2И.3ЧИ.ЧИЪ ИИП ФРУПРОЗПРОЗНОВЕР ИЧИРОШНИЗР УБОВЧИФРР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Зра.-dup., рб. h mbhub. qhmnip. VIII, No 6, 1955 Физ-мат., естеств. и техи науки

ГИДРОМЕХАНИКА

В. Г. Саноян

Построение очертания плоских и осесимметричных конфузоров и диффузоров напорной системы по заданному распределению скорости на оси

1. Введение

В инженерной практике зачастую требуется осуществить изменение размеров и формы поперечного сечения водовода на сравнительно коротком участке. Такие участки водовода, как известно, называются диффузорами и конфузорами. Основное требование, которое предъявляется к гидромеханическому расчету диффузоров и конфузоров напорной системы состоит в том, чтобы при расширении водовода поток не отставал от стенки его (т. е. не произошел срыв пограничного слоя), а это, в свою очередь, упирается в необходимость задания плавного, монотопного распределения скоростей вдоль стенок.

Постановка задачи такова: задан закон изменения пролодьных скоростей на оси расширяющихся и суживающихся потоков "еальной несжимаемой жидкости; требуется найти очертание водовода (линия тока). При этом нами рассматривается два случая: 1) конфузор и диффузор как переходный патрубок от одного диаметра трубы к другому диаметру (или конфузор и диффузор с двумя асимптотами), 2) диффузоры, работающие на выхлоп (диффузор с одной асимптотой).

Влияние пограничного слоя в настоящей статье не учитывается.

2. Представление решения в виде определенного интеграла

Рассмотрим уравнение Лапласа для определения потенциада скоростей осесимметричного безвихревого движения идеальной несжимаемой жидкости

$$\frac{\partial}{\partial \mathbf{r}} \left(\mathbf{r} \frac{\partial \varphi}{\partial \mathbf{r}} \right) + \frac{\partial}{\partial z} \left(\mathbf{r} \frac{\partial \varphi}{\partial z} \right) = 0, \qquad (2.1)$$

где: г и z — цилиндрические координаты.

Его интеграл можно представить в форме

(2.2)

где: $\varphi_0(t)$ — аналитическая функция комплексного переменного t=z+ + ir cos ω во всей области течения.

Производная $\varphi_0(t)$, вычисленная на оси потока, т. е. при г = 0, имеет в нашем случае простой физический смысл. Составим выражение для составляющей скорости, параллельной оси течения:

$$v_r(r, z) = \frac{\partial \varphi}{\partial z} = \frac{1}{\pi} \int_0^z \varphi'_0(z + i r \cos \omega) d\omega$$
(2.3)

и определим ее на оси потока. Тогда будем иметь:

$$v_{i_1} = \frac{1}{\pi} \int_{0}^{z} \phi_0^{*}(z) d\omega = \phi_0^{*}(z).$$
 (2.4)

Таким образом, производная $\varphi_0'(z)$ представляет собою распределение скорости v, вдоль оси симметрии течения. Задаваясь видом функции

$$V_{\ell_0} = \phi_0(z) = f_0(z),$$
 (2.5)

найдем по (2.2) распределение осевых и радиальных скоростей во всей области течения:

$$v_{r}(r,z) = \frac{1}{\pi} \int_{0}^{\pi} f_{0}(z + ir\cos\omega) d\omega,$$

$$v_{r}(r,z) = \frac{i}{\pi} \int_{0}^{\pi} f_{0}(z + ir\cos\omega) \cos\omega d\omega.$$
(2.6)

Используя уравнение (2.2), а также соотношения:

$$\frac{\partial \dot{\varphi}}{\partial z} = -r \frac{\partial \varphi}{\partial r}; \quad \frac{\partial \psi}{\partial r} = r \frac{\partial \varphi}{\partial z}$$

и условие

 $\dot{\varphi} = 0$ при r = 0,

функцию тока в свою очередь можно представить в виде определенного интеграла. Тогда будем иметь:

$$\psi(\mathbf{r}, \mathbf{z}) = \int \left(-r \frac{\partial \varphi}{\partial \mathbf{r}} \, \mathrm{d}\mathbf{z} + r \frac{\partial \varphi}{\partial \mathbf{z}} \, \mathrm{d}\mathbf{r} \right) = \frac{1}{\pi} \int_{\delta}^{r} r \, \mathrm{d}\mathbf{r} \int_{\delta}^{\sigma} \varphi_{0}^{i}(\mathbf{z} + \mathrm{i}\mathbf{r}\cos\omega) \, \mathrm{d}\omega \tag{2.7}$$

