2} + \lambda \overline{I}^{3} + 2\lambda \overline{I} \overline{I} + \lambda \overline{I}^{2}$$
 (9,7)

или

$$\overline{I^3}(1-\lambda)(1-\overline{q^2}) = \frac{2\lambda^2\overline{i}^2}{(1-\lambda)(1-q)} + \lambda\overline{i}^2$$

Отсюда

$$\bar{I}^{2} = \frac{2\lambda^{2} \, \bar{i}^{2}}{(1-\lambda)^{2} \, (1-\bar{q})(1-\bar{q}^{2})} + \frac{\lambda \bar{i}^{2}}{(1-\lambda)(1-\bar{q}^{2})}$$

HAH

$$\overline{1}^{2} = \frac{2\lambda^{2} \overline{i}^{2} + \lambda \overline{i}^{2} (1 - \lambda)(1 - \overline{q})}{(1 - \lambda)^{2} (1 - \overline{q})(1 - \overline{q}^{2})} + \frac{\lambda (\overline{i}^{2} - \overline{i}^{2})}{(1 - \lambda)(1 - \overline{q}^{2})}$$

Для относительного значения среднего квадратичного отклонения после некоторых преобразований получаем:

$$\frac{\overline{(1-\bar{1})^3}}{\bar{1}^2} = \frac{1}{\lambda} \frac{\overline{(1-q)^3}}{1-\bar{q}^3} + \frac{1-\lambda}{\lambda} \frac{\bar{q}^2 - \bar{q}^3}{1-\bar{q}^3} + \frac{1-\lambda}{\lambda} \frac{\bar{q}^2 - \bar{q}^3}{1-\bar{q}^3} + \frac{1-\lambda}{\lambda} \frac{\bar{q}^3 - \bar{q}^3}{1-\bar{q}^3} + \frac{1-\lambda}{\lambda} \frac{\bar{q}^3 - \bar{q}^3}{\bar{q}^3} + \frac{1-\lambda}{\lambda} \frac{\bar{q}^3 - \bar{q}^3}{1-\bar{q}^3} + \frac{1-\lambda}{\lambda} \frac{\bar{q}$$

Это трехчленное выражение сильно упрощается в том случае, когда дисперсия q и дисперсия i столь малы, что ими можно пренебречь.

В этом случае:

$$\bar{i} = i_0; \quad \bar{i^2} = i_0^2; \quad \bar{q} = q_0; \quad \bar{q}^2 = q_0^3$$

Тогда

$$\frac{\overline{(I-\bar{I})^a}}{\bar{I}^a} = \frac{1}{\lambda} \frac{1-q_0}{1+q_0}$$
 (9,9)

что отличается от формулы (44) лишь множителем $\frac{1}{\lambda}$.

Если число эвезд очень велико по сравнению с числом поглощающих облаков, величина λ согласно (9,2) будет близка к единице и тогда формула (9,9) обратится в (5,4). Таким образом, между двумя выводами имеется полное соответствие. Точно так же, когда $\lambda \rightarrow 1$ общее выражение (9,8) стремится к (5,10). На практике, однако, хотя $1-\lambda$ мало,

множитель $\frac{\tilde{i}^3-\tilde{i}^2}{\tilde{i}^2}$ велик по сравнению с единицей, вслед-

ствие огромной дисперсии абсолютных величин звезд. Поэтому последним членом в выражении (9,8) не всегда можно пренебрегать.

С другой стороны, в тех случаях, когда речь идет о парциальных суммарных яркостях звезд определенных спектральных типов, у которых дисперсия абсолютных яркостей мала, последний член в выражении (9,8) может оказаться достаточно малым.

§ 10. СЛУЧАЙ, КОГДА НАБЛЮДАТЕЛЬ НАХОДИТСЯ ВНУТРИ СИСТЕМЫ

Когда наблюдатель находится внутри звездной системы, то применение принципа инвариантности к случаю одновременного учета клочковатости поглощающего слоя и естественных флуктуаций сталкивается с затруднениями. Основное затруднение заключается в том, что если наблюдатель отодвигается назад (в направлении противоположном тому, которое он наблюдает), то расстояния всех звезд, увеличиваясь на одну и ту же величину, меняются в разных пропоршиях, вследствие чего влияние перемещения на суммарную яркость не представляется возможным выразить столь простым образом, как это было в § 5. Поэтому в настоящем случае мы пойдем по несколько иному пути. Мы представим сначала, что хотя наблюдатель и находится в системе. но звезды и поглощающие облака, находящиеся от него на расстоянии меньшем, чем некоторое го, убраны. Мы попытаемся составить уравнение для флуктуаций в такой "полой" системе, причем в это уравнение го будет входить как параметр. При го=0 мы имели бы тогда решение для интересующего нас случая.

Итак, оставляя в силе прежние предположения об однородности строения звездной системы и системы поглощающих облаков, мы предположим, однако, что эти условия соблюдаются в данном направлении, начиная лишь с расстояния r_0 от наблюдателя. В промежутке же от 0 до r_0 пусть не будет ни звезд, ни поглощающих облаков. Вероятность того, что при этих условиях суммарная видимая яркость всех звезд внутри некоторого телесного угла ω будет меньше l, обозначим через $\Psi_{\omega}(r_0,l)$. Если теперь мы прибавим к такой системе слой, простирающийся от r_0 —dr до r_0 , в котором средние плотности числа звезд и облаков n_b и n_a те же, что и в остальной системе, то распределение вероятностей различных значений суммарной яркости в этом случае будет описываться функцией $\Psi_{\omega}(r_0$ —dr, l). На основании теорем сло-

жения и умножения вероятностей мы тогда будем иметь: $\Psi_{\omega}(r_0 - dr, l) = (1 - n_b \, Sdr - n_a \, S_0 dr) \, \Psi_{\omega}(r_0, l) +$

$$+ n_{a} S_{0} dr \int \Psi_{\omega} \left(r_{o}, \frac{I}{q} \right) d\varphi(q) +$$

$$+ n_{b} S dr \int \Psi_{\omega} \left(r_{o}, I - j \right) dB(i)$$
(10,1)

