5 hq.--dшр., рб. L шырьб. qршпер. VII. № 5, 1954 Физ.-мат., естести. и техи. науки

МАТЕМАТИКА

М. М. Джрбашян, А. Б. Тавадян

Некоторые экстремальные задачи для целых функций

§ 1. Некоторые экстремальные свойства целых функций экспоненциального типа

Обозначим через W_σ класс всех целых функций f(z) экспоненциального типа с показателем ≪ σ, для которых существует интеграл

$$\mu(f) = \left\{ \int_{-\infty}^{\infty} |f(x)|^2 dx \right\}^{\frac{1}{2}}.$$
 (1)

Как доказали Палей и Винер [1]. класс W, совпадает с множеством всех целых функций f(z), допускающих представление

$$f(z) = \int_{-\infty}^{\infty} e^{\int u du} \varphi(u) du, \qquad (2)$$

где φ(u) € L₂(-σ, σ); при этом по теореме Планшереля

$$\mu(f) = \left\{ 2\pi \int_{-\pi}^{\pi} |\phi(u)|^{\frac{1}{2}} du \right\}^{\frac{1}{2}}$$
 (3)

Пусть

$$a_0, a_2, \dots, a_{2p-2}; a_1, a_3, \dots, a_{2q-1} \ (p > 1, q > 1)$$

произвольные комплексные числа. Отнесем к классу W_s $\{a_{2p-2}; 0\}$, (p>1) все целые функции класса W_s . для которых

$$i^{(2k)}(0) = a_{2k}, (k=0, 1, 2, \dots, p-1).$$
 (4)

Аналогично к классу $W_{\sigma}\left(0;\;a_{2q-1}\right)$ (q>1) отнесем все целые функции f(z) класса W_{σ} , для которых

$$f^{(2k+1)}(0) = a_{2k+1}, (k=0, 1, 2, \dots, q-1).$$
 (4')

Наконец, к классу W_{σ} $\{a_{2p-2}; a_{2q-1}\}$ (p>1, q>1) отнесем те функции f(z) из W_{σ} , которые удовлетворяют условиям (4) и (4') одновременно.

В настоящем параграфе мы дадим параметрическое представление функций определения выше классов, что даст возможность

решить экстремальную задачу: среди всех функций I(z), принадлежащих к любому из классов W_a $\{a_{2p-2}; 0\}; W_a$ $\{0; a_{2q-1}\}$ или W_a $\{a_{2p-2}; a_{2q-1}\}$, найти функцию, минимизирующую интеграл $\mu(i)$.

Из этой экстремальной задачи следует необходимое и достаточное условие, которому должны удовлетворять числа a_k ($k=0,1,2,\cdots$), для того, чтобы существовала целая функция $f(z) \in W_*$ и такая, что $f^{(k)}(0) = a_k$, ($k=0,1,2,\cdots$).

1. Пусть

$$\hat{X}_{0}(x) = \frac{1}{\sqrt{2}}; \quad \hat{X}_{k}(x) = \sqrt{\frac{2k+1}{2} \cdot \frac{1}{(2k)!!} \frac{d^{k}(x^{2}-1)^{k}}{dx^{k}}}, \quad (k=1, 2, \cdots)$$
 (5)

нормированные и ортогональные на отрезке (-1, +1) полнномы Лежандра. Известно, что для любой функции $\varphi(x) \in L_1(-1, +1)$ вмеет место равенство Парсеваля

$$\int_{-1}^{+1} |\varphi(x)|^2 dx = \sum_{k=0}^{\infty} |\alpha_k|^2; \quad \alpha_k = \int_{-1}^{+1} |\varphi(x)|^{\frac{k}{2}} (x) dx.$$
 (6)

Пусть μ_0 , μ_2 , ..., μ_{2p-2} ; μ_1 , μ_3 , ..., μ_{2q-1} ($p \gg 1$, $q \gg 1$) произвольные комплексные числа. Отнесем к классу $L_2\{(-1, +1); \mu_{2p-2}; 0\}$ все функции $\phi(x)$ из $L_2(-1, +1)$, для которых

$$\int_{-1}^{+1} \varphi(x) x^{2k} dx = \mu_{2k}, \quad (k=0, 1, 2, \dots, p-1).$$
 (7)

Аналогично к классу $L_2\{(-1, +1); 0; \mu_{2q-1}\}$ отнесем все функции $\varphi(x)$ из $L_2(-1, +1)$, для которых

$$\int_{-1}^{+1} \varphi(x)x^{2k+1} dx = \mu_{2k+1}, \quad (k=0, 1, 2, \dots, q-1). \tag{8}$$

Наконец, к классу $L_2((-1, +1); \mu_{2p-2}; \mu_{2q-1})$ отнесем те функции $\varphi(x)$ из $L_2(-1, +1)$, которые одновременно удовлетворяют обенм условиям—(7) и (8). Условимся классы $L_2\{(-1, +1); \mu_{2p-p}; 0\}$ и $L_4\{(-1, +1); 0; \mu_{2q-1}\}$ считать крайними случаями класса $L_2\{(-1, +1); \mu_{2p-2}; \mu_{2q-1}\}$, когда на этот класс не накладываются соответственно условия (7) или (8).

Пусть

$$\hat{X}_{2k}(x) = b_0^{(2k)} + b_2^{(2k)} x^2 + \dots + b_{2k}^{(2k)} x_{2k}$$

н

$$\overset{\blacktriangle}{X}_{2k+1}(x) = b_1^{(2k+1)} x + b_3^{(2k+1)} x^3 + \dots + b_{2k+1}^{(2k+1)} x^{2k+1},$$

так как $\hat{X}_{2k}(x)$ четный, а $\hat{X}_{2k+1}(x)$ нечетный полином.