ИЛН:

$$\psi(\mathbf{r}, \mathbf{z}) = - \frac{\mathrm{i}\mathbf{r}}{\pi} \int_{0}^{\pi} \varphi_{\theta}(\mathbf{z} + \mathrm{i}\mathbf{r}\cos\omega)\cos\omega\,\mathrm{d}\omega.$$

Построение очертания плоских и осесимметричных конфузоров и диффузоров

Из вышензложенного следует, что если на оси потока задано распределение осевой скорости, то можно найти скорости в любой точке потока. Задавая распределение скорости на оси в виде монотонно убывающей функции. получим течение в диффузоре, в обратном случае — течение в конфузоре.

3. Представление решения в виде степенных рядов

При произвольном виде функции f₀(z) не всегда удается вычислить интегралы (2.2), (2.6), (2.7) в конечном виде.

Поэтому представляется необходимым искать решение в виде бесконечного ряда. Иногда удобно пользоваться асимптотическим разложением, иногда же разложением по специальным функциям.

Используя то обстоятельство, что f₀(t) является аналитической функцией для всех значений своего комплексного аргумента, можно се разложить в степенный ряд

$$f_0(t) = \sum_{n=0}^{\infty} \frac{f_{\nu}^{(n)}(0)}{n!} t_{\nu}^n \cdot$$
(3.1)

Тогда, подставив эти разложения в (2.6) и (2.7) и замечая. что

$$\frac{1}{\pi} \int_{0}^{\pi} \cos^{2n} \omega \, d\omega = \frac{(2n)!}{2^{2n} (n!)^2} \cdot \frac{1}{\pi} \int_{0}^{\pi} \cos^{2n-1} \omega \, d\omega = 0,$$

получим:

$$\begin{aligned} \mathbf{v}_{z}\left(\mathbf{r},z\right) &= \sum_{n=0}^{\infty} \sum_{k=0}^{km} \frac{a_{n} n! \left(-1\right)^{k}}{2^{2k} (k!)^{2} (n-2k)!} r^{2k} z^{n-2k}, \\ \mathbf{v}_{r}\left(\mathbf{r},z\right) &= \sum_{n=1}^{\infty} \sum_{k=0}^{km} \frac{a_{n} n! \left(-1\right)^{k+1} r^{2k+1} z^{n-2k-1}}{2^{2k+1} (k!)^{2} (n-2k-1)! (k+1)}, \\ \boldsymbol{\psi}(\mathbf{r},z) &= \sum_{n=0}^{\infty} \sum_{k=0}^{km} \frac{a_{n} n! \left(-1\right)^{k} r^{2k+2} z^{n-2k}}{2^{2k+1} (k!)^{2} (n-2k)! (k+1)}, \\ \boldsymbol{\psi}(\mathbf{r},z) &= \sum_{n=0}^{\infty} \sum_{k=0}^{km} \frac{a_{n} n! \left(-1\right)^{k} r^{2k} z^{n-2k+1}}{2^{2k} (k!)^{2} (n-2k)! (k+1)}, \end{aligned}$$
(3.2)

где принято обозначение

$$\frac{f_0^{(n)}(0)}{n!} = a_n.$$

Распределение скорости на оси (r = 0) потока может быть выражено степенным рядом

$$v_{0z}=\sum_{n=0}^{\infty}\,a_nz^n\cdot$$

Выразим составляющие скорости, функцию тока и потенциал скоростей через производные от функции распределения скорости на оси канала.

Для этого разложим fo(t) в степенной ряд вблизи оси z.