При этом, при данном ω (т. е. при заданной величине участка неба) площадь поперечного сечения S будет величина переменная, равная

$$S = r_0^2 \omega \tag{10,2}$$

С другой стороны, в то время как функция B(i) описывает распределение абсолютных яркостей, т. е. яркостей, которые наблюдались бы на некотором стандартном расстоянии, функция Ψ_{ω} (г, I-j) под знаком интеграла в последнем члене написанного равенства зависит не от I-i, а от I-j, где j означает видимую яркость на расстоянии г без поглощения. Если мы условимся указанное стандартное расстояние принимать за единицу расстояний, то

$$j = \frac{i}{r_0^2} \tag{10,3}$$

Перенося член Ψ_{ω} (г, I) в левую часть (10,1) и деля на dг, мы найдем

$$-\frac{d\Psi_{\omega}\left(r_{0}, I\right)}{dr_{0}} = -\left(n_{b} \omega r_{0}^{2} + n_{a} S_{0}\right) \Psi_{\omega}\left(r_{0}, I\right) +$$

$$+ n_{a} S_{0} \int \Psi_{\omega}\left(r_{0}, \frac{I}{q}\right) d\varphi(q) +$$

$$+ n_{b} \omega r_{0}^{2} \int \Psi_{\omega}\left(r_{0}, I - \frac{i}{r_{0}^{2}}\right) dB(i)$$
(10,4)

Решение этого уравнения и дает нам искомую функцию распределения. Не ставя пока перед собой цель найти это решение, мы ограничимся более скромной задачей—нахож-

дением математических ожиданий первых двух степеней. Для втого сначала продиференцируем (10,4) по !, чтобы перейти от функции распределения к плотности вероятности, а затем, помножив на I d I, проинтегрируем. Будем иметь:

$$-\frac{d\vec{l}_{\omega}}{dr_{0}} = -(n_{b} \omega r_{0} + n_{a} S_{0}) \vec{l}_{\omega} + n_{a} S_{0} \vec{q} \vec{l}_{\omega} + n_{b} \omega (\vec{l}_{\omega} r_{0} + i) (10,5)$$

или

$$\frac{d\overline{I}_{\omega}}{dr_0} = n_a S_0 (1 - \overline{q}) \overline{I}_{\omega} - n_b \omega i \qquad (10,6)$$

Решение этого уравнения имеет вид:

$$\overline{I}_{\omega} = \int_{r_0}^{\infty} e^{-n_a S_0(1-\overline{q})(r-r_0)} n_b \ \omega \overline{i} dr + C_1 e^{n_a S_0(1-\overline{q}) r_0}$$

где С₁—постоянная интегрирования. Выполняя интегрирование, приходим к результату:

$$\bar{I}_{\omega} = \frac{n_b \, \omega \bar{i}}{n_a \, S_0 (1 - \bar{q})} + C_1 e^{n_a \, S_0 (1 - \bar{q}) r_0}$$

Легко видеть, что постоянная С, равна нулю. В самом деле; отличие ее от нуля означало бы наличие на бесконечности источника бесконечно высокой поверхностной яркости. По смыслу задачи его не должно быть. Поэтому:

$$I_{\omega} = \frac{n_b \, \omega i}{n_a \, S_0 (1 - \overline{q})} \tag{10.7}$$

Помножая (10, 4) на l² dI и интегрируя, мы получим уравнение для среднего квадрата интенсивности:

$$-\frac{d\bar{I}_{\omega}^{2}}{dr_{0}} = -(n_{b} \omega r_{o}^{2} + n_{a} S_{0}) \bar{I}_{\omega}^{2} + n_{a} S_{0} \bar{q}^{2} \bar{I}^{2} +$$

$$+ n_{b} \omega \left(\bar{I}_{\omega}^{2} r_{o}^{2} + 2\bar{i} \bar{I}_{\omega} + \frac{1}{r_{o}^{2}} \bar{i}^{2} \right)$$

нан

$$\frac{d\tilde{l}_{\omega}^{2}}{dr_{0}} = n_{a} S_{0}(1 - \tilde{q}^{2})\tilde{l}_{\omega}^{2} - 2n_{b} \omega \tilde{l}_{\omega} - n_{b} \omega \frac{\tilde{l}^{2}}{\tilde{l}^{2}}$$

Решение этого уравнения в свою очередь имеет вид:

$$I_{\omega}^{2} = \int_{r_{0}}^{\infty} e^{-n_{a} S_{0}(1-\overline{q^{2}})(r-r_{0})} \left[2n_{b} \omega \overline{i} \, \overline{I}_{\omega} + n_{b} \omega \frac{\overline{i^{2}}}{r^{2}} \right] dr + C_{2}e^{n_{a} S_{0}(1-\overline{q^{2}})r_{0}}$$

Принимая во внимание, что согласно (10, 7) величина I_{ω} не зависит от г и учитывая, что и в данном случае постоянная интегрирования $C_2\!=\!0$, находим:

$$\begin{split} \overline{l}_{\omega}^{2} &= \frac{2n_{n}^{2}\omega^{2}\overline{i}^{2}}{n_{a}^{2}S_{o}^{2}(1-\overline{q})(1-\overline{q}^{2})} + \\ &+ n_{b}\;\omega\overline{i}^{2}e^{n_{a}\;S_{o}(1-\overline{q}^{2})r_{o}}\int_{r_{o}}^{\infty} \frac{e^{-n_{a}\;S_{o}(1-\overline{q}^{2})r}}{e^{-n_{a}\;S_{o}(1-\overline{q}^{2})r}} \frac{dr}{r^{2}} \end{split}$$

После подстановки новой переменной интегрирования $r = r_0 t$ окончательно получаем:

$$\frac{\overline{l_{o}^{2}}}{\overline{l_{o}^{2}}} = \frac{2n_{o}^{2}\omega^{\overline{s}}\overline{i}^{2}}{n_{o}^{2}S_{o}^{2}(1-\overline{q})(1-\overline{q^{2}})} + \frac{n_{o}\omega\overline{i}^{2}}{r_{o}} e^{n_{a}S_{o}(1-\overline{q^{2}})r_{o}}Ei_{2}[n_{a}S_{o}(1-\overline{q^{2}})r_{o}] \qquad (10.8)$$

где Еі2(у) есть трансцендентная функция, определяемая через

$$Ei_2(y) = \int_1^\infty e^{-yt} \frac{dt}{t^2}$$
 (10,9)