Пемма 1. Функции $\varphi(x)$ класса $L_2((-1,+1); \mu_{2p-2}; \mu_{2q-1})$ характеризуются тем, что в их разложении в ряд Фурье по полиномам (5) коэффициенты α_{2k} (k=0, 1, 2,..., p-1), α_{2k+1} (k=0, 1, 2,..., q-1), "получаемые из (6), вполне определенны и отыскиваются следующим образом:

$$\begin{array}{lll} \alpha_{2k} = b_0^{(2k)} \mu_0 + b_2^{(2k)} \mu_2 + \dots + b_{2k}^{(2k)} \mu_{2k}, & (k = 0, 1, 2, \dots, p-1) \\ \alpha_{2k+1} = b_1^{(2k+1)} \mu_1 + b_3^{(2k+1)} \mu_3 + \dots + b_{2k+1}^{(2k+1)} \mu_{2k+1}, & (k = 0, 1, 2, \dots, q-1) \end{array}$$
 (9)

2де μ_0 , μ_2 , · · · , μ_{2k} (k=0, 1, 2, · · · , p—1); μ_1 , μ_5 , · · · , μ_{2k+1} (k=0, 1, 2, · · · , q—1) определяются из условий (7) и (8).

Доказательство. В самом деле, $\hat{X}_{2k}(x)$ является четным полиномом и поэтому в силу (7)

$$\begin{split} & a_{2k} = \int\limits_{-1}^{+1} \phi(x) \stackrel{\wedge}{X}_{2k}(x) dx = \int\limits_{-1}^{+1} \phi(x) (b_0^{(2k)} + b_2^{(2k)} x^2 + \cdots + b_{2k}^{(2k)} x^{2k}) dx = \\ & = b_0^{(2k)} \int\limits_{-1}^{+1} \phi(x) dx + b_2^{(2k)} \int\limits_{-1}^{+1} \phi(x) x^2 dx + \cdots + b_{2k}^{(2k)} \int\limits_{-1}^{+1} \phi(x) x^{2k} dx = \\ & = b_0^{(2k)} \mu_0 + b_2^{(2k)} \mu_2 + \cdots + b_{2k}^{(2k)} \mu_{2k}, \quad (k = 0, 1, 2, \cdots, p - 1). \end{split}$$

Таким же образом определяются числа α_{2k+1} (k=0, 1, 2, · · · , q-1)

$$\alpha_{2k+1} = b_1^{(2k+1)} \mu_1 + b_3^{(2k+1)} \mu_3 + \cdots + b_{2k+1}^{(2k+1)} \mu_{2k+1} \qquad (k=0, 1, 2, \cdots q-1),$$

так как $\hat{X}_{2k+1}(x)$ есть нечетный полином.

Теорема 1. В семействе функций $\varphi(x) \in L_2\{(-1, +1); \mu_{2p-2}; \mu_{2q-1}\}$ минимум интеграла

$$\Gamma(\varphi) = \left\{ \int_{1}^{+1} |\varphi(x)|^{2} dx \right\}^{\frac{1}{4}}$$
(10)

реализует функция

$$\varphi_0(x) = \sum_{k=0}^{p-1} \alpha_{2k} \hat{X}_{2k}(x) + \sum_{k=0}^{q-1} \alpha_{2k+1} \hat{X}_{2k+1}(x), \qquad (11)$$

2de α_{2k} и α_{2k+1} определяются из (9).

Кроме того,

$$\min\Gamma(\varphi) = \Gamma(\varphi_0) = \left\{ \sum_{k=0}^{p-1} |\alpha_{2k}|^2 + \sum_{k=0}^{q-1} |\alpha_{2k+1}|^2 \right\}^{\frac{1}{2}}.$$
 (12)

Доказательство. Так как из (6)

$$\Gamma(\phi) = \left\{ \int\limits_{1}^{+1} |\phi(x)|^2 dx \right\}^{\frac{1}{2}} = \left\{ \sum\limits_{k=0}^{\infty} |\alpha_k|^{\frac{1}{2}} \right\}^{\frac{1}{2}},$$

то в силу (9) $\min \Gamma(\varphi)$ достигается при $\alpha_k = 0$ (k=2 p. $2p+2, \cdots, 2q+1$, $2q+3, \cdots$), отсюда и следует утверждение теоремы.

Замечание. Как нетрудно видеть, результаты деммы и теоремы остаются справедливыми и для крайних классов

$$L_2\{(-1, +1); \mu_{2p-2}; 0\} \text{ H } L_2\{(-1, +1); 0; \mu_{2q-1}\},$$

если только в соответствующих формулировках и формулах оставить лишь выражения, характеризующие данный класс. Например, для класса функций $L_2((-1, +1); \mu_{2p-2}; 0)$ характерным является определяемость из системы (9) лишь коэффициентов α_{2k} ($k=0, 1, 2, \cdots, p-1$) в разложении этих функций в ряд Фурье по полиномам (5). Для этого же класса минимум интеграла $\Gamma(\varphi)$ реализует функция

$$\varphi_0(x) = \sum_{k=0}^{p-1} \alpha_{2k} \dot{X}_{2k}(x), \qquad (13)$$

при этом

$$\min\Gamma(\phi) = \Gamma(\phi_{\phi}) = \left\{ \sum_{k=0}^{p-1} |\alpha_{2k}|^{2} \right\}^{\frac{1}{2}}.$$
 (14)

 Установим теперь непустоту класса функций W, {a_{2p-2}; a_{2q-1}}, а затем приведем решение поставленной выше экстремальной задачи.

Лемма 2. Класс функций W₃ (a_{2p-2}; a_{2q-1}) совпадает с множеством целых функций f(z), допускающих представление в виде

$$f(z) = \int_{-\pi}^{\pi} e^{iuz} \varphi\left(\frac{u}{\sigma}\right) du, \qquad (15)$$

2de

Доказательство. По лемме 1 функции $\varphi(x)$, принадлежащие к классу (16), существуют. Отсюда следует, что функции f(z), представимые в виде (15), не только принадлежат к классу W_{σ} , но и к классу W_{σ} (a_{2p-2} ; a_{2q-1}).

Обратно, если $f(z) \in W_{\sigma}$ $\{a_{2p-2}; a_{2q-1}\}$, то тем более $f(z) \in W_{\sigma}$, и по теореме Палей и Винера имеет место представление (15), где $\varphi(x) \in L_2(-1, +1)$. Но если иметь в виду условия (4) и (4'), характернзующие класс W_{σ} $\{a_{2p-2}; a_{2q-1}\}$, то из (15) заключаем, что функция $\varphi(x)$ принадлежит к классу (16).

