ДИЗНИЧИК ООЛ ЧЕЗПЕРЗПЕКТЕР ИНИЧЕСТВЕ БЕЛЕЧИЧЕР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Зра-сімр., рб. в шьюб. аршинр. ТХ, № 4, 1956 Физ-мат., естеств. и техн. науки

НЕОРГАНИЧЕСКАЯ ХИМИЯ

М. В. Дарбинян и С. Г. Шекоян

О возможности силико-термического восстановления магния из силикатов магния

Силикаты магния — серпентинит, дунит, перидотит и др. являются широко распространенными в природе магниевыми породами. Они отличаются высоким содержанием магния, но ввиду большого содержания кремнезема (в виде мета- и орто-силикатов магния и свободного кремнезема) пока не применяются в магниевой промышленности. Силикатная структура этих минералов сильно затрудняет их восстановление с целью получения металлического магния.

Ранее нами был разработан карбидо-термический метод получения магния из его силикатов [1, 2]. В этих работах теоретически и экспериментально показана возможность вакуумотермического получения магния из таких силикатов магния, как серпентин, дунит и перидотит. При этом в качестве восстановителей в основном были применены карбиды кальция и алюминия и частично кремневые восстановители — элементарный кремний и ферросилиций [2].

В настоящей статье приводятся полученные нами теоретические и экспериментальные данные о возможности термического восстановдения сидикатов магния креминевыми восстановителями.

Восстановление окиси магния или доломита карбидом кальция протекает по следующему уравнению:

Механизм восстановления магниевого сырья карбидом кальция мы объясняем [2, 3] реакциями, протекающими как в твердой фазе — веледствие тесного контакта и взаимной диффузии реагирующих компонентов, так и в газо-паровой фазе. При применении карбида кальция в качестве восстановителя, вероятно происходит также диссоциация карбида кальция и взаимодействие образовавшихся паров кальция с окисью магния или другими магниевими соединениями. С кремниевым восстановителем окись магния реагирует так:

$$2 \text{ MgO} = 2 \text{ Mg} + 0_2 - 292200 \text{ кал.}$$
 II $\text{Si} + 0_2 = \text{SiO}_2 + 205600 \text{ кал.}$ III $\overline{2 \text{ MgO} + \text{Si}} = 2 \text{Mg} + \text{SiO}_2 - 86600 \text{ кал.}$ IV

Реакция IV обратимая, но так как образовавшийся при этом кремнезем энергично реагирует с имеющейся в шихте окисью магния:

$$SiO_2 + 2 MgO = 2 MgO \cdot SiO_2 + 15120 \kappa a \Lambda$$
, V

то равновесие IV смещается направо в сторону образования магния-Суммируя уравнения IV и V, получим:

$$4 \text{ MgO} + \text{Si} = 2 \text{ Mg} + 2 \text{ MgO} \cdot \text{SiO}_{2} - 71480 \text{ кал.}$$
 VI

Таким образом, для силико-термического восстановления окиси магния, расход тепла на 1 грамм-атом $Mg \approx 35\,740$ кал. При этом выход магния теоретически не может превышать $50^{\rm o}/_{\rm o}$, так как остальные $50^{\rm o}/_{\rm o}$ окиси магния в ходе реакции (V—VI) реагируют с кремнеземом, образуя ортосиликат магния.

Известно [4], что скорость реакции образования ортосиликата кальция — 2CaO ⋅ SiO₂ заметно превышает скорость реакции образования ортосиликата магния — 2 MgO ⋅ SiO₂, что объясняется большим тепловым эффектом первой реакция по сравнению со второй и большой подвижностью иопов Са… по сравнению с Mg…

В условиях нашего эксперимента при наличии в шихте свободных окисей кальция и магния, кремнезем в первую очередь будет реагировать с окисью кальция.