Отсюда нетрудно найти также и выражение для среднеквадратичного отклонения:

$$\frac{\overline{(I_{\omega} - \overline{I_{\omega}})^{2}}}{\overline{I_{\omega}^{2}}} = \frac{2(1 - \overline{q})}{1 - \overline{q^{2}}} - 1 + \frac{\overline{i^{2}}}{1 - \overline{q^{2}}} \frac{n_{a}^{2} S_{o}^{2} (1 - \overline{q})^{2}}{n_{b} \omega r_{0}} e^{n_{a} S_{o} (1 - \overline{q^{2}}) r_{0}} Ei_{2} [n_{a} S_{o} (1 - \overline{q^{2}}) r_{0}]$$

или

$$\frac{\overline{(I_{\omega}-\overline{I}_{\omega})^2}}{\overline{I}_{\omega}^2} = \frac{(1-\overline{q})^2}{1-\overline{q}^2} +$$

$$-\frac{\overline{i^2}}{\overline{i^2}} \frac{n_a^2 S_o^2 (1-\overline{q})^2}{n_b \omega r_o} e^{n_a S_o (1-\overline{q^2}) r_o} Ei_2[n_a S_o (1-\overline{q^2}) r_o] \quad (10,10)$$

Особенность втого выражения заключается в том, что оно стремится к бесконечности при $r_0 \rightarrow 0$. Это является следствием того, что таким же свойством обладает среднее значение квадрата интенсивности. Тот факт, что среднее значение квадрата интенсивности в том случае, когда мы не исключаем близких звезд, обращается в бесконечность, имеет следующую простую причину. Примем, что вблизи нас звездная плотность постоянна. Вероятность встретить звезду на расстоянии от г до r+dr внутри телесного угла ω пропорциональна $\omega r^2 n_b$ dr. Но видимая яркость каждой звезды равна $\frac{i}{r^2}$, а ее квадрат $\frac{i^2}{r^4}$. Следовательно, математическое ожидание квадрата видимой яркости в слое от г до r+dr будет $\frac{\omega}{r^2} n_b = \frac{i}{i^2}$ dr. При интегрировании по r (т. е. при усреднении) от нуля до любого малого расстояния от наблюдателя получится бесконечность. При этом мы даже не учитывали возможность наличия в ис-

следуемом объеме двух звезд, что только может увеличить квадрат суммарной интенсивности.

По указанной причине при применении формулы (10, 10) следует исключать из рассмотрения звезды, находящиеся на расстоянии меньшем, чем некоторое r_0 , и исключать влияние облаков, находящихся ближе этого расстояния. Сравнительно простые соображения показывают, что практически целесообразно брать $r_0 > 100$ парсек.

В заключение этого параграфа мы вновь должны подчеркнуть, что полученные нами формулы (10, 7) и (10, 10) применимы только к направлениям, находящимся в плоскости Галактики, так как они предполагают практически бесконечную глубину слоя звезд и облаков в направлении наблюдения.

§ 11. КОРРЕЛЯЦИОННАЯ ЗАДАЧА

До сих пор мы рассматривали вопрос о вероятностях тех или иных значений интересующих нас величин в какойлибо определенной точке (или определенном участке) неба. Однако, в силу того, что поглощающие облака имеют конечное поперечное сечение, между значениями чисел звезд до определенной величины в двух близких друг к другу участках неба (или значениями суммарных яркостей) должна существовать корреляция. Исследование корреляционных связей, даже при ряде упрощающих предположений, дело гораздо более трудное, чем решение тех задач, которые были рассмотрены выше. Однако желательно разобрать отдельные примеры для того, чтобы на них ознакомиться хотя бы с характером задачи и возникающими при их решении затруднениями.

Рассмотрим сначала задачу о корреляции чисел внегалактических туманностей до определенной величины, приходящихся на единицу телесного угла в двух направлениях, составляющих между собой малый телесный угол α . Допустим, что оба эти направления имеют практически одну и ту же галактическую широту. Обозначим через u_r (τ_1, τ_2) вероятность того, что сумма оптических толщин облаков, встречаемых первым лучом на протяжении от наблюдателя до расстояния τ_1 , будет меньше τ_1 , а сумма оптических толщин облаков, встречаемых вторым лучом на таком же протяжении, меньше

т. Значение той же функции и для расстояния г + dr на основании теорем сложения и умножения вероятностей можно выразить следующим образом:

$$u_{r+dr}(\tau_{1}, \tau_{2}) = (1 - \varkappa dr - \varkappa dr + \theta \varkappa dr) u_{r}(\tau_{1}, \tau_{2}) + \\ + \varkappa (1 - \theta) dr \int u_{r}(\tau_{1} - \sigma, \tau_{2}) dF_{x}(\sigma) + \\ + \varkappa (1 - \theta) dr \int u_{r}(\tau_{1}, \tau_{2} - \sigma) dF_{x}(\sigma) + \\ + \varkappa \theta dr \int \int u_{r}(\tau_{1} - \sigma_{1}, \tau_{2} - \sigma_{2}) d^{2}F_{\sigma_{1}}, \sigma_{3})$$
(11,1)

Злесь хог попрежнему означает вероятность того, что на протяжении dr луч встретит поглощающее облако, а в есть вероятность того, что если на расстоянии г какое-либо облако пересекается одним из лучей, то оно пересекается и вторым лучом. Легко видеть, что θ будет зависеть от α и г. Очевидно, что $(1-\theta)$ жdг есть вероятность того, что первый из лучей на протяжении dr встретит облако, не пересекаемое вторым, а вхол есть вероятность того, что оба луча пересекут одно и то же облако. Далее, F а (б) есть функция распределения значений оптических толщин облака в месте пересечения его лучом, когда известно, что другой луч (образующий угол α с первым) не пересекает этого облака. Наконец, Ра (од, од) есть функция распределения оптических толщин от и от облака в пересечениях соответственно первым и вторым лучами, когда известно, что оба луча действительно пересекают облака на расстоянии г. Очевидно, что F_{α} (σ_{i}, σ_{s}) будет так же, как и F_{α} (σ), зависеть от α и г.