Действуя так же, как при выводе формул (3.2), получим [1]:

$$\begin{aligned} \mathbf{v}_{z} &= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2n} (n!)^{2}} r^{2n} \mathbf{f}_{0}^{(2n)}(z), \\ \mathbf{v}_{\varepsilon} &= \sum_{n=1}^{\infty} \frac{(-1)^{n} 2n}{2^{2n} (n!)^{2}} r^{2n-1} \mathbf{f}_{0}^{(2n-1)}(z), \\ \psi &= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2n}{2^{2n} (n!)^{2}} r^{2n} \mathbf{f}^{(2n-1)}(z), \\ \varphi &= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2n} (n!)^{2}} r^{2n} \varphi_{0}^{(2n)}(z), \end{aligned}$$
(3.3)

Простейшим примером использования вышеприведенных формул может служить простое линейное распределение скорости на оси канала:

$$f_0(z) = a_0 + a_1 z. \tag{3.4}$$

Тогда, если положить an = 0, п > 2, то из (3.2) получим:

V --- 0 | 0 0

$$v_{z} = a_{0} + a_{1}z,$$

$$v_{z} = -\frac{a_{1}}{2}r,$$

$$\psi = (a_{0} + a_{1}z)\frac{r^{2}}{2}.$$

Линии тока определяются уравнением:

$$(a_0 + a_1 z) r^2 = const = 1.$$

Определим параметры а, и а, из условия:

$$(\mathbf{r})_{t=0} = \mathbf{r}_2,$$
$$(\mathbf{r})_{t=1} = \mathbf{r}_1,$$

Построение очертания плоских и осесимметричных конфузоров и диффузоров

где *l* — длина диффузора. Тогда получим уравнение образующей круглого диффузора

$$r = \frac{r_2}{\sqrt{1 + \left[\left(\frac{r_2}{z_1}\right)^2 - 1\right]\frac{z}{l}}}.$$

Следует отметить, что такая форма диффузора была ранее изучена И. Е. Идельчиком и названа им "диффузором с постоянным граднентом скорости вдоль потока".

Экспериментальное исследование такого криволинейного диффузора с линейным распределением скорости на его оси показывает, что в этом случае коэффициент полезного действия получается выше, чем при других профилях (прямолинейный, дуга окружности и др.) [2].

Теоретические конфузоры и диффузоры с двумя и одной асимптотами

На практике встречаются два основных типа диффузоров и конфузоров:

 а) диффузор и конфузор, как переходный патрубок от одного диаметра трубы к другому диаметру;

б) диффузор, работающий на выхлоп.

Первый из вышеуказанных типов мы в дальнейшем будем называть "диффузором с двумя асимптотами", второй — "диффузором с одной асимптотой".

Для того, чтобы профиль водовода имел асимптоты, необходимо, чтобы заранее задаваемая функция fo(z) сама имела асимптоты.

Если непрерывная четиая функция F(z) (фиг. 1a) в начале координат имеет конечное значение (например, единица), а в бесконечности асимптотически приближается к нулю, то интеграл этой функции по z, т. е. $\int_{0}^{z} F(z) dz$ имеет две асимптоты, параллельные оси z (рис. 16)

(при условин, что $\int_{0}^{z} F(z) dz$ сходится при всех значениях z).

К числу функций такого типа относятся, например, функции:

$$\frac{1}{\left(1+z^2\right)^n} n \geqslant 1, \quad \frac{1}{ch^n z} n \geqslant 1, \ e^{-z^{2n}} n \geqslant 1.$$

Действительно, во всех этих случаях $\int_{0}^{z} F(z) dz$ выражается в виде графика, изображенного на фиг. 16, так как первая производная, — F(z) на конечных расстояниях от начала координат нигде не обращается в нуль и $\int_{0}^{z} F(z) dz$ не имеет максимумов и минимумов; кроме того, вторая производная — F'(z) имеет нулевое значение в начале координат.

Фиг. In.

Следовательно, кривая $\int\limits_0^\infty F(z) dz$ имеет в начале координат точку пере-

гиба (третья произволная в начале координат не равняется нулю).

Из вышесказанного следует, что для того, чтобы получить профили водоводов с двумя или одной асимптотами, распределение скорости на оси потока нужно задавать в виде:

$$f_0(z) = \frac{\mu + 1}{2} - \frac{\mu - 1}{2} \int_0^z F(z) \, dz, \qquad (4.1)$$

где и — отношение входной и выходной скоростей,

F(z) - функция, удовлетворяющая вышеуказанным условиям.