Теорема 2. Среди всех функций f(z) класса $W_o(a_{2p-2}; a_{2q-1})$ (p>1, q>1) минимум интеграла (1) реализует функция

$$f_0(z)\!=\!\int\limits_{-\infty}^{\sigma}\!\!\left\{\!\sum_{k=0}^{p-1}\!\alpha_{2k}\,\dot{X}_{2k}\!\left(\frac{u}{\sigma}\right)\!+\!\sum_{k=0}^{q-1}\!\alpha_{2k+1}\,\dot{X}_{2k+1}\!\left(\!-\frac{u}{\sigma}\right)\right\}\!e^{iuz}\mathrm{d}u\!=\!$$

$$= \sum_{k=0}^{p-1} (-1)^k \alpha_{2k} \sqrt{(4k+1)\pi\sigma} \frac{I_{2k+\frac{1}{2}}(\sigma z)}{\sqrt{z}} + i \sum_{k=0}^{q-1} (-1)^k \alpha_{2k+1} \sqrt{(4k+3)\pi\sigma} \frac{I_{2k+\frac{3}{2}}(\sigma z)}{\sqrt{z}},$$
(17)

где $I_{n+\frac{1}{4}}$ (αz)—функция Бесселя, и коэффициенты $\{\alpha_k\}$ определяются из формул (9), где

$$\begin{split} & \mu_{2k} = (-1)^k \, \frac{a_{2k}}{\sigma^{2k+1}}, \quad (k\!=\!0,\ 1,\ 2,\cdots,\ p\!-\!1), \\ & \mu_{2k+1} \!=\! (-1)^{k+1} \, \frac{a_{2k+1}}{\sigma^{2k+2}} \ i, \quad (k\!=\!0,\ 1,\ 2,\cdots,\ q\!-\!1), \end{split}$$

кроме того,

$$\min \mu(f) = \mu(f_0) = \left\{ 2\pi\sigma \left[\sum_{k=0}^{p-1} |\alpha_{2k}|^2 + \sum_{k=0}^{q-1} |\alpha_{2k+1}|^2 \right] \right\}^{\frac{1}{k}}.$$
 (18)

Доказательство. Если $f(z) \in W_{\tau}$ $\{a_{2p-2}; a_{2q-1}\}$, то имеет место представление (15), где, по лемме 2, $\varphi(x)$ принадлежит к классу (16). Но по формуле Парсеваля из (15) следует, что

$$\mu(f) = \left\{ 2\pi \int_{0}^{\sigma} \left| \varphi\left(\frac{u}{\sigma}\right) \right|^{2} du \right\}^{\frac{1}{2}} = \sqrt{2\pi\sigma} \Gamma(\varphi). \tag{19}$$

Так как $\varphi(x)$ принадлежит к классу (16), то по теореме 1 min $\Gamma(\varphi)$ достигается только для функции $\varphi_0(x)$, определяемой из (11), где коэффициенты $\{\alpha_k\}$ определяются по (9). Отсюда и из (19) следует первая из формул (17). Но известно [2], что

$$\int_{0}^{\pi} e^{iux} \stackrel{4}{X}_{n} \left(\frac{u}{\sigma}\right) du = \sigma e^{\frac{n-\frac{\pi}{2}}{2}i} \left(\frac{2\pi}{\sigma z}\right)^{\frac{1}{2}} I_{n+\frac{1}{2}}, \tag{20}$$

где

$$X_n(x) = \sqrt{\frac{2}{2n+1}} \hat{X}_n(x).$$
 (5')

Из (17), (20) и (5') следует второе из формул (17).

Как нетрудно видеть, и здесь результаты леммы 2 и теоремы 2 остаются справедливыми для крайних классов:

$$W_{\sigma} \{a_{2p-2}; 0\} \text{ H } W_{\sigma} \{0; a_{2q-1}\}$$

при соответствующих видоизменениях в формулировках. Таким образом, имеют место:

Следствие 1. Функции класса W_{σ} (a_{2p-2} ; 0) представляются в виде (15), где $\phi(x) \in L_2((-1, +1); \mu_{2p-2}; 0); \mu_{2k} = (-1)^k \frac{a_{2k}}{\sigma^{2k+1}} (k = 0, 1, 2, \cdots, p-1),$ при этом среди них минимум интеграла $\mu(f)$ реализует функция

$$f_{0}(z) = \int_{-z}^{z} \left\{ \sum_{k=0}^{p-1} \alpha_{2k} \dot{X}_{2k} \left(\frac{u}{\sigma} \right) \right\} e^{iuz} du =$$

$$= \sum_{k=0}^{p-1} (-1)^{k} \alpha_{2k} \sqrt{(4k+1)\pi\sigma} \frac{I_{2k+\frac{1}{2}}(\sigma z)}{\sqrt{z}}; \qquad (17')$$

кроме того,

$$\mu(\mathbf{i}_0) = \left\{ 2\pi \sigma \sum_{k=0}^{p-1} |\alpha_{2k}|^2 \right\}^{\frac{1}{2}},\tag{18'}$$

где коэффициенты (азк) определяются следующим образом

$$\begin{split} \alpha_{2k} &= b_0^{(2k)} \mu_0 + b_2^{(2k)} \mu_2 + \dots + b_{2k}^{(2k)} \mu_{2k}, & (k = 0, 1, 2, \dots, p-1), \\ \mu_{2k} &= (-1)^k \frac{a_{2k}}{\sigma^{2k+1}}, & (k = 0, 1, 2, \dots, p-1). \end{split}$$

Следствие 2. Функции класса $W_{\sigma}(0; a_{2q-1})$ представляются в виде (15), где

$$\phi(x) \in L_2\{(-1, +1); 0; \mu_{2q-1}\}, \ \mu_{2k+1} = (-1)^{k+1} \frac{32k+1}{\sigma^{2k+2}} i \ (k=0, 1, 2, ..., q-1)_r$$

при этом среди них минимум интеграла µ(i) реализует функция

$$f_{0}(z) = \int_{z}^{z} \left\{ \sum_{k=0}^{q-1} \alpha_{2k+1} \stackrel{?}{X}_{2k+1} \left(\frac{u}{\sigma} \right) \right\} e^{\ln z} du =$$

$$= i \sum_{k=0}^{q-1} (-1)^{k} \alpha_{2k+1} \sqrt{(4k+3)\pi\sigma} \frac{I_{2k+\frac{3}{2}}(\sigma z)}{\sqrt{z}}, \qquad (17")$$