Из (11,1) путем обычных преобразований получаем уравнение:

$$\frac{\mathrm{d}\mathbf{u}_{r}\left(\tau_{1},\,\tau_{2}\right)}{\varkappa\mathrm{d}r}=-\left(2-\theta\right)\mathbf{u}_{r}\left(\tau_{1},\,\tau_{2}\right)+$$

$$+ (1 - \theta) \int_{0}^{\tau_{1}} u_{r} (\tau_{1} - \sigma, \tau_{2}) dF_{\alpha}(\sigma) + (1 - \theta) \int_{0}^{\tau_{2}} u (\tau_{1}, \tau_{2} - \sigma) dF_{\alpha}(\sigma) +$$

$$+ \theta \int_{0}^{\tau_{1}} \int_{0}^{\tau_{1}} u_{r} (\tau_{1} - \sigma_{1}, \tau_{2} - \sigma_{2}) d^{3}F_{x}(\sigma_{1}, \sigma_{3})$$
 (11,2)

В этом случае, так же как и раньше, мы вместо того, чтобы заниматься поисками решения полученного уравнения, попытаемся получить математические ожидания тех величин, которые могут быть определены непосредственно из наблюдения. В случае внегалактических туманностей мы можем на основании подсчетов в двух соседних участках, разделенных угловым расстоянием а, получить среднее значение произведения

$$N_1^{\ l_1} \ N_2^{\ l_2}$$

где l_1 и l_2 любые целые числа. Но числа N_1 и N_2 пропорциональны $Q_1^{3/2}$, и $Q_2^{3/2}$, где Q_1 и Q_2 представляют собой коэфициенты прозрачности слоя облаков в рассматриваемых направлениях. Мы имеем:

$$Q_1 = e^{-\tau_{10}}; \quad Q_2 = e^{-\tau_{20}}$$
 (11,3)

где τ_{10} и τ_{20} значения оптических толщин τ_1 и τ_2 на расстоянии $r=r_0$, где достигается граница слоя облаков. Поэтому нас будут интересовать средние значения величин

$$\frac{3}{2} I_1 \frac{3}{2} I_2 = e^{-\frac{3}{2} (I_1 \tau_{10} + I_2 \tau_{20})}$$
(11,4)

Вследствие этого нам нужно научиться находить из уравнения (11,2) средние значения выражений типа $e^{-(k_1\tau_1+k_2\tau_2)}$ т. е.

$$\overline{Q_{1}^{\frac{3}{2} l_{1}} Q_{2}^{\frac{3}{2} l_{2}}} = \int \int e^{-(k_{1}\tau_{1} + k_{2}\tau_{2})} d^{2}u_{r_{0}}(\tau_{1}, \tau_{2})_{\underline{}}
= g_{r_{0}}(k_{1}, k_{2})$$
(11,5)

Для этого помножим (11,2) на е $-(k_1\tau_1+k_2\tau_2)$ и проинтегрируем по всем значениям τ_1 и τ_2 . Переставляя при этом

в получающихся интегралах порядок интегрирования, мы найдем:

$$\frac{d}{\varkappa dr} \int_{0}^{\infty} \int_{0}^{\infty} e^{-(k_{1}\tau_{1}+k_{2}\tau_{2})} u_{r}(\tau_{1}, \tau_{2}) d\tau_{1} d\tau_{2} = -$$

$$-(2-\theta) \int_{0}^{\infty} \int_{0}^{\infty} e^{-(k_{1}\tau_{1}+k_{2}\tau_{2})} u_{r}(\tau_{1}, \tau_{2}) d\tau_{1} d\tau_{2} +$$

$$+(1-\theta) \int e^{-k_{1}\sigma} dF_{\alpha}(\sigma) \int \int e^{-(k_{1}\tau_{1}+k_{2}\tau_{2})} u_{r}(\tau_{1}, \tau_{2}) d\tau_{1} d\tau_{2} +$$

$$+(1-\theta) \int e^{-k_{2}\sigma} dF_{\alpha}(\sigma) \int \int e^{-(k_{1}\tau_{1}+k_{2}\tau_{2})} u_{r}(\tau_{1}, \tau_{2}) d\tau_{1} d\tau_{2} +$$

$$+\theta \int \int \int e^{-(k_{1}\tau_{1}+k_{2}\tau_{2})} d^{2}F_{\alpha}(\sigma_{1}, \sigma_{2})$$

$$\times \int \int e^{-(k_{1}\tau_{1}+k_{2}\tau_{2})} u_{r}(\tau_{1}, \tau_{2}) d\tau_{1} d\tau_{2}$$

$$(11,6)$$

Посредством двукратного интегрирования по частям легко показать, что

$$\int \int e^{-(k_1\tau_1 + k_2\tau_2)} u_r(\tau_1, \tau_2) d\tau_1 d\tau_2 =$$

$$= \frac{1}{k_1 k_2} \int \int e^{-(k_1\tau_1 + k_2\tau_2)} d^2 u_r(\tau_1, \tau_2) = \frac{g_r(k_1, k_2)}{k_1 k_2}$$
(11,7)

Поэтому уравнение (11,6) можно переписать в виде:

$$\begin{split} \frac{\mathrm{d}g_{r}}{\varkappa \mathrm{d}r} &= -(2-\theta)g_{r} + (1-\theta)g_{r} \int e^{-k_{1}\sigma} \mathrm{d}F_{\alpha}(\sigma) + \\ &+ (1-\theta)g_{r} \int e^{-k_{2}\sigma} \mathrm{d}F_{\alpha}(\sigma) + \\ &+ \theta g_{r} \int \int e^{-(k_{1}\sigma_{1} + k_{2}\sigma_{2})} \mathrm{d}^{3}F_{\alpha}(\sigma_{1}, \sigma_{2}) \end{split}$$

Ho

$$\int e^{-k_1 \sigma} dF_{\alpha}(\sigma) = \overline{q_{\alpha}^{k_1}}; \qquad \int e^{-k_2 \sigma} dF_{\alpha}(\sigma) = \overline{q_{\alpha}^{k_2}};$$

$$\iint e^{-(k_1 \sigma_1 + k_2 \sigma_2)} d^2 F_{\alpha}(\sigma_1, \sigma_2) = \overline{(q_1^{k_1} q_2^{k_2})_{\alpha}}$$
(11.8)

где $q_{a}^{k_1}$ есть среднее значение k_1 -ой степени прозрачности облака при пересечении его первым лучом, в предположении, что оно не пересекается вторым, а $(q_1^k q_2^{k_2})_z$ есть среднее значение произведения соответствующих степеней прозрачностей при пересечении обоими лучами облака на расстоянии г. Очевидно, что все эти величины будут зависеть как от z, так и от г. На основании сказанного:

$$\frac{dg_{r}}{\varkappa dr} = -(2 - \theta)g_{r} + (1 - \theta)\overline{q_{\alpha}^{k_{1}}}g_{r} + + (1 - \theta)\overline{q_{\alpha}^{k_{2}}}g_{r} + \theta\overline{(q_{\alpha}^{k_{1}}q_{\alpha}^{k_{2}})_{\alpha}}g_{r}$$
(11,9)