$$SiO_2 + 3CaO = 2CaO \cdot SiO_2 + 33200 \kappa a.$$
 VII

Исходя из сказанного, восстановление окиси магния кремнием в присутствии окиси кальция можно представить так:

$$2 \text{ MgO} + \text{Si} \rightleftharpoons 2 \text{Mg} + \text{SiO}_2 - 86600 \text{ } \kappa a \Lambda$$
, IV
 $\text{SiO}_2 + 2 \text{CaO} = 2 \text{ CaO} \cdot \text{SiO}_2 + 33200 \text{ } \kappa a \Lambda$. VII
 $2 \text{ MgO} + \text{Si} + 2 \text{CaO} = 2 \text{ Mg} + 2 \text{ CaO} \cdot \text{SiO}_2 - 53400 \text{ } \kappa a \Lambda$. VIII

Основываясь на приведенных подсчетах и на то, что в прокаленпом доломите уже не существует связи между окисью кальция и окисью магния [2, 5], практически расход тепла на восстановление доломита кремнием ориентировочно можно принять таким же (VIII):

$$2(CaO.MgO) + Si = 2Mg + 2CaO.SiO_2 - 53400 \kappa a \Lambda.$$
 IX

Таким образом, при силико-термическом восстановлении доломита расход тепла для получения 1 грамм—атома $Mg \simeq 26\,700$ кал, что на 9040 кал (33,86%) меньше, чем при восстановлении окиси магния. Выход магния при этом должен быть гораздо больше, чем при применении окиси магния.

Исходя из вышеизложенного, представляет некоторый теоретический и практический интерес экспериментальное изучение реакции восстановления силикатов магния кремниевыми восстановителями в присутствии свободной окиси кальция.

Предварительные исследования показали, что силикаты магния, без добавки специальных связывающих для кремнезсма, кремниевыми восстановителями не восстанавливаются. Нижеприведенные реакции X и XI:

$$2 (MgO \cdot SiO_2) + Si \stackrel{\sim}{=} 2 Mg + 3 SiO_2,$$
 X

$$2 MgO \cdot SiO_2 + Si \stackrel{\sim}{=} 2 Mg + 2 SiO_2,$$
 XI

практически идут обратно, так как константы их равновесия

$$\frac{[Mg]^2 \cdot [SiO_2]^3}{[MgO \cdot SiO_2]^2 \cdot [Si]} = K_X \text{ H} \frac{[Mg]^2 \cdot [SiO_2]^2}{[2 MgO \cdot SiO_2] \cdot [Si]} = K_{X1}$$

слишком малы.

Для смещения равновесия X и XI направо в сторону образования магния нужно связать имеющийся в силикате и образовавшийся в процессе реакции кремнезем, что практически, как показали наши исследования, можно осуществить добавлением в шихту достаточного количества окиси кальция. Реакции можно выразить по нижеследующим уравнениям:

а) восстановление метасиликата магния:

$$2 (MgO \cdot SiO_2) \stackrel{?}{=} 2 MgO + 2 SiO_2 - 17380 \ \kappa a_A,$$
 XII
 $2 MgO + Si \stackrel{?}{=} 2 Mg + SiO_2 - 86600 \ \kappa a_A,$ IV
 $3 SiO_2 + 6 CaO = 3(2CaO \cdot SiO_2) + 99600 \ \kappa a_A,$ XIII

$$2(MgO.SiO_2) + Si + 6 CaO = 2 Mg + 3 (2 CaO.SiO_2) 4380 \kappa a A. XIV$$

б) восстановление ортосиликата магния:

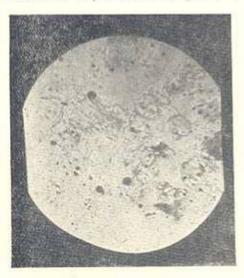
$$2 \text{ MgO} \cdot \text{SiO}_2 \rightleftarrows 2 \text{ MgO} + \text{SiO}_2 - 15120 \text{ } \kappa a \Lambda$$
, V
 $2 \text{ MgO} + \text{Si} \rightleftarrows 2 \text{ Mg} + \text{SiO}_2 - 86600 \text{ } \kappa a \Lambda$, IV
 $2 \text{SiO}_2 + 4 \text{ CaO} = 2 (2 \text{ CaO} \cdot \text{SiO}_2) + 66400 \text{ } \kappa a \Lambda$, VII
 $2 \text{MgO} \cdot \text{SiO}_2 + \text{Si} + 4 \text{CaO} = 2 \text{ Mg} + 2 (2 \text{ CaO} \cdot \text{SiO}_2) - 35320 \text{ } \kappa a \Lambda$. XV