при этом

$$\mu(f_0) = \left\{ 2\pi \sigma \sum_{k=0}^{q-1} |\alpha_{2k+1}|^2 \right\}^{\frac{1}{2}}.$$
 (18")

где коэффициенты {a2k+1} определяются следующим образом:

$$\alpha_{2k+1} = b_0^{(2k+1)} \mu_1 + b_3^{(2k+1)} \mu_2 + \dots + b_{2k+1}^{(2k+1)} \mu_{2k+1}, \quad (k=0, 1, 2, \dots, q-1),$$

$$\mu_{2k+1} = (-1)^{k+1} \frac{a_{2k+1}}{\sigma^{2k+2}} i, \quad (k=0, 1, 2, \dots, q-1).$$

Следствие 3. Среди всех функций класса $W_{\sigma}\{a_0; a_1\}$ минимум интеграла $\mu(f)$ реализует функция

$$f_0(z) = \frac{a_0}{\sigma} \sqrt{\frac{\pi\sigma}{2}} \cdot \frac{I_{\frac{\pi}{2}}(\sigma z)}{\sqrt{z}} + \frac{3a_1}{\sigma^2} \sqrt{\frac{\pi\sigma}{2}} \cdot \frac{I_{\frac{\pi}{2}}(\sigma z)}{\sqrt{z}} =$$

$$= a_0 \frac{\sin\sigma z}{\sigma z} + \frac{3a_1}{\sigma} \left[\frac{\sin\sigma z}{(\sigma z)^2} - \frac{\cos\sigma z}{\sigma z} \right]; \qquad (20')$$

при этом

$$\mu(\hat{\mathbf{I}}_{0}) = \left[\pi \left[\frac{|\mathbf{a}_{0}|^{2}}{\sigma} + \frac{3|\mathbf{a}_{1}|^{2}}{\sigma^{2}} \right] \right]^{\frac{1}{2}}. \tag{20°}$$

Это следует из теоремы 2, при p=1 и q=1, если заметить, что

$$\begin{split} &\mu_0 = \frac{a_0}{2}, \quad \mu_1 = \frac{a_1}{\sigma^2 i}, \quad b_0^{(0)} = \frac{1}{\sqrt{2}}, \quad b_1^{(1)} = \sqrt{\frac{3}{2}}, \quad \alpha_0 = \frac{a_0}{\sigma \sqrt{2}} \quad \text{if } \\ &\alpha_1 = \sqrt{\frac{3}{2} \cdot \frac{a_1}{i\sigma^2}}. \end{split}$$

Следствие 1'. Среди всех функций класса W₃ (a₆; 0) минимум митеграла µ(f) реализует функция

$$f_0(z) = \frac{a_0}{\sigma} \sqrt{\frac{\pi \sigma}{2}} \frac{I_{\frac{1}{2}}(\sigma z)}{\sqrt{z}} = a_0 \frac{\sin \sigma z}{\sigma z}, \quad (21)$$

при этом

$$\mu(f_0) = \sqrt{\frac{\pi}{\sigma}} |a_0|. \qquad (21')$$

Это следует из следствия 1, при р=1, если заметить, что

$$\mu_0\!=\!\frac{a_e}{\sigma},\quad b_0^{(0)}=\frac{1}{\sqrt{\ 2}}\quad \text{ff} \quad \alpha_0\!=\!\frac{a_0}{\sigma\sqrt{\ 2}}\cdot$$

Следствие 2. Среди всех функций класса W, {0; a₁} минимум интеграла µ(f) реализует функция

$$f_0(z) = \frac{3a_1}{\sigma^2} \sqrt{\frac{\pi\sigma}{2}} \frac{\frac{1}{2}(\sigma z)}{\sqrt{z}} =$$

$$= \frac{3a_1}{\sigma^2} - \left[\frac{\sin\sigma z}{(\sigma z)^2} - \frac{\cos\sigma z}{\sigma z}\right], \qquad (22)$$

при этом

$$\mu(\hat{f}_0) = \sqrt{\frac{3\pi}{\sigma^2}} |a_1|.$$
 (227)

Это следует из следствия 2. при q=1, если заметить, что

Пусть {a_k}—некоторая последовательность комплексных чисел.
 Ставится вопрос: каково необходимое и достаточное условие, которому должна удовлетворять эта последовательность, чтобы существовала функция f(z) ∈ W_o, такая, что

$$f^{(k)}(0) = a_k$$
, $(k=0, 1, 2, \cdots)$. (23)

Теорема 3. Для существования функции 1(г), удовлетворяющей условиям (23), необходима и достаточна сходимость ряда

$$\sum_{k=0}^{\infty} |\alpha_k|^2 < +\infty, \tag{24}$$

zde

$$\alpha_{2k} = \sum_{r=0}^{k} (-1)^k b_{2r}^{(2k)} \frac{a_{2r}}{\sigma^{2r+1}},$$

$$\alpha_{2k+1} = i \sum_{r=0}^{k} (-1)^{k+1} b_{2r+1}^{(2k+1)} \frac{a_{2r+1}}{\sigma^{2r+2}}.$$
(24)

Доказательство. Пусть существует функция f_{*} (z), удовлетворяющая условиям теоремы, тогда будем иметь

$$f_{\bullet}(z) = \int_{-\sigma}^{\sigma} e^{iuz} \varphi\left(\frac{u}{\sigma}\right) du,$$

где $\phi(x) \in L_2(-1, +1)$. Но из (23) следует, что

$$a_k = i^k \int_{-a}^{a} u^k \varphi\left(\frac{u}{\sigma}\right) du = i^k \sigma^{k+1} \int_{-1}^{+1} \varphi(x) x^k dx, \quad (k=0, 1, 2, \cdots).$$
 (25)

Обозначая

$$\alpha_{k} = \int_{-1}^{+1} \varphi(x) \stackrel{\star}{X}_{k}(x) dx, \quad (k=0, 1, 2, \cdots),$$

очевидно имеем $\sum_{k>0} |\alpha_k|^2 < +\infty$. При этом, имея в виду представления

$$\dot{\hat{X}}_{2k}\!(x)\!=\!\sum_{r=0}^{k}\!b_{2r}^{(2k)}x^{2k},\qquad \dot{\hat{X}}_{2k+1}\!(x)=\!\sum_{r=0}^{k}\!b_{2r+1}^{(2k+1)}\,x^{2r+1},$$

получим формулы (24') для чисел (α_{2k}) и (α_{2k+1}) .