Решение этого уравнения имеет вид:

$$\begin{split} \log g_r \left(k_1, k_s \right) &= - \int\limits_0^r {(2 - \theta) \varkappa dr} + \\ &+ \int\limits_0^r {(1 - \theta) \left({\overline {q_x^{k_1}} + \overline {q_x^{k_2}}} \right) \varkappa dr} + \int\limits_0^r {\theta \left({\overline {q_1^{k_1}} \, \overline {q_2^{k_2}}} \right)_\alpha } \varkappa dr \quad (11,10) \end{split}$$

Мы видим, что решение задачи сводится к простым квадратурам. Однако для их выполнения следует знать зависимость всех входящих под знаки интегралов в правой части (11,10) величин от расстояния. А это возможно только при наличии данных о распределении размеров, форм и оптических свойств среди совокупности облаков.

Возьмем в качестве примера частный случай, когда все значения прозрачности облаков (q одинаковы и равны q_0 . 101-4

В этом случае
$$q_x^{k_1}=q_0^{k_1}; \quad q_x^{k_2}=q_0^{k_2}$$
 и, наконец, $\overline{\left(q_1^{k_1}q_2^{k_2}\right)_x}=q_0^{k_1-k_2}$

Тогда, если обозначить

$$\int_{0}^{r} x dr = v; \quad \int_{0}^{r} \theta x dr = tv$$
 (11,11)

то решение (11,10) примет простой вид:

$$g_r(k_1, k_2) = e^{-v \left[(2-t) - (1-t) \left(q_0^{k_1} + q_0^{k_2} \right) - tq_0^{k_1 + k_2} \right]}$$
 (11,12)

При втом нас должно интересовать значение g при $r=r_0$. Повтому, обозначая $\nu(r_0)=\nu_0$ и $t(r_0)=t_0$, мы окончательно найдем:

$$g_{r,s}(k_1, k_2) = e^{-\nu_0} \left[(1-t_0) \left(2 - q_0^{k_1} - q_0^{k_2} \right) + t_0 \left(1 - q_0^{k_1 + k_2} \right) \right]$$
 (11,13)

В частности, когда мы имеем дело с подсчетами внегалактических туманностей, мы можем практически получить среднее значение произведения $\overline{N_1}$ $\overline{N_2}$. Согласно (11,4) это означает, что нам следует взять $k_1=k_2=\frac{3}{2}$ и в этом случае

$$\overline{N_1 N_2} = N_0^2 \overline{Q_1^{3/2} Q_2^{3/2}} = N_0^2 e^{-v_0} \left[2(1-t_0) \left(1-q_0^{3/2}\right) + t_0 \left(1-q_0^3\right) \right]$$
(11,14)

Для коэфициента корреляции будем иметь:

$$R = \frac{\overline{(N_1 - N)(N_2 - \overline{N})}}{\overline{(N_1 - \overline{N})^2}} = \frac{\overline{N_1 N_2} - \overline{N}^2}{\overline{N^2} - \overline{N}^2} = \frac{e^{-\nu_0 \left[2(1 - t_0)\left(1 - q_0^{3/2}\right) + t_0\left(1 - q_0^3\right)\right] - e^{-2\nu_0\left(1 - q_0^{3/2}\right)}}{e^{-\nu_0 \left(1 - q_0^3\right) - e^{-2\nu_0\left(1 - q_0^{3/2}\right)}}$$

или

$$R := \frac{e^{t_0 v_0 \left(1 - q_0^{3/2}\right)^2} - 1}{e^{v_0 \left(1 - q_0^{3/2}\right)^2} - 1}$$
(11,15)

Поскольку, согласно (4.6), флуктуации, вычисляемые из сравнения ряда независимых между собой направлений, дают возможность вычислить v_0 $(1-q_0^{3/2})^2$, то определение коэфициента корреляции из наблюдений может дать возможность вычислить согласно (11,15) значение t_0 , т. е. некоторый статистический параметр, характеризующий в первую очередь размеры облаков. При этом следует помнить, что в то время как характер изменения v_0 с галактической широтой ясен (v_0) меняется пропорционально соѕес b), зависимость t_0 от b будет вообще более сложной и в известной мере определяться законом распределения облаков по z.

Заметим, что для рассмотрения частного случая, когда все q равны между собой, можно было бы с самого начала ограничиться постановкой следующей задачи: какова вероятность, что два луча, образующих между собой угол α , псресекут до расстояния г соответственно Ω_1 и Ω_2 облаков. Тогда метод прибавления слоя толщиной dr приводит к уравнению для этой вероятности P_{α} (Π_1 , Π_2)

$$\frac{dP_{\alpha}(n_1, n_2)}{\kappa dr} = -(2 - \theta)P_{\alpha}(n_1, n_2) + (1 - \theta)P_{\alpha}(n_1 - 1, n_2) + + (1 - \theta)P_{\alpha}(n_1, n_2 - 1) + \theta P_{\alpha}(n_1 - 1, n_2 - 1)$$
(11,16)

Само собой разумеется, что это уравнение может быть выведено, при сделанном предположении (дисперсия q равна нулю), из (11, 2). Преимуществом уравнения (11, 16) является то, что его решение может быть прямо написано в виде конечной суммы:

$$P_{\alpha}(n_1, n_2) = e^{\nu(2-t)} \sum_{k=0}^{n_2} \frac{\left[\nu(1-t)\right]^{n_1-k}}{(n_1-k)!} \frac{\left[\nu(1-t)\right]^{n_2-k}}{(n_2-k)!} \frac{t^k \nu^k}{k!}$$
(11,17)

При этом принимается, что если п, и п, различны, то

п₂ есть меньшее из этих двух чисел, а t и у попрежнему определены через (11, 11). Выражение (11, 17), являясь решением рассматриваемой задачи, вместе с тем является лишь частным решением уравнения (11, 16), но таким, которое удовлетворяет условию обращения в нуль всех Р при г=0. Заметим, что распределение (11, 17) является интересным двумерным обобщением закона Пуассона; дающим отличную от нуля корреляюцию между п₁ и п₂.