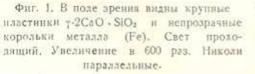
Таким образом, при силико-термическом восстановлении силикатов магния расход тепла на 1 грамм—атом Мд для метасиликата маг-

тов магния расход тепла на 1 грамм—атом Mg для метасиликата ния ≈ 2190 кал, а для ортосиликата магния ≈ 17 660 кал.

Серпентин — $3 \text{ MgO} \cdot 2 \text{ SiO}_2 \cdot 2 \text{ H}_2\text{O}$ при прокаливании теряет кристаллизационную воду и прокаленному серпентину можно дать условную формулу — $3 \text{ MgO} \cdot 2 \text{ SiO}_2$ (составленного из 1 мол. ортосиликата магния — $2 \text{ MgO} \cdot \text{SiO}_2$ и 1 мол. метасиликата магния — $MgO \cdot \text{SiO}_2$).

Ориентировочно (без учета примесей и ряда других факторов) восстановление прокаленного серпентина можно выразить суммой реакции XIV и XV:


$$2(MgO \cdot SiO_2) + Si + 6 CaO = 2Mg + 3 (CaO \cdot SiO_2) - 4380 \ \kappa a \Lambda$$
, XIV $2(2MgO \cdot SiO_2) + 2Si + 8CaO = 4Mg + 4(2CaO \cdot SiO_2) - 70640 \ \kappa a \Lambda$, XV $2(3MgO \cdot 2SiO_2) + 3Si + 14CaO = 6Mg + 7(2CaO \cdot SiO_2) - 75020 \ \kappa a \Lambda$. XVI


Таким образом, при силико-термическом восстановлении прокаленного серпентина в присутствии стехиометрического количества (XVI) окиси кальция расход тепла на 1 грами—атом Мд ориентировочно¹ можно принять $\approx \frac{75\,020}{6} = 12\,503$ кал.

Вышеприведенные уравнения реакции выведены на основании результатов проведенных химических и кристаллооптических² анализов.

Результаты кристалдоонгического анализа: шлак (шихта составлена из $40^{9}/_{0}$ прокаденного серпентинита, $50^{9}/_{0}$ окиси кальция, $8^{9}/_{0}$ ферросилиция и $2^{9}/_{0}$ плавикового шпата).

Под микроскопом видны крупные пластинки $(25-35\mu)$ - γ -2 CaO-SiO₂ и округленные образовання — β -2CaO-SiO₂. Содержание MgO незначительное. Остаток восстановителя присутствует в виде мелких железистых корольков (см. фнг. 1 и 2).

Фиг. 2. То же, николи скрещены (видны зерна у-2CaO · SiO₂).

Опыты по силико-термическому восстановлению силикатов магиля были проведены анологично нашим предыдущим исследованием [1, 2], на такой же установке,

В качестве магниевого сырья из силикатов магния были взяты серпентинит, дунит и перидотиг, а в качестве добавки окиси кальции (известь).

Для проведения более точных термодинамических расчетов с учетом свободной энергии реакции и др. факторов в литературе пока не имеется необходимых данных.

² Кристаллоонтические анализы были проведены имерсионным методом, при помощи поляризационного микроскопа, в кристаллоонтической даборатории ВАМИ, (г. Лешиград) О. А. Аракелян.

Химический состав исходного сырья приведен в табл. 1.