Обратно, положим, что для последовательности $\{\alpha_k\}$, определяемой из (24'), сходится ряд (25). Тогда по теореме Рисс — Фишера существует функция $\varphi(x) \in L_2(-1, +1)$, такая, что

$$\int_{-1}^{+1} \varphi(x) \stackrel{\star}{X}_{k}(x) dx = \alpha_{k}, \quad (k=0, 1, 2, \cdots).$$
 (26)

Функция

$$f_{\bullet}(z) = \int_{z}^{z} e^{iuz} \varphi\left(\frac{u}{z}\right) du \tag{27}$$

принадлежит к классу W_э по теореме Палей — Винера. Покажем, что

$$f_{*}^{(k)}(0) = a_{k}, \quad (k = 0, 1, 2, \cdots).$$
 (28)

Действительно, из (27) имеем, например,

$$f_{\bullet}^{(2k)}(0) = (-1)^k \int_{-1}^{\sigma} u^{2k} \varphi \left(\frac{u}{\sigma}\right) du = (-1)^k \sigma^{2k+1} \int_{-1}^{+1} \varphi(x) x^{2k} dx.$$
 (29)

С другой стороны, из (26), в силу (29), имеем:

$$\alpha_{2k} = \sum_{r=0}^{k} b_{2r}^{(2k)} \int_{-\infty}^{+1} \varphi(x) x^{2r} dx = \sum_{r=0}^{k} (-1)^{r} b_{2r}^{(2k)} \frac{f_{*}^{(2r)}(0)}{\sigma^{2r+1}}, \quad (k=0,1,2,\cdots). \quad (30)$$

Аналогично получим

$$\alpha_{2k+1} = i \sum_{r=0}^{k} (-1)^{r+1} b_{2r+1}^{(2k+1)} \frac{f_{*}^{(2r+1)}(0)}{\sigma^{2r+2}}, \qquad (k=0, 1, 2, \cdots).$$
 (31)

Сравнивая (30) и (31) с формулами (24'), приходим к заключению (28).

§ 2. Некоторые экстремальные свойства целых функций порядка $\frac{1}{2}$ и конечного типа

1. Обозначим через $D_{\frac{1}{2}}$ (σ) класс всех целых функций f(z) порядка $\frac{1}{2}$ и типа $\ll \sigma$, для которых существует интеграл

$$\mu(t) = \left\{ \int_{0}^{\infty} |f(x)|^{2} x^{-\frac{1}{2}} dx \right\}^{\frac{1}{4}}.$$
 (1)

Докажем лемму, которая является непосредственным следствием теоремы Палей — Винера.

Лемма 3. Класс D₁ (з) совпадает с множеством всех целых функций f(z), допускающих представление

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\sigma} \cos \sqrt{xz} \varphi(x) x^{-\frac{1}{2}} dx, \qquad (2)$$

20€

$$\int_{N}^{\sigma} |\varphi(x)|^{2} x^{-\frac{1}{2}} dx < +\infty. \tag{2'}$$

При этом

$$\mu(f) = \left\{ \int_{0}^{\pi^{2}} |\varphi(x)|^{2} x^{-\frac{1}{2}} dx \right\}^{\frac{1}{2}}$$
 (3)

В самом деле очевидно, что f(z²)—функция экспоненциального типа ≪ σ. Из формулы

$$\int_{-\infty}^{+\infty} |f(t^2)|^2 dt = \int_{0}^{\infty} |f(x)|^2 x^{-\frac{1}{4}} dx$$

следует, что $f(z^2) \in W_a$ и поэтому по твореме Палей — Винера имеет место представление

$$f(\zeta^2) = \frac{1}{V 2\pi} \int_{-\pi}^{\pi} \psi(u) e^{iu\zeta} du, \qquad (4)$$

где $\psi(u) \in L_2(-\sigma, \sigma)$.

Но но формуле обращения Планшереля почти всюду на (- σ, σ)

$$\phi(u) = \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-n}^{n} f(x^{2}) e^{-ixu} dx =$$

$$= \lim_{n \to \infty} \sqrt{\frac{2}{\pi}} \int_{0}^{n} f(x^{2}) \cos x u du.$$

Поэтому ф(u) четная функция, и следовательно,

$$\mathfrak{f}(\xi^2) \!=\! \sqrt{\frac{2}{\pi}} \int\limits_0^s\! \psi(u) cosn\zeta du.$$

Обозначив $\psi(x^{\frac{1}{2}}) = \varphi(x)$, после замены $u = x^{\frac{1}{4}}$ имеем

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{e^{z}} \cos \sqrt{xz} \varphi(x) x^{-\frac{1}{2}} dx,$$

Далее, по равенству Парсеваля из (4) получим:

$$\begin{split} &\int\limits_{0}^{\infty} |f(x)|^{2}x^{-\frac{1}{4}} \, dx = \int\limits_{-\infty}^{+\infty} |f(t^{2})|^{2} dt = \int\limits_{-a}^{a} |\psi(u)|^{2} du = \\ &= 2 \int\limits_{0}^{a} |\psi(u)|^{2} du = \int\limits_{0}^{a^{2}} |\phi(x)|^{2}x^{-\frac{1}{2}} dx < +\infty. \end{split}$$

Пусть

$$a_0, a_1, \cdots, a_r \quad (r \geqslant 0)$$

произвольные комплексные числа. Отнесем к классу $D_{\frac{1}{2}}(\sigma; a_r)$ (r>0) все целые функции f(z) класса $D_{\frac{1}{2}}(\sigma)$, для которых

$$f^{(n)}(0) = a_n$$
, $(n = 0, 1, 2, \dots, r)$. (5)

В настоящем параграфе дается параметрическое представление функций класса D₃ (σ; a_r), что дает возможность решить следующую экстремальную задачу:

Среди всех функций f(z), принадлежащих к классу $D_{\frac{1}{2}}\{\sigma; a_r\}$,

найти функцию минимизирующую интеграл µ(f).