§ 12. КОРРЕЛЯЦИОННАЯ ЗАДАЧА ДЛЯ ЯРКОСТЕЙ В МЛЕЧНОМ ПУТИ

Очевидно, что мы можем найти коэфициент корреляции между яркостями двух точек Млечного Пути, разделенных заданным угловым расстоянием 2, если сможем вычислить среднее значение произведения

Это вычисление можно произвести в том случае, когда излучающая среда принимается непрерывной, а поглощающие облака дискретными, то есть, если осуществляются предположения § 5. Мы примем кроме того, что все облака имеют одну и ту же прозрачность q_0 . Тогда дело сводится к вычислению среднего от произведения двух интегралов:

$$\overline{I_1 I_2} = \int_0^\infty q_0^{n_1(r_1)} \eta dr_1 \int_0^\infty q_0^{n_2(r_2)} \eta dr_2$$
 (12,1)

где Π_1 (Γ_1) и Π_2 (Γ_2) представляют собой соответственно числа облаков в первом направлении до расстояния Γ_1 и во втором направлении до Γ_2 .

Очевидно, что (12,1) можно переписать в виде:

$$\overline{I_1 I_2} = \eta^2 \int_0^\infty \int_0^\infty \frac{q_0^{n_1(r_1) + n_2(r_2)}}{q_0^{n_1(r_1) + n_2(r_2)}} dr_1 dr_2$$
 (12,2)

Но ясно, что среднее значение $q_{_{11}}^{n_1(r_1)+n_2(r_2)}$ симметрично по отношению к перестановке r_1 и r_2 . Повтому

$$\overline{l_1 l_2} = 2\eta^2 \int_0^\infty dr_1 \int_1^\infty \frac{q_1(r_1) + n_2(r_2)}{q_0} dr_2$$
 (13.3)

Но тогда, поскольку под знаком интеграла $r_2 > r_1$ сумму $n_1(r_1) + n_2(r_2)$ можно разделить на два совершенно независимых друг от друга слагаемых:

$$n_1(r_1) + n_2(r_2) = [n_1(r_1) + n_2(r_1)] + [n_2(r_2) - n_2(r_1)]$$

и мы должны иметь:

$$q_0^{n_1(r_1) + n_2(r_2)} = q_0^{n_1(r_1) + n_2(r_1)} q_0^{n_2(r_2) - n_2(r_1)}$$
(12,4)

Второй множитель в правой части выражения (11,4) представляет собой среднее значение величины, характеризующей расположение облаков только во втором направлении и притом в промежутке от r_1 до r_2 , что не зависит от распределения облаков в отрезке (0, r_1). Поэтому, так же как в \S 3, согласно (8,10), будем иметь:

$$q_0^{n_2(r_1) - n_2(r_1)} = e^{-(\nu_2 - \nu_1)(1 - q_0)}$$
 (12,5)

В нашем случае, когда плоскость Млечного Пути однородна заполнена облаками

$$\nu_2 - \nu_1 = \varkappa (r_2 - r_1)$$

Что касается до первого множителя правой части (12,4), то мы можем применить формулу (11,12). Действительно:

$$q^{n_1(r_1)+n_2(r_1)} = e^{-[\tau_1(r_1)+\tau_2(r_2)]} = g(1,1) =$$

$$= e^{-\nu_1 \left[(2-t_1)-2q_0(1-t_1)-t_1q_0^2 \right]}$$
(12,6)

На основании (12,4), (12,5) и (12,6) мы можем переписать (12,3) в виде:

$$\overline{I_1 \, I_2} = 2 \eta^2 \int_0^\infty e^{-2 \kappa r_1 (1 - q_0) + \kappa r_1 t(r_1) (1 - q_0)^2} dr_1 \int_{r_1}^\infty e^{-\kappa (r_2 - r_1) (1 - q_0)} dr_2$$

Внутренний интеграл вычисляется и тогда получаем.

$$\overline{l_1 l_2} = \frac{2\eta^2}{k(1-q_0)} \int_0^{\infty} e^{-\kappa r_1[2-l_1(r_1)(1-q_0)](1-q_0)} dr_1 \qquad (12,7)$$

В каждом отдельном случае этот интеграл принимает то или иное значение в зависимости от характера функции $t(r_1)$, что, как мы указывали уже, зависит в свою очередь от угла α и от формы облаков.

§ 13. СИСТЕМЫ БЕЗ ПОГЛОЩЕНИЯ

Наряду с звездными системами, в которых поглощение света межзвездным веществом играет существенную роль, встречаются другие звездные системы, в которых это поглощение незаметно, а если и присутствует, то во всяком случае не носит столь иррегулярного характера как в нашей и ей подобных галактиках. Мы имеем в виду эллиптические туманности ранних подтипов, правильный вид которых на фотографиях не оставляет в этом никаких сомнений. Тем же свойством обладают и шарообразные скопления. Отсутствие в системах названных типов межзвездного поглощающего вещества вполне понятно, так как последнее образует в галактиках всегда плоские подсистемы, между тем как эллиптические галактики ранних подтипов и шарообразные скопления состоят почти исключительно из населения сферических подсистем.

Другим упрощающим дело обстоятельством является тот факт, что системы указанных категорий не содержат в себе местных групп ввезд, открытых скоплений и звездных ассоциаций, т. е. сгущений физической природы. Поэтому в данном случае флуктуации в наблюдаемых числах звезд в основном должны носить характер естественных флуктуаций.

Эти естественные флуктуации в числах звезд должны в свою очередь вызывать флуктуации поверхностных яркостей на фотоснимках вллиптических тумавностей и шарообразных скоплений, получаемых наблюдателями. Надо учитывать, что даже в крупнейшие телескопы трудно разрешить полностью на звезды даже ближайшие вллиптические туманности. Как известно, даже у М 32 и NGC 205— спутников большой туманности Андромеды, с помощью крупнейших

телескопов разрешается лишь совокупность гигантов, входящих в эти системы. Поэтому в большинстве случаев мы можем наблюдать лишь флуктуации в распределении поверхностной яркости.

Как мы увидим, теоретический расчет показывает, что характер этих флуктуаций яркости делжен зависеть от формы функции светимости в данной системе и в частности от дисперсии светимостей. Это, повидимому, открывает возможность (еще практически непроверенную) судить о некоторых свойствах реальной функции светимости на основании изучения характера флуктуаций.