Габлица 1

MN9 n/m	Сырье	Хим. состав в ⁰ / ₀ ⁰ / ₀						
		п. п. п.	SiO ₂	R ₂ O ₃	CaO	MgO		
1 2 3 4 5 6 7	Серпентинит не прокал. провал. при 750° Дунит не прокален. прокал. при 750° Перидотит не прокал. прокален. при 750° Обожженная известь	22,62 11,38 0,25 16,20 0,17 0,13	30,60 39,53 41,16 45,99 36,83 43,93 0,78	7,39 10,31 8,64 9,88 10,85 13,89 0,97	0,65 0,84 0,93 1,07 0,68 0,79 98,41	38,16 49,30 38,03 42,41 35,02 42,01 следы	99,42 99,98 100,17 99,60 99,58 100,79 100,29	

В качестве восстановителей были взяты кремний (с содержанием Si=96,6%) и ферросилиций (с содержанием Si=75,3%).

Шихта для брикетирования была составлена на основании стехиометрических расчетов (XIII и XV), с учетом химического состава исходных материалов.

Предварительные исследования показывали, что без добавки в шихту катализатора выходы магния слишком низкие, потому и дальнейшие исследования проведены в присутствии катализатора— Са F₂.

Таблица 2 Опыты восстановления силикатов магния кремниевыми восстановителями

Ne.No. n/n	Состав шихты в ⁰ / ₀ ⁰ / ₀			Восстано- витель		бри-	Условия восста- новления			Мg в 0/0 лизу	
	маглиевое сыр	ье	CaO	CaF ₂	Si	Fe.Si	Ипвеска кетов в	темпера- тура в	экспози- ция в часах	вакуум в мы рт.сг	Выход М (по внади
1234567891011	. 36 36 36 40 40 41 Дунит 42 Перидотит 42	33330000000	52,1 52,1 52,1 52,1 50,0 50,0 50,5 47,0 47,0 47,0 47,0	2.8 2.8 2.8 2.0 2.0 2.0 3.0 3.0 3.0 3.0	6.5	8,8 8,8 8,8 8,0 8,0 8,0 8,0 8,0 8,0 8,0	7,43 14,20 12,11 11,43 6,35 4,05 6,65 5,67 7,50 8,55 7,05	1200 1250 1250 1300 1250 1300 1250 1200 1250 1200 1250	2233333222222	0,8—1,2 0,8—1,2 0,8—1,2 0,8—1,2 0,8—1,2 0,02 0,02 0,8—1,2 0,8—1,2 0,8—1,2 0,8—1,2	58,3

Из приведенных опытов (табл. 2) следует, что восстановление силикатов магния кремниевыми восстановителями при наличии в шихте окиси кальции и катализатора (СаГ₂) практически вполне осуществимо. Выход магния по сравнению с карбидо-термическим методом [1, 2] ниже. Только в условиях более глубокого вакуума и высоких температур (опыты 5 и 6) получены удовлетворительные выходы.

Выводы

- Выведены некоторые уравнения реакции силико-термического восстановления магния из силикатов магния. Проведены ориентировочные подсчеты их тепловых эффектов.
- Показано, что восстановление силикатов магния (серпентинита, дунита и перидотита) кремнием или ферросилицием практически возможно только при создании условий связывания кремнезема, что целесообразно осуществить окисью кальция.
- Реакции необходимо проводить в присутствии катализатора— CaF₂.
- 4. Выход магния увеличивается с увеличением вакуума и повышением температуры и экспозиции. Максимальный выход получен $76,5-76,8^{\circ}/_{\circ}$.
- При применении в качестве сырья разных силикатов магния, выходы магния получаются разные. Сравнительно лучшие выходы дает серпентицит.
- Удельный расход шихты при силико-термическом методе получения магния из силикатов магния слишком большой (вследствие необходимости добавления в шихту более 50%, окиси кальция). Метод может иметь препаративное значение.