В работе [3] для построения теоретических профилей водоводов в качестве F(z) использована функция:

Построение очертания плоских и осесниметричных конфузоров и диффузоров.

$$F(z) = \frac{2}{\sqrt{2\pi}} e^{-\left(\frac{z^{\prime}}{z}\right)}.$$
(4.2)

7

В этом случае распределение скорости по оси канала выражается следующей функцией:

$$f_0(z) = \frac{\mu+1}{2} - \frac{\mu-1}{2} \cdot \frac{2}{\sqrt{2\pi}} \int_0^z e^{-\frac{z'}{2}} dz.$$
 (4.3)

Составляющие скорости и функция тока могут определяться по формуле (3,3). В этом случае последовательные производные функции f₂(z) в формулах (3,3) можно выразить через полиномы Эрмита:

$$H_{n}(z) = (-1)^{n} e^{\frac{1}{2} z^{n}} \frac{d^{n}}{dz^{n}} \left(e^{-\frac{1}{2} z^{n}} \right).$$

Тогда будем иметь:

$$f_0^{(n+1)}(z) = -\left(\mathfrak{u} {-} 1 \right) \, \frac{(-1)^n}{\sqrt{2\pi}} \, \mathrm{e}^{-\frac{1}{2} z^2} \, \mathrm{H}_n \left(z \right).$$

Для такого выражения F(z) при µ = 0,1 на фиг. 2 проведены линии тока движения. На графике показаны также эпюры скоростей по поперечному сечению водоводов. На фиг. 3 представлены измене-

Фиг 3.

ння скорости вдоль различных линий тока. Из фиг. 2 видно, что линии тока, начиная от z = ± 2,8, становятся параллельными оси z. Движение представляет собой течение на переходном участке (диффузор или конфузор), который соединяет круглую цилиндрическую трубу определенного поперечного сечения с цилиндрической же трубой, имеющей сечение в десять раз большее или меньшее.

Если кривизна стенки вдоль потока является слишком большой, то в определенных точках могут получиться местные диффузоры (для конфузоров) или конфузоры (для диффузоров), в таких случаях появляются области обратного граднента давления, и может быстрее произойти отрыв пограничного слоя.

Например, как видно из фиг. 3. для линий тока $\psi = 0,126$ и $\psi = 0,1$ точки z = -1,6, z = -1,8 являются такими точками.

В качестве второго примера распределения скорости по оси водовода, приводящего к диффузору с двумя асимптотами, возьмем функцию [4]:

$$f_0(z) = \frac{\mu + 1}{2} - \frac{\mu - 1}{2} \text{ th} z^3, \qquad (4.4)$$

По формулам (3.3) будем иметь:

$$\begin{split} \mathbf{v}_{z} &= \frac{\mu + 1}{2} - \frac{\mu - 1}{2} \sum_{\mathbf{n}=0}^{\infty} \frac{(-1)^{n} r^{2n}}{2^{2n} (\mathbf{n}!)^{2}} \operatorname{th}^{(2n)}(\mathbf{z}), \\ \mathbf{v}_{\mathbf{r}} &= \frac{\mu - 1}{2} \sum_{\mathbf{n}=1}^{\infty} \frac{(-1)^{n} 2_{\mathbf{n}}}{2^{2n} (\mathbf{n}!)^{2}} r^{2n-1} \operatorname{th}^{(2n-1)}(\mathbf{z}), \\ \psi &= \frac{\mu + 1}{4} r^{\mathbf{z}} - \frac{\mu - 1}{4} \sum_{\mathbf{n}=1}^{\infty} \frac{(-1)^{n} r^{2n+2} \operatorname{th}^{(2n)}(\mathbf{z})}{2^{2n} (\mathbf{n}!)^{2} (\mathbf{n}+1)}. \end{split}$$
(4.5)

Для больших значений z можно пользоваться асимптотическим разложением thz:

thz = $\frac{1 - e^{-2z}}{1 + e^{-2z}} = 1 + 2 \sum_{n=1}^{\infty} (-1)^n e^{-2nz}$, для $0 < z \le -\infty$

thz
$$= \frac{e^{2z} - 1}{e^{2z} + 1} = -1 - 2 \sum_{n=1}^{\infty} (-1)^n e^{2nz}$$
, для $0 > z > -\infty$.

Тогда для z>0

$$f_0(z) = 1 - (\mu - 1) \sum_{m=1}^{\infty} (-1)^m e^{-2\pi z} \; . \label{eq:f0}$$

1 Это выражение получается подстановкой в (4.1) sch4z вместо F(z).