Пусть функция светимости (фотографическая) выражается заданием В (і), дающей вероятность того, что взятая наудачу звезда имеет светимость меньшую чем і. При этом под і можно подразумевать как абсолютную яркость, так и видимую, так как в данном случае речь идет об отдаленной и притом прозрачной системе, так что обе величины отличаются друг от друга лишь постоянным множителем. Будем искать вероятность и u(S,l) того, что суммарная яркость звезд, находящихся на площадке размерами S, меньше I. Пусть далее п есть коэфициент, имеющий тот смысл, что п ΔS есть вероятность нахождения одной звезды на малой площадке AS. Составим уравнение для u(S,l), используя метод приращения S. Очевидно, что в площадке S+4S суммарная яркость может оказаться меньше І при двух возможностях: 1) в ΔS нет ни одной звезды, но суммарная яркость в Sменьше I и 1) в ΔS имеется звезда той или иной яркости i, а суммарная яркость звезд, находящихся в S, меньше I-i. Учитывая все это, на основании теорем сложения и умнсжения вероятностей, мы можем написать:

$$u(S + \Delta S,I) = (1 - n\Delta S)u(S,I) + n\Delta S \int u(S,I-i)dB(i)$$

откуда, перенося $u(S_1!)$ направо и деля на ΔS , получаем уравнение

$$\frac{du(S,I)}{ndS} = -u(S,I) + \int_{u}^{1} u(S,I-i) \, dB(i)$$
 (13,1)

Помножив это уравнение на I и интегрируя по I по всему промежутку $(0, \infty)$, мы находим для I уравнение:

$$\frac{d\overline{l}}{ndS} = \overline{i}$$

откуда:

$$\bar{I} = nS\bar{i}$$

поскольку постоянная интегрирования по условиям задачи равна нулю.

Величина пS представляет собой среднее число звезд, приходящихся на площадку S. Обозначим его через \overline{N} . Тогда:

$$\overline{I} = \overline{Ni}$$
 (13,2)

Точно так же, помножив (12.1) на I^2 и интегрируя, найдем для среднего квадрата суммарной интенсивности уравнение:

$$\frac{d\overline{I_2}}{dN} = 2 \overline{N} \overline{i^2} + \overline{i^2}$$
 (13,3)

Поскольку для S=0 мы должны иметь $I^2=0$, из (13,3) непосредственно находим, интегрируя:

$$\overline{\overline{I}} = \overline{\overline{N}} \stackrel{3-2}{i} + \overline{\overline{N}} \overline{i}^{\overline{2}}$$
 (13,4)

Из (13,4) и (13,2) для относительного значения среднего квадратичного отклонения величины \overline{I} находим:

$$\frac{\overline{(I-I)^2}}{\overline{I}^2} = \frac{1}{\overline{N}} \frac{\overline{i^2}}{\overline{i}^2}$$
 (13,5)

Если бы не было дисперсии светимостей i, то мы имели бы $i^2=\overset{2}{i}$ и тогда мы нашли бы широко известный в элементарной теории естественных флуктуаций результат, гласящий, что

$$\frac{\overline{(I-\tilde{I})^2}}{\overline{I}^2} = \frac{1}{\overline{N}}$$

На самом же деле благодаря гигантской дисперсии светимостей, обычно наблюдаемой в звездных системах, отношение $\frac{1^2}{1}$ даже по порядку величины значительно превосходит единицу.

Изучаемые системы как раз с этой точки эрения чрезвычайно интересны. В противоположность окраинам нашей Галактики, в них нет сверхгигантов. В силу этого дисперсия светимостей в них должна быть меньше. Но с другой стороны, они наряду со эвездами ветви гигантов (по своему виду отличающейся от ветви гигантов для плоских подсистем), согласно П. П. Паренаго, содержат большое число субкарликов (Паренаго, Сообщения ГАИШ № 30, стр. 3—23, 1949). Поэтому вполне вероятно, что будучи меньшей, чем дисперсия в периферийных частях Галактики, дисперсия светимостей в элиптических туманностях все же не намного отличается от нес.

Вычислим, например, отношение $\frac{\vec{i}^2}{\vec{i}^2}$ для того случая,

когда имеет место нормальное распределение абсолютных величин звезд вокруг некоторого среднего значения $M_{\rm 0}$ с дисперсией σ . В этом случае

$$dB(i) = Ce^{\frac{-(M-M_0)^2}{2\sigma^2}} dM$$

где С постоянная нормирования. Имеем также:

$$i = i_0 \cdot 10^{-0.4M}$$

где i_0 есть условное обозначение светимости звезды нулевой абсолютной величины. Легко сосчитать, имея в виду значение постоянной C, что тогда

$$\frac{\bar{i}^2}{\bar{i}^2} = \frac{\int i^2 dB(i)}{[\int idB(i)]^2} = e^{k^2 \sigma^2}$$
 (13,6)

где $k = \frac{0.400}{\text{Mod}} = 0.92$. Поскольку в окрестностях Солнца дисперсия абсолютных величин превосходит три звездные величины, то искомое отношение будет разно нескольким

тысячам. Хотя для населения сферических подсистем дисперсия абсолютных величин может быть меньшей, все же отношение и в этом случае, вероятно, измеряется тысячами. Повтому флуктуации поверхностной яркости в системах рассматриваемого типа должны быть в тысячи раз больше, чем они
были бы, если бы эти системы состояли из звезд равней
светимости, но в таком же числе, что и реальные числа их
членов. Благодаря этому и только благодаря этому эти флуктуации могут стать доступны измерениям.

Определение из наблюдений численного значения выражения в левой части (13, 5), т.е. относительного значения среднего квадрата отклонения дало бы возможность найти

значение $\frac{\tilde{1}^2}{\tilde{1}^2}$, которое, как мы видели, зависит от дисперсии

светимостей, если бы незнание N, т. е. средного числа всех звезд, приходящихся на измеряемую площадку, не мешало этому. Поэтому такое прямое получение данных о функции светимости на основании наблюдений над флуктуациями поверхностных яркостей в изображениях эллиптических туманностей не представляется пока практически возможным. Однако мы можем изнаблюдений определить левую часть равенства

$$\frac{\overline{(I-I)^2}}{\overline{I}} = \frac{\overline{i^2}}{\overline{i}} \qquad . \tag{13,7}$$

которое получается путем умножения (13, 5) на (13, 2). Определив это отношение на разных расстояниях от центра туманности, мы получим тем самым некоторое представление об изменении функции светимости. Для этого следует только принять во внимание, что і даже при значительном уменьшении процента гигантов будет мало меняться, так как гигантов вообще мало. Поэтому изменения величин (13, 7) будут в основном обусловлены изменениями в яеличине і³. Последняя, наоборот, гораздо более чувствительна к изменению в процентном числе гигантов.