Из этой экстремальной задачи следует необходимое и достаточное условие, которому должиы удовлетворять числа a_n ($n=0, 1, 2, \cdots$) для того, чтобы существовала целая функция $f(z) \in D_{\frac{1}{2}}(\sigma)$, такая, что $f^{(0)}(0)=a_n$ ($n=0, 1, 2, \cdots$).

2. Пусть $\hat{P}_n(x)$ (n=0, 1, 2,...)—нормированные и ортогональные на отрезке (0, σ^2) полиномы Якоби с весом $p(x)=x^{-\frac{1}{2}}$, тогда

$$\hat{P}_{0}(x) = \frac{1}{\sqrt{2\sigma}},$$

$$\hat{P}_{n}(x) = \frac{1}{(2n)!!} \sqrt{\frac{4n+1}{2\sigma}} \cdot \frac{1}{p(x)} \cdot \frac{d^{n}}{dx^{n}} \left\{ \left[\left(\frac{2x-\sigma^{2}}{\sigma^{2}} \right)^{2} - 1 \right]^{n} p(x) \right\} =$$

$$= \sum_{k=1}^{n} B_{k}^{(n)} x^{n}, \quad (n=1, 2, ...). \quad (6)$$

Известно, что для любой функции φ(x) из класса (2') имеет место равенство Парсеваля

$$\int_{0}^{\sigma^{2}} |\phi(x)|^{2} x^{-\frac{1}{2}} dx = \sum_{n=0}^{\infty} |c_{n}|^{2},$$

$$c_{n} = \int_{0}^{\sigma^{2}} \phi(x) \stackrel{h}{P}_{n}(x) x^{-\frac{1}{2}} dx.$$
(7)

где

Пусть μ_0 , μ_1 , . . . , μ_r (r > 0)—произвольные комплексные числа. Отнесем к классу $L_2\{(0, \sigma^2); \mu_r\}$ все функции $\varphi(x)$ из класса (2'), для которых

$$\int_{0}^{\sigma'} \varphi(x) x^{n-\frac{1}{2}} dx = \mu_{n}, \quad (n=0, 1, 2, \dots, r).$$
 (8)

Лемма 4. Функции $\varphi(x)$ класса (8) характеризуются тем, что в их разложении в ряд Фурье по полиномам (6) коэффициенты c_0, c_1, \ldots, c_t отыскиваются следующим образом:

$$c_n = B_0^{(n)} \mu_0 + B_1^{(n)} \mu_1 + \dots + B_n^{(n)} \mu_n$$
 (n=0, 1, 2, ..., r), (9)

где μ_6 , μ_1 , . . . , μ_n (n=0, 1, 2, . . . , г) определяются из условия (8). Доказательство. В самом деле, при n=0, 1, 2, . . . , г

$$c_n = \int_0^{\sigma_n} \varphi(x) \stackrel{\bullet}{P}_n(x) x^{-\frac{1}{2}} dx =$$

$$= \int\limits_0^{e^n} \phi(x) (B_0^{(n)} \,+\, B_1^{(n)} x + \ldots + B_n^{(n)} x^n) x^{-\frac{1}{n}} dx = \sum_{k=0}^n B_k^{(n)} \mu_k \,.$$

Теорема 4. В семействе функций $L_2((0, \sigma^2); \mu_r)$ минимум интеграла

$$\Gamma(\varphi) = \left\{ \int_{0}^{s^{2}} |\varphi(x)|^{2} x^{-\frac{1}{3}} dx \right\}^{\frac{1}{3}}$$
 (10)

реализует функция

$$\varphi_0(x) = \sum_{k=0}^{r} c_n \hat{P}_n(x);$$
 (11)

при этом

$$min\Gamma(\phi)\!=\!\Gamma(\phi_0)\!=\!\left\{\sum_{n=0}^{\tau}||c_n||^2\right\}^{\frac{n}{2}}\!\cdot\!$$

Доказательство. Так как по (7)

$$\Gamma(\phi) \!=\! \Bigl\{ \int\limits_{0}^{a^{\alpha}} \! |\, \phi(x)\, |^{2} x^{-\frac{1}{2}} \, dx \Bigr\}^{\frac{1}{2}} \!=\! \Bigl\{ \sum_{n=0}^{\infty} \! |\, c_{n}\, |^{2}\, \Bigr\}^{\frac{1}{2}},$$

то в силу (9) $\min \Gamma(\varphi)$ достигается при $c_n = 0$ ($n = r + 1, r + 2, \ldots$). Отсюда следует утверждение теоремы.

Установим непустоту класса $D_{\frac{1}{2}}(\sigma; a_{r}).$

Лемма 5. Класс функции $D_{\frac{1}{2}}\{\sigma; a_r\}$ совпадает с множеством целых функций, допускающих представление в виде

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z} \cos\sqrt{xz} \, \varphi(x) x^{-\frac{1}{2}} dx, \qquad (12)$$

20e

$$\varphi(x) \in L_2((0, \sigma^2); \mu_r), \mu_n = (-1)^n \sqrt{2\pi} a_n \frac{(2n)!}{n!}, (n=0, 1, 2, ..., r).$$
(13)

Доказательство. По лемме 4 функции, принадлежащие к классу (13), существуют. Отсюда следует, что функции f(z), представимые в виде (12), не только принадлежат к классу $D_{\frac{1}{2}}(\sigma)$, но и к классу $D_{\frac{1}{2}}(\sigma)$, так как из (12) имеем:

$$f(z) = \sum_{n=0}^{\infty} z^n \left\{ \frac{(-1)^n}{2n! \sqrt{2\pi}} \int_0^{e^z} \phi(x) x^{n-\frac{1}{2}} dx \right\},$$

$$\pi \text{ no (8)} \qquad \frac{f^{(n)}(0)}{n!} = (-1)^n \frac{\mu_n}{2n! \sqrt{2\pi}} = \frac{a_n}{n!}, \quad (n=0,\ 1,\ 2,\ \dots,\ r).$$

$$\tau. \text{ e. } \qquad f^{(n)}(0) = a_n, \quad (n=0,\ 1,\ 2,\ \dots,\ r).$$

Обратно, если $f(z) \in D_{\frac{1}{2}}\{\sigma; a_r\}$, то тем более $f(z) \in D_{\frac{1}{2}}(\sigma)$ и по лемме 3 имеет место представление (12), где $\varphi(x)$ из класса (2'). Ноесли иметь в виду условия (5), характеризующие класс $D_{\frac{1}{2}}\{\sigma; a_r\}$, то из (12) будем иметь:

$$\int_{0}^{s} \varphi(x) x^{n-\frac{1}{2}} dx = (-1)^{n} \sqrt{2\pi} \ a_{n} \frac{2n!}{n!} = \mu_{n}, \quad (n = 0, 1, 2, \dots, r),$$

r. e. $\varphi(x) \in L_2(0, \sigma^2); \mu_r \}$.