Построение очертания плоских и осесниметричных конфузоров и диффузоров

9

н для z < 0

$$f_o(z) = \mu + (\mu - 1) \sum_{n=1}^{\infty} (-1)^n e^{2nz}.$$

Пользуясь формулами (2.6) и (2.7), получим: для z>0

$$\begin{split} v_{z} &= 1 - (\mu - 1), \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^{n} \int_{0}^{\pi} e^{-2n(z + ir\cos\omega)} d\omega = \\ &= 1 - (\mu - 1) \sum_{n=1}^{\infty} (-1)^{n} e^{-2nz} \cdot \frac{1}{\pi} \int_{0}^{\pi} e^{-i2 nr\cos\omega} d\omega = \\ &= 1 - (\mu - 1) \sum_{n=1}^{\infty} (-1)^{n} e^{-2nz} J_{0}(2nr), \\ v_{r} &= -(\mu - 1) \sum_{n=1}^{\infty} (-1)^{n} \frac{i}{\pi} \int_{0}^{\pi} e^{-2n(z + ir\cos\omega)} \cos\omega d\omega = \\ &= -(\mu - 1) \sum_{n=1}^{\infty} (-1)^{n} \cdot \frac{-i^{-1}}{\pi} e^{-2nz} \int_{0}^{\pi} e^{-2n ir\cos\omega} \cos\omega d\omega = \end{split}$$

$$= - (\mu - 1) \sum_{n=1}^{\infty} e^{-2n\tau} J_1(2n\tau), \qquad (4.6)$$

$$\begin{split} \varphi &= \frac{r^2}{2} - (\mu - 1) \sum_{n=1}^{\infty} (-1)^n e^{-2nz} \int_0^1 r dr \int_0^{\pi} e^{-2n i r \cos \omega} d\omega = \\ &= \frac{r^2}{2} - (\mu - 1) \sum_{n=1}^{\infty} (-1)^n e^{-2nz} \int_0^1 J_0(2nr) r dz = \\ &= \frac{r^2}{2} - \frac{\mu - 1}{2} r \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-2nz} J_1(2nr). \end{split}$$

Для z<0 получим, действуя аналогичным образом:

$$\begin{split} v_{z} &= \mu + (\mu - 1) \sum_{n=1}^{\infty} (-1)^{n} e^{2nz} J_{0}(2nr), \\ v_{r} &= (\mu + 1) \sum_{n=1}^{\infty} (-1)^{n} e^{2nz} J_{1}(2nr), \\ \psi &= \frac{\mu r^{2}}{2} + \frac{\mu - 1}{2} r \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} e^{2nz} J_{1}(2nr). \end{split}$$

При малых значениях г можно удовлетвориться двумя членами ряда; тогда при малых значениях [2] получим

$$\phi = \frac{\mu + 1}{4} r^2 - \frac{\mu - 1}{4} r^3 \text{thz} - \frac{\mu - 1}{16} r^4 \text{sch}^2 z \text{ thz},$$

откуда

$$r^{2} = 2 \frac{(\mu+1) - (\mu-1) \operatorname{thz} - 1/[(\mu+1) - (\mu-1) \operatorname{thz}]^{2} - 4(\mu-1) \operatorname{\phisch^{2}zthz}}{(\mu-1) \operatorname{sch^{2}zthz}}$$
(4.7)

При больших значениях z, ограничиваясь двумя членами ряда, получим:

при z>0

$$\psi = \frac{r^2}{2} + \frac{\mu - 1}{2} r e^{-2z} J_1(2r) - \frac{\mu - 1}{2} r e^{-4z} J_3(4z),$$

откуда

$$e^{-2z} = \frac{(\mu - 1)r J_1(2r) - V \overline{((\mu - 1)r J_1(2r))^2 - 2(\mu - 1)r J_1(4r)} \overline{(2\psi - r^2)}}{(\mu - 1)r J_1(4r)} .$$
(4.8)

Аналогично, при z < 0:

$$e^{2z} = \frac{(\mu - 1) r J_1(2r) - V [(\mu - 1) r J_1(2r)]^2 - 2(\mu - 1) r J_1(4r) (\mu r^2 - 2\overline{\psi})}{(\mu - 1) r J_1(4r)} \cdot (4.8')$$

На фиг. 4 изображены линии тока движения при $\mu = 0,1$. На фиг. 5. изображены формы конфузоров или лиффузоров, рассчитанные по формулам (4.7) (4.8) и (4.8'), при $\mu = 2, 3, 4$ и 5.