Մ. Վ. Գարբինյան, Ս. Գ. Շեկոյան

ՄԱԳՆԵԶԻՌԻՄԻ ՍԻԼԻԿԱՏՆԵՐԻՑ ՍԻԼԻԿՈ-ԹԵՐՄԻԿ ԵՂԱՆԱԿՈՎ ՄԱԳՆԵԶԻՈՒՄԻ ՎԵՐԱԿԱՆԳՆՄԱՆ ՀՆԱՐԱՎՈՐՈՒԹՅԱՆ ՄԱՍԻՆ

UUTOROPHU

Սերպեստինիտը, դունիտը, պերիդոդիտը և մագնեղիումի այլ սիլիկատները չատ տարաժված են բնության մեջ։ Նրանք պարունակում են մեծ քանակությամբ մագնեղիում, բայց չնորնիվ սիլիկանողի բարձր պարունակության (մեթա- և օրթո-սիլիկատներ և ազատ սիլիկանող), առայժմ չեն կիրառվում մետաղական մագնեղիում ստանալու ճամար։ Նրանց սիլիկատային ստրուկտութան խիստ խանգարում է մետաղական մագնեղիում ստանալու նպատակով նրանց վերականգնմանը։

[1, 2] աշխատություններում մշակված է հղել մագնեղիումի սիլիկատներից մետադական մագնեղիումի ստացման կարրիդո-թերմիկ եղանակ, որտեղ տեսականորեն և էջսպերիմենտալ կերպով ցույց է տրված մագնեզիումի սիլիկատներից վակուումո-թերմիկ եղանակով մետադական մագնեզիումի ստացման հնարավորությունները։

Հողվածում շարագրված են ճեղինակների ստացած տեսական և էջըսպերիմենտալ տվյալները, որոնք վերարերում են մադնեղիումի սիլիկատներից սիլիցիումային վերականդնիչներով մետաղական մագնեղիումի ստացմանը։

- 1. Սիլիկո-Թերմիկ եղանակով ստացված են մագնեզիումի սիլիկատների վերականգնման մի չարը ռեակցիաների հավասարուններ և կատարված են նրանց Չերմային էֆեկտների օրիենտեր հաչվուններ։
- 2. Յույց է տրված, որ մագնեզիում և սիլիկատների (սերպենտինիտ, դունիտ և պերիդոդիտ) վերականգնում ը սիլիցիումով և ֆերրո-սիլիցիումով պրակտիկորեն կարելի է տանել, ենե միայն ստեղծվեն նպաստավոր պայ-մաններ՝ սիլիկատի մեջ եղած սիլիկանողը կապելու համար, որ նպատականարմար է իրականացնել կայցիումի օրսիդով։
- 3. Ռեակցիան անհրաժելա է տանել կատալիզատորի (CoF₂-ի) ներկայությամբ։
- 4. Մապնեղիում ի ելունքը մեծանում է վակուում ի խորացմամբ, ջերմաստիճանի բարձրացմամբ ու փորձի տեսղության ավելացմամբ։ Մաքսիմալ հյունքը ստացվել է 75,6—76,8% օւ
- 5. Մադնեղիումի տարբեր սիլիկատներ որպես հում ը կիրառելիս ստացվում են տարրեր ելուն ընկը։ Համեմատարար րարձր ելուն ըներ են ստացվում սերպենտինիտից։
- 6. Սիլիկատներից սիլիկո-խերմիկ եղանակով մետաղական մագնեդիումի ստացման ժամանակ շիխտայի տեսակարար ծախոր չափազանց մեծ է լինում (ջանի որ շիխտան պետք է պարունակի 50%,-ից ավելի կալցիումի օքսիդ)։

ЛИТЕРАТУРА

- 1. Дарбинян М. В. ДАН Армянской ССР, VI, № 3, 71-76, 1947.
- 2. Дарбинян М. В. Автореферат диссертации, Ереван, 1952.
- Дарбинян М. В. Научные труды Ереванского государственного университета, т. 36, серия хим. наук, вып. 1, 75—85, 1952.
- Будников П. П. и Береженой А. С. Реакции в твердых фазах. Промстройиздет, 1949.
- 5. Будников П. П. н Гулиева Л. Г. Ж. П. Х., т. 10, № 5, 797—806, 1937.
- 6. Шенке Г. Физико-химия металлургических процессов. ОНТИ, 1936, стр. 278.