Теорема 5. Среди всех функций ((z) класса D₁ (σ; a_t) минимум интеграла (1) реализует функция

$$f_{0}(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z^{2}} \left\{ \sum_{n=0}^{r} c_{n} \hat{P}_{n}(x) \right\} \cos \sqrt{xz} x^{-\frac{1}{2}} dx, \qquad (14)$$

где коэффициенты (cn) определяются из (9), и

$$\mu_n = (-1)^n \sqrt{2\pi} a_n \frac{2n!}{n!}, \quad (n=0, 1, 2, \dots, r).$$

Кроме того,

$$\min\!\mu(f)\!=\!\mu(f_0)\!=\!\left\{\!\sum_{n=0}^r\!\left|\,c_n\,\right|^{\frac{n}{2}}\!\right\}^{\frac{1}{2}}\!.$$

Доказательство. Если $f(z) \in D_{\frac{1}{4}}\{\sigma; a_r\}$, то имеет место представление (12), где, по лемме 3, $\phi(x)$ принадлежит и классу (13). Но полемме 3 из (12) следует, что

$$\mu(f) = \left\{ \int_{0}^{\sigma^{2}} |\phi(x)|^{2} x^{-\frac{1}{2}} dx \right\}^{\frac{1}{2}} = \Gamma(\phi). \tag{15}$$

Так как $\varphi(x)$ принадлежит к классу (13), то по теореме 4 min $\Gamma(\varphi)$ достигается только для функции $\varphi_0(x)$, определяемой из (11), где коэффициенты $\{e_n\}$ определяются по (9). Отсюда и из (15) следует утверждение теоремы.

Следствие 1. Среди всех функций класса $D_{\frac{1}{2}}(\sigma; a_0)$ минимум иктеграла (1) реализует функция

$$f_0(z) = a_0 \frac{\sin \sigma \sqrt{z}}{\sigma \sqrt{z}}; \tag{16}$$

при этом

$$\mu(\mathfrak{f}_0) \!=\! \sqrt{\left.\frac{\pi}{\sigma}\right|\, a_0\,|.}$$

Это следует из теоремы 2, при г=0, если заметить, что

$$\mu_0 \! = \! \sqrt{2\pi} \; a_0; \; B_0^{(0)} \! = \! \frac{1}{\sqrt{2\sigma}} \quad \text{ff} \quad c_0 \! = \! \sqrt{\frac{\pi}{\sigma}}.$$

 Пусть { a_n } — некоторая последовательность комплексных чисел тогда имеет место теорема;

Теорема 6. Для существования функции f(z) ∈ D₁ (σ), удовлетворяющей условиям (16), необходима и достаточна сходимость ряда

$$\sum_{n=0}^{\infty} |c_n|^2 < +\infty, \tag{17}$$

2de

$$c_n = \sum_{n=0}^{n} (-1)^k a_k B_k^{(n)} \frac{2k!}{k!}$$

Доказательство аналогично доказательству теоремы 3, поэтому опускается.

4. Обозначим через $D_{\frac{1}{2}}(\sigma)$ класс всех цедых функций f(z) порядка $\frac{1}{2}$ и типа $\ll \sigma$, для которых существует интеграл

$$\mu(f) = \left\{ \int_{\delta}^{\infty} |f(x)|^2 x^{\frac{1}{2}} dx \right\}^{\frac{2}{3}}.$$
 (18)

Докажем лемму:

Лемма 3. Класс D₁(о) совпадает с множеством всех целых функций, допускающих представление

$$f(z) = \frac{1}{V 2\pi} \int_{0}^{a^{2}} \frac{\sin V xz}{V xz} \varphi(x) x^{\frac{1}{2}} dx, \qquad (19)$$

20€

$$\int_{0}^{e^{2}} |\varphi(x)|^{2} x^{\frac{1}{2}} dx < +\infty.$$
 (19')

Кроме того,

$$\mu(f) = \left\{ \int_{0}^{\sigma^{4}} |\varphi(x)|^{\epsilon} x^{\frac{1}{2}} dx \right\}^{\frac{1}{2}}.$$
(20)

В самом деле очевидно, что $[zf(z^2)]$ функция экспоненциального типа $\ll \sigma$. Из формулы

$$\int_{-\infty}^{+\infty} |f(t^2)t|^2 dt = \int_{0}^{\infty} |f(x)|^2 x^{\frac{1}{2}} dx$$

следует, что $zf(z^2) \in W_*$ и поэтому по теореме Палей — Винера вмест место представление

$$\zeta \mathfrak{f}(\zeta^{2}) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} \psi(u) e^{iu\zeta} du, \qquad (21)$$

где $\psi(u) \in L_1(-\sigma; \sigma)$.