фиг. 4.

Для того, чтобы получить формы водоводов с одной асимптотой, надо функцию распределения скорости на оси задать таким образом, чтобы скорость в бесконечности одного знака имела конечную величину, а в бесконечностя другого знака нуль. Положим, например, что

$$\hat{I}_0(z) = \frac{1}{2} (1 + thz),$$
(4.9)

тогда скорость на $z = +\infty$ будет 1, а на $z = -\infty 0$.

Формула (4.9) является частным случаем формулы (4.4) (для водоводов с двумя асимптотами), когда $\mu = 0$.

Фит. 5.

Таким образом, чтобы получить очертания водоводов с одной асимптотой, достаточно положить в формулах для водоводов с двумя асимптотами µ = 0.

На фиг. 6. изображены линии тока в случае, когда распределение скорости на оси выражается функцией:

$$I_0(z) = \frac{1}{2} \left(1 + \frac{2}{\sqrt{2\pi}} \int_0^z e^{-\frac{z^2}{2}} dz \right).$$
(4.10)

являющейся частным случаем (4.3), когда µ = 0.

На той же фигуре изображены эпюры скоростей в поперечных сечениях водовода. На фиг. 7 изображено распределение скоростей вдоль линий токов.

Фиг. 7.

5. Плоские диффузоры или конфузоры

В случае плоского движения все предыдущие выкладки упрощаются. В этом случае сопряжениая скорость V в каждой точке зависит от комплексной координаты z этой точки, т. с:

$$\overline{V}(z) = F(z), \tag{5.1}$$

или, если обозначить через и и v составляющие скорости соответственно на осях х и у, то можно написать:

$$u - iv = F(x + iy).$$
 (5.1)

Вычислим значение сопряженной скорости в плоскости симметрии течения (у = 0). По (5.1) будем иметь:

$$(\overline{V})_{y=0} = F(x).$$
 (5.2)

Таким образом, если задать распределение скоростей F(x), то по (5.1) можно найти сопряженную скорость F(z) в любой точке течения. Имея сопряженную скорость, легко найти комплексный потенциал течения:

$$\chi = \int_{0}^{s} \overline{V} \, dz = \int_{0}^{z} F(z) \, dz, \qquad (5.3)$$

Построение очертания плоских и осесимметричных конфузоров и диффузоров 13-

а, следовательно, потенциал скоростей и функцию тока соответ-*ственно по формулам:

Имея функцию тока и потенциал скоростей, можно построить линию тока течения (которую принимаем за стенки водовода) и вычислить скорости в любой точке течения.

Для примера, зададим распределение скорости на плоскости симметрии течения, как в осесимметричном случае, в виде:

$$u_{\mathbf{p}} = \frac{\mu + 1}{2} - \frac{\mu - 1}{2} \text{ thx}, \tag{5.5}$$

Тогда сопряженная скорость будет:

$$\overline{V} = \frac{\mu + 1}{2} - \frac{\mu - 1}{2} \text{ thz}$$
 (5.6)

Теперь можем определить комплексный потенциал:

$$\chi = \int_{0}^{z} \overline{V} \, dz = \frac{\mu + 1}{2} \, z - \frac{\mu - 1}{2} \, \ln ch \, z. \tag{5.7}$$

Выделив из (5.7) мнимую часть, получим функцию тока

$$\psi = \frac{\mu + 1}{2} y - \frac{\mu - 1}{2} \operatorname{arctg}(\operatorname{thx.tgy}).$$
(5.8)

Из этого выражения можно найти связь между х и у черезпараметр ψ:

$$x = \operatorname{arth} \frac{\operatorname{tg}\left(-\frac{\mu+1}{2}y - \psi}{\frac{\mu-1}{2}}\right)}{\operatorname{tgy}}.$$
(5.9)

Задавая различные значения у, по этой формуле можно построить криволинейные плоские диффузоры и конфузоры.