Заметим, что все сказанное применимо, конечно, в известной степени и к спиральным системам, плокости которых

наклонены к лучу эрения под углом. близким к 90°, так как в таким случаях поглощение на большей части протяжения туманности невелико. Однако надо сделать оговорку, что в этом случае необходимо учитывать влияние скоплений и ассоциаций звезд.

ԵՐԿՆՔԻ ՎՐԱ ԱՍՏՂԵՐԻ ԲԱՇԽՄԱՆ ՄԵՋ ԳՈՅՈՒԹՅՈՒՆ ՈՒՆԵՑՈՂ ՖԼՈՒԿՏՈՒԱՅԻԱՆԵՐԻ ՏԵՍՈՒԹՅՍՆ ՎԵՐԱԲԵՐՅԱԼ

Kdhnhnid

Երկնթի վրա գիտվող աստղերի բաշիման իստության ֆլուկաուացիաները հետևանք են երկու հիճնական պատճառների
ա) բնական ֆլուկտուացիաներ, որոնք դոյություն ունեն տաբնայան ֆլուկտուացիաներ, որոնք դոյություն ունեն տաբնույթի հետ և բ) կոսժիկական կլանժան անկանոնությունը, որը
կապված է ժիջաստղային կլանող ժիջավայրի պատառոտ և դիսկրետ կառուցվածքի հետ։ Այդ կառուցվածքի ուսուննասիրությունը ցույց է տվել, որ կլանող շերտը Գալակտիկայում կարևի է
պատկերացնել որպես առանձին կլանող ամպերի (միդամածություն ունեցող բնական ֆլուկտուացիաներ բրևնց հերթին առաջ
են բերում նկատելի ֆլուկտուացիաներ աստղերի դիտովող բաշխանն մեն, Ներկա աշխատանքում մեր հիճնական ուշադրությունը
հենանում ունեցում անական ֆլուկտուացիաներին

Աշխատաւթյան հրթորդ և չորրորդ պարազրաֆներում ուսումնասիրվում են ֆլուկտուացիաննը, որոնք դոյություն ունեն
արտաքին դալակտիկաննըի տեսաննըի բաշխման մեծ, Հինդերորդ
և հետադա պարադրաֆներում տրվում է ֆլուկտուացիաննըի
տեսությունը Դալակտիկայի հասարակածին մոտ դանվող երկնքի
տիրույթների համար։ Երկու հարևան տիրույթներում դիտվող դալակտիկաննըի քանակննըի կոռելացիայի խնդիրն ուսումնասիրված է պարադրաֆ 11-ում, Իսկ հաջորդ պարադրաֆում ըննվում է նույն կոռելացիոն խնդիրը Ծիրկաթնի մակերևույթային պայծառությունների համար։

Որոշ հետաջրքիր եղրակացություններ կարելի է անել արտաքին սիստեքննրում դիտվող մակնրևույթային պայծառու-Թյունների ֆիուկտուացիաների վերարերյալ այն դեպքում, ևրբ այդ սիստնքիները Թափանցիկ են (էլիպտիկ դալակտիկաներ

թյան ըվիրված է աշխատության վերջին մասը.

Հեղինակի նախկին հոդվածներում, ինչպես նաև Մարդարյանի և Ռուսակովի աշխատություններում ֆլուկտուացիաների տեսության որոշ արդյուն ֆները համեմատվել են դիտուններից ստացված տվյալների հետ։ Շերկա աշխատության մեջ շոշափված է միայն ինդրի տեսական կողմը։ Մեզ թվում է, որ դիտունների հետ նոր համեմատություններ անելու համար հարկավոր է ավելի հետ նոր համեմատություններ անելու համար հարկավոր է ավելի Մյս տեսակնաից չափազանց ցանկալի է, որ այստեղ արձարձված տեսական խնդիրները ավելի լայն մշակվեն և ընդհանրացվեն։

Հատ կարևոր է, ճնացել է ներկա հետաղոտության տեսադաշտից
արևրայի վրա կազմվող պատահական երկրաչափական դասավոըուճների հավանականության պրոբլեմը, որը մեր տեսակետից

டிய.முவ

ЛИТЕРАТУРА

- В. Амбарцумян. Бюлл. Абастуманской обсерватории, 4, 17, 1940. В этой работе впервые был поставлен вопрос о связи флуктуаций чисел внегалактических туманностей с клочковатостью поглощающего слоя в Галактике.
- В. Амбарцумян. К теории флуктуаций яркости в Млечном Пути. ДАН СССР. 44, 1944. Здесь было показано, что проблема флуктуаций яркости в Млечном Пути сводится к функциональному уравнению типа (5, 5).
- 3. В. Амбарцумян. К вопросу о флуктуациях яркости Млечного Пути. ДАН Арм. ССР, 1, 9, 1941. В этой работе была поставлена задача о корреляции яркостей двух близких друг к другу точек Млечного Пути.
- В. Амбарцумян. О флуктуациях яркости Млечного Пути. Бюллл. Абастуманской обсерватории, 8, 43, 1945. Примененный здесь метод изучения флуктуаций поверхностных обобщен в § 8 настоящей работы.
- 5. Б. Маркарян. Флуктуации в видимом распределении звезд и космическое поглощение. Сообщения Бюраканской обсерватории, вып. 1, 1946. В этой работе впервые рассмотрен вопрос о флуктуациях яркости в высоких галактических широтах, когда слой облаков имеет конечное протяжение и среднее число облаков, конечно.

- В. Амбарцумян. Подсчеты внегалактических туманностей и галактическое поглощение. ДАН Арм. ССР. 6. 105, 1947. Здесь дан анализ подсчетов внегалактических туманностей, произведенных Шапли.
- 7. Г. Русаков. Флуктуации яркости Млечного Пути и физические характеристики диффузиых туманностей. Ученые записки ЛГУ, серия математических наук, 18, 53. 1949. Здесь произведено сравнение теории флуктуаций в яркостях Млечного Пути с имеющимися наблюдениями. Поставлен вопрос о роли рассеянного отдельными облаками космической материи света. Приведены таблицы численных значений решений функционального уравнения (7, 1) при различных q.