Но по формуле обращения Планшереля почти всюду на (-- σ, σ) будем иметь

$$\psi(u) = \lim_{n \to \infty} \frac{1}{V 2\pi} \int_{-\pi}^{n} x f(x^{2}) e^{-iux} dx =$$

$$= \lim_{n \to \infty} \frac{1}{i} \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} x f(x^{2}) \sin ux dx.$$

Поэтому ф(и) нечетная функция на (- σ, σ) и, следовательно,

$$\zeta f(\zeta^2) \!=\! i \sqrt{\frac{2}{\pi}} \int\limits_0^{\pi} \! \varphi(u) sinu \zeta du.$$

Обозначив $i\phi(x^{\frac{1}{2}}) = \varphi(x)$, после замены $u = x^{\frac{1}{2}}$, имеем представление

$$\mathfrak{f}(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z_{1}^{2}} \frac{\sin\sqrt{xz}}{\sqrt{xz}} \varphi(x) x^{\frac{1}{2}} dx.$$

Далее, по равенству Парсеваля из (4) получим:

$$\begin{split} &\int\limits_0^\infty |f(x)|^2 x^{\frac12} dx = \int\limits_\infty^\infty |tf(t^2)|^2 dt = \int\limits_0^a |\psi(u)|^2 du = \\ &= 2\int\limits_0^a |\psi(u)|^2 du = \int\limits_0^a |\psi(u)|^2 dx < +\infty. \end{split}$$

Пусть

$$a_0, a_1, \cdots, a_r \quad (r > 0)$$

произвольные комплексные числа. Отнесем к классу $D_{\frac{1}{4}}(\sigma; a_r)$ все целые функции f(z) класса $D_{\frac{1}{4}}(\sigma)$, для которых

$$f^{(n)}(0) = a_n$$
, $(n=0, 1, 2, \dots, r)$. (22)

При помощи этих лемм устанавливаются следующие предложенея, доказательства которых мы опускаем, так как они вполне аналогичны доказательствам теорем 5 и 6.

Теорема 5'. Среди всех функций î(z) класса D; [σ; a;] (г>0) мининум интеграла реализует функция

$$f_{0}\!\left(z\right)\!=\!\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{z^{*}}\left\{\!\sum_{n=0}^{r}c_{n}\left|\hat{Q}_{n}\left(x\right)\right|\!\!\right\}\!\!\frac{\sin\!\sqrt{xz}}{\sqrt{xz}}x^{\frac{1}{2}}dx,$$

где $\dot{Q}_n(x) = \sum_{k=0}^n A_k^{(n)} x^k$, $(n=0, 1, 2, \cdots)$ —нормированные и ортогональ-

ные на отрезке $(0, \sigma^2)$ полиномы Якоби с весом $p(x) = x^{\frac{1}{2}}$, а коэффициенты (сп) определяются следующим образом:

$$c_n = A_0^{(n)} \mu_0 + A_1^{(n)} \mu_1 + \dots + A_n^{(n)} \mu_n , \quad (n = 0, 1, 2, \dots, r),$$

20e

$$\mu_n = (-1)^n \sqrt{2\pi} a_n \frac{(2n+1)!}{n!}, (n=0, 1, 2, \dots, r).$$

При этом

$$\min_{\mu(f)=\mu(f_0)=\left\{\sum_{n=0}^r |c_n|^2\right\}^{\frac{1}{4}}$$
.

Следствие 1. Среди всех функций класса D₁ (σ; в_о) минимум интеграла (18) реализует функция

$$f_{c}(z)\!=\!3a_{0}\!\!\left\{\frac{\sin\!\sigma\!\sqrt{z}}{(\sigma\!\sqrt{z})^{3}}-\frac{\cos\!\sigma\!\sqrt{z}}{(\sigma\!\sqrt{z})^{n}}\right\}\!.$$

Это следует из теоремы 2', при г=0, если заметить, что в этом случае

$$\mu_0\!=\!a_0\sqrt{\,2\pi};\;A_0^{(0)}\!=\!\sqrt{\frac{3}{2\sigma^3}},\;\;c_0\!=\!\sqrt{\frac{3\pi}{\sigma^3}}.$$

При этом

$$\mu(f_0) \!=\! \sqrt{\frac{3\pi}{\sigma^3}} |\, a_0\,|.$$

Аналогично и в этом случае имеет место:

Теорема 6'. Для существования функции, $f(z) \in D_1^*(0; a_2)$, удовлетворяющей условиям (16), необходима и достаточна сходимость ряда

$$\sum_{n=0}^{\infty} |c_n|^2 < +\infty.$$

200

$$c_n = \sqrt{2\pi} \sum_{k=0}^{n} (-1)^k a_k A_k^{(n)} \frac{(2k+1)!}{k!}$$

Сектор математики и механики АН Арм. ССР и Ереванский госуниверситет им. В. М. Мологова

Поступило 28 VI 1954

ЛИТЕРАТУРА

- 1. Paley R. and Wiener N. Fourier Transforms in the complex Domain (1934), pp. 12-15,
- Ватсон Г. Н. Теория бесселевых функций (1949), гл. III.

Մ. Մ. Զրբայյան, Ա. Ռ. Թավադյան

ՄԻ ՔԱՆԻ ԷՔՍՏՐԵՄԱԼ ԽՆԴԻՐՆԵՐ ԱՄԲՈՂՋ ՖՈՒՆԿՑԻԱՆԵՐԻ ՀԱՄԱՐ

UTPUPUPU

Նչանակենը W, բոլոր այն էջոսյոնենցիալ աիդի ամրողջ ֆունկցիա-Ֆերի դասը, որոնց ցուցիչը «« և որոնց համար դոյություն ունի

$$\mu(f) = \left\{ \int_{-\infty}^{+\infty} |f(x)|^2 dx \right\} \tag{1}$$

ինտեղրայրո

Վերագրենը $W_{\varepsilon}\{a_{2p-2}; a_{2q-1}\}$ (p>1, q>1) դասին W_{ε} դասի այն ֆունկցիաները, որոնք բավարարում են

$$f^{(2k)}(0) = a_{2k}$$
 $(k=0, 1, \dots, p-1)$
 $f^{(2k+1)}(0) = a_{2k+1}$ $(k=0, 1, \dots, q-1)$ (2)

պայմաններին, որտեղ 3₀, ..., 8_{2p-2}; 8₁,..., 8_{2q-1} կամավոր կոմպլհքո Եվեր են։

Հոդվածում բերվում է W₂ (2_{2p-2}; 2_{2q-1}) դասի ֆունկցիաների պարահ ժետրական ներկայացումը, ինչպես նաև տրվում է այդ դասի մեջ μ(i) ֆունկցիոնային մինիմում տվող ֆունկցիան։

Նմանօրինակ էրստրեմալ իւնդիր դրվում և լուծվում է նաև 1/2 կարգի և նորմալ տիպի ամբողջ ֆունկցիանհրի համար։