Составляющие скорости будут:

$$u = \frac{\mu + 1}{2} - \frac{\mu - 1}{2} \frac{\sinh 2x}{\cosh 2x + \cos 2y},$$

$$v = \frac{\mu - 1}{2} \frac{\sin 2y}{\cosh 2x + \cos 2y}.$$
(5.10)

Квадрат полной скорости будет:

$$\nabla^{2} = \left(\frac{\mu+1}{2}\right)^{2} + \frac{\left(\frac{\mu-1}{2}\right)^{2} (ch2x - \cos 2y) - \frac{\mu^{2}-1}{2} sh2x}{ch2x + \cos 2y}$$
(5.11)

Чтобы получить плоский водовод с одной асимптотой, достаточно положить в вышеприведенных формулах µ = 0.

В качестве вто, ого простого примера рассмотрим плоский криволинейный диффузор с линейным распределением скорости на оси.

В этом случае имеем:

$$\overline{V} = a + bz, \tag{5.12}$$

откуда

$$\chi = az + \frac{bz^2}{2} \,. \tag{5.13}$$

Следовательно

$$\varphi = ax + \frac{b}{2} (x^2 - y^2), \qquad (5.14)$$

Уравнение линии тока будет:

 $ay + bxy = const = 1. \tag{5.15}$

Определяя а и b из условия

$$y_{x=0} = y_2,$$

 $y_{x=t} = y_1,$ (5.16)

получим уравнение образующей плоского диффузора

$$y = \frac{y_2}{1 + \left(\frac{y_2}{y_1} - 1\right)\frac{x}{l}},$$
 (5.17)

Точно такая же формула для образующей диффузора была получена И. Е. Идельчиком [2] исходя из постоянства градиента скоростей вдоль диффузора.

Полная скорость в диффузоре будет

$$|V| = b \sqrt{\left(x + \frac{a}{b}\right)^2 + y^2}$$
, (5.18)

где

$$a = \frac{1}{y_2}$$
, $b = \frac{1 - \frac{y_1}{y_2}}{ly_1}$.

Из (5.18) очевидно, что изотахами скоростей в диффузоре служат окружности с центром $\left(-\frac{a}{b}, 0\right)$ и раднусом $\frac{|V|}{b}$. Отсюда следует, что скорости в поперечных сечениях диффузора с удалением от осевой плоскости (у стенок) растут. Но некоторое повышение скорости к стенкам диффузора не вредит делу, так как подтормаживание жидкости из-за вязкости вблизи стенок должны выправить поле. На фиг. 8. показан график распределения скоростей по средней линии у в выходном сечении диффузоров с различными профилями стенок (по опытам И. Е. Идельчика [2]). Как видно из графика, по распределению скоростей в выходном сечении самую хорошую картину дает диффузор, профиль стенок которого построен по формуле (5.17) А так как лучшему распределению скоростей соответствуют меньшие потери, то вышеуказанный диффузор дает более высокий кпд (см. [2], табл. 2).

Фиг. 8.

Недостатком этого диффузора является отсутствие асимптоты на входе, которая необходима для плавного примыкания диффузора с трубой. Для устранения этого недостатка можно рекомендовать диффузор, профиль образующей которого определяется формулой (5.9).

Заключение

В статье указаны способы построения плоских и осесимметричных водоводов теоретического профиля, позволяющих легко рассчитать поля скоростей и давления в них.

По приведенным в статье формулам можно построить очертания двух на практике часто встречающихся типов водоводов:

 а) диффузор или конфузор, как переходной патрубок от трубы одного диаметра к трубе другого диаметра (диффузор с двумя асимптотами);

 б) диффузор, работающий на выхлоп (диффузор с одной асимптотой).

Водно-энергетический институт АН Армянской ССР Поступило 4 XII 1954

ЛИТЕРАТУРА

1. Лойцянский Л. Г. Механика жидкости и газа. Гостехиздат, 1950.

- Идельчик И. Е. Аэродинамика потока и потери напора в диффузорах. Промышленная аэродинамика (сборник № 3), ШАГИ, 1947.
- Hsue-Shen Tsien, O the Design of the contraction Cone for a Wind Tunnel, Journ. Aeron. Sc. vol. 10, № 2, 1943, p.p. 68-70.

4. Szceniowski B. Contruction Cone for Wind Tunnel, JAS, October, 1943.

Վ. Գ. Սանոյան

ZUՐՔ ԵՎ ԱՌԱՆՑՔԱՅԻՆ ՍԻՄԵՏՐԻԱ ՈՒՆԵՑՈՂ՝ ՃՆՇՈՒՄԱՅԻՆ ՍԻՍՏԵՄԻ ԿՈՆՖՈՒՋՈՐՆԵՐԻ ԵՎ ԴԻՖՈՒՋՈՐՆԵՐԻ ԵՉՐԱԳԾԵՐԻ ԿԱՌՈՒՑՈՒՄՆ ԸՍՏ ԱՌԱՆՑՔԻ ՎՐԱ ՏՐՎԱԾ ԱՐԱԳՈՒԹՅՈՒՆՆԵՐԻ ԲԱՇԽՄԱՆ

ԱՄՓՈՓՈՒՄ

Հոդվածում արվում է իդեալական, անտեղմելի հեղուկի համար կորադիծը կոնֆուզորների և զիֆուզորների եղրադծերի կառուցման համար մե-Թոդ՝ ըստ արագությունների բաշխմանը նրանց առանցջների վրա։

Արադունյունների բաշխոնան ֆունկցիան բատ առանցքի հոդվածում նշանակված է $f_0(z)$ ։ Հոդվածում քննարկվում են այն դեպքերը, երը f_0 -ին համապատասխանում են (4.3) և (4.4) ֆունկցիաները (ը-ն իրենից ներկայացնում է դիֆուզորի կամ կոնֆուզորի ելքի և մուտքի արագունյունների հարարերունյունը)։ Այդ դեպքերի համար արված են համապատասիան բանաձևեր արագունյունների բաղագրիչների (V₂, V₁) և հոսքի ֆունկցիայի (ψ) հաշվման համար։

Նկ. 2-ում ցույց են արված գիֆուղորների և կոնֆուզորների եղթագծերն այն դեպքում, նրը արագուβյունների բաշխումը առանցքի երկարուβյամբ համապատասխանում է (4.3) ֆունկցիային, իսկ μ=0,1։ Այդ նույն նկարում ցույց է տրված նաև արագուβյունների բաշխումն ըստ դիֆուզորների կամ կոնֆուզորների լայնական հատվածքի։ Նկ. 3-ում ցույց է արված արագությունների փոփոխումն ըստ տարրեր հոսքի դծևրի (որոնք ընդունվում են որպես դիֆուղորների կամ կոնֆուղորների պատեր)։

Վերոնիչյալ դիֆուզուրները նոդվածում անվանվում են «դիֆուզորներ երկու ասիմպատտով»։ Համապատասխան բանաձևերում ընգունելով $\mu = 0$, ստացվում է դիֆուզոր մեկ ասիմպատասի Այդպիսի դիֆուզորների պատերի եզրագծերի տևսջը և արագուԹյունների բաշխումը լայնական ճատվածջներում ցույց են տրված նկ. 6-ում։ Ինչպես երևում է այդ նկարից, տրազուԹյունների գաշտը գիֆուզորի լայնական ճատվածջներում րավականին ճամասեռ է (արագությունների որոշ աճը պատերի մոտ չի խանդարում գործին, որովճետև մածուցիկ ճեղուկի արդելակող ճատկությունը պատերի մոտ կարող է ուղղել դաշտը)։

ζωρθ η βφαιαστύστρα το ματών το ματών

Πρωμα պարդ օրինակ նոդվածում բերվուծ է այն դեպքը, երբ առանցբի վրա արվում է արագուվյունների գծային բաշխում։ Այդ դեպքում նարն դեփուզորի եզրագենն արտանայավում է (5.17) նավասարումով, նկ. 8-ում ցույց են արված տարբեր եզրագծեր ունեցող դեփուզորների՝ Ի. Ե-Իդելչիկի կողմից կատարված էքսպերինենտալ նետազոտունյան արդյունքները։ Ինչպես երևում է նկարից, որտեղ ցույց է արված արագուβյունների բաշխումը դեփուզորների ելքի կարված թում, ամենալավ արդյունքը տալիս է այն դեփուզորը, որի եզրադիծը կառուցված է ըստ (5.17) նավասարման։

Հոդվածում դիֆուզորի և կոնֆուղորի աշխատանքի վրա սաճմանային շերտի աղդեցունյունը ճաշվի չի առնված։

