24344446 000 ФРЗПРОЗПРОБРИЦИР ЦИЦРОГРАЗР ЗВОВИЦИР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Зра-dum., рб. L mbhud. ahmaip. VII, № 1, 1954 Физ.-мат., естеств. и техн. науки

ТЕОРИЯ УПРУГОСТИ

Р. А. Манукян

Расчет высоких балок под действием сосредоточенных сил, приложенных в точках верхней грани

В настоящей работе сделана попытка найти решение задач о равновесни свободно опертых и заделанных высоких балок, нагруженных сосредоточенными силами, приложенными в точках их верхней грани. В имеющихся решениях для прямоугольных пластинок при действии сосредоточенных сил, разрывная часть решения не отделена, вследствие чего вблизи точек приложения нагрузки черезвычайно трудно или невозможно найти численные значения напряжений. Кроме того в них не достаточно точно удовлетворяются граничные условия.

В нашей работе мы стремились отделить разрывную часть, в то же время достаточно точно удовлетворить граничным условиям. Работа состоит из двух глав. В первой главе рассматривается равновесие упругой полуплоскости при действии периодической разрывной нагрузки. Полученные в первой главе результаты используются во второй главе для решения задач о равновесии свободно опертых и заделанных высоких балок.

Результаты, полученные нами в первой главе, аналогичны результатам, полученным С. С. Голушкевичем для расчета свободно опертых тонких плит [1]. В работе С. С. Голушкевича составлены таблицы для некоторых из функций, через которые мы выражаем конечные части наших решений.

Глава I. Равновесие упругой полуплоскости при действии некоторых частных видов нагрузок

§ 1. Решения, выраженные в конечном виде.

 В этой главе рассматривается напряженное состояние упругой полуплоскости при действии на ее границе исключительно нормальных нагрузок.

Как известно, компоненты напряженного состояния при плоском напряженном состоянии выражаются формулами Колосова [2]

$$X_{x} + Y_{y} = 2[\Phi(z) + \Phi(z)],$$

$$Y_{y} - X_{x} + 2iX_{y} = 2[z\Phi(z) + \Psi(z)],$$
(1.1)

где Ф(z) н Ψ(z)-некоторые функции комплексного переменного z, a

Ф(z)—функция, сопряженная с Ф(z). В случае упругой полуплоскоста функции Ф(z) и Ψ(z) определяются формулами:

$$\Phi(z) = -\frac{1}{2\pi i} \int_{\infty}^{\infty} \frac{N+iT}{t-z} dt,$$

$$\Psi(z) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{N+iT}{t-z} dt - \Phi(z) - z\Phi'(z).$$
(1.2)

где N-интенсивность нормальной нагрузки на границе полуплоскости, а Т-интенсивность касательной нагрузки на той же границе. Если касательная нагрузка на границе отсутствует, то из (1.2) получим:

$$\Phi(z) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{N}{t-z} dt, \qquad (1.2')$$

$$\Psi(z) = -z \Phi'(z).$$

Подставляя значение $\Psi(z)$ из (1,2') в (1,1), получим:

$$X_{x} + Y_{y} = 2[\Phi(z) + \Phi(z)],$$

$$Y_{y} - X_{x} + 2iX_{y} = 4iy\Phi'(z).$$
(1.1)

Решая эту систему, для компонентов напряженного состояния получим следующие выражения:

$$X_{x} = [\Phi(z) + \overline{\Phi(z)}] - y[\Phi'(z) - \overline{\Phi'(z)}],$$

$$Y_{y} = [\Phi(z) + \overline{\Phi(z)}] + y[\Phi'(z) - \overline{\Phi'(z)}],$$

$$X_{y} = -y[\Phi'(z) + \overline{\Phi'(z)}],$$
(1.3)

Таким образом, все компоненты напряженного состояния определяются через одну функцию Ф(z) комплексного переменного z и ее первой производной по z. Обозначая удвоенную действительную часть Ф(z) через ψ(x, y), формулы (1.3) хожно переписать в виде

$$\begin{aligned} X_{x} &= \psi + y \frac{\partial \psi}{\partial y}, \\ Y_{y} &= \psi - y \frac{\partial \psi}{\partial y}, \\ X_{y} &= - y \frac{\partial \psi}{\partial x}, \end{aligned}$$
 (1.4)

В случае действия на границе полуплоскости нормальной сосредоточенной силы Р, приложенной в начале координат, напряжения выражаются формулами:

 $X_{x} = -\frac{P}{\pi} \frac{2x^{2}y}{(x^{2}+y^{2})^{2}},$ $Y_{y} = -\frac{P}{\pi} \frac{2y^{3}}{(x^{2}+y^{2})^{2}},$ $X_{y} = -\frac{P}{\pi} \frac{2xy^{2}}{(x^{2}+y^{2})^{2}},$ (1.5)

Непосредственным сравнением (1.4) и (1.5) легко заметить, что функция у в этом случае равна:

$$\psi_1 \coloneqq -\frac{P}{\pi} \frac{y}{\chi^2 + y^2} , \qquad (1.6)$$

Если сила действует не в начале координат, в точке (а. 0), то функция ф₁ примет вид:

$$\psi_1 = -\frac{P}{\pi} \frac{y}{(x-a)^2 + y^2},$$
 (1.6')

2. Предположим, что по всей границе полуплоскости действуют сжимающие сосредоточенные силы P на растояния а друг от друга и равномерно распределенная нагрузка интенсивности р = <u>P</u> (фиг. 1). Функцию ф для совместного действия этих двух нагрузок можно написать в виде:

$$\psi_{2} = -\frac{P}{\pi}y \sum_{-\infty}^{\infty} \frac{1}{(x - n\alpha)^{2} + y^{2}} + \frac{P}{\pi a} \int_{-\infty}^{\infty} \frac{y d\xi}{(x - \xi)^{2} + y^{2}}.$$
 (1.7)

Члены ряда, входящего в (1.7), можно представить в виде

$$\frac{y}{(x - na)^2 + y^2} =$$
$$= -Jm\frac{1}{z - na}$$

Следовательно,

$$\sum_{-\infty}^{\infty} \frac{y}{(x-na)^2 + y^2} = -$$
$$= -\operatorname{Jm} \sum_{-\infty}^{\infty} \frac{1}{z-na}.$$

Ho

$$\sum_{n=\infty}^{\infty} \frac{1}{z - na} = \frac{\pi}{a} \operatorname{ctg} \frac{\pi z}{a}.$$

Следовательно.

$$\sum_{i=1}^{\infty} \frac{y}{(x-na)^2 + y^2} = -\frac{\pi}{a} \operatorname{Jm} \operatorname{ctg} \frac{\pi z}{a} = -\frac{\pi}{a} \frac{\operatorname{sh} \frac{2\pi y}{a}}{\operatorname{sh} \frac{2\pi y}{a} - \cos \frac{2\pi x}{a}}.$$

Второй член в (7) равен

$$\frac{\mathrm{P}}{\pi a} \int_{-\infty}^{\infty} \frac{\mathrm{y}\mathrm{d}\xi}{(\mathrm{x} - \xi)^2 + \mathrm{y}^2} = \frac{\mathrm{P}}{a\pi} \int_{-\infty}^{\infty} \frac{\mathrm{y}\mathrm{d}\alpha}{\alpha^2 + \mathrm{y}^2} = \frac{\mathrm{P}}{a\pi} \operatorname{arctg} \frac{\alpha}{\mathrm{y}} \int_{-\infty}^{\infty} = \frac{\mathrm{P}}{a} \frac{\mathrm{y}}{|\mathrm{y}|}.$$

Подставляя полученные значения в (1.7) получны:

$$\phi_2 = -\frac{P}{a} \frac{\sinh \frac{2\pi y}{a}}{\cosh \frac{2\pi y}{a} - \cos \frac{2\pi x}{a}} + \frac{P}{a} \frac{y}{|y|}, \quad (1.8)$$

Для нвжней полуплоскости |y| = y. Следовательно.

$$\phi_2 = -\frac{p}{a} \left[\frac{-\frac{sh\frac{2\pi y}{a}}{-\frac{2\pi y}{a} - \cos\frac{2\pi x}{a}} - 1 \right]. \tag{1.8'}$$

Для верхней полуплоскости |y| — - у. Поэтому для нее

$$k_2 = -\frac{P}{a} \left[\frac{-\frac{\sinh \frac{2\pi y}{a}}{-\cosh \frac{2\pi y}{a} - \cos \frac{2\pi x}{a}} + 1 \right]. \quad (1.8'')$$

Из решения (1.8) сдвигом сил можно получить решение для нагрузки, показанной на фиг. 2. А именно, в этом случае функция у напишется в виде:

Расчет высоких балок

$$\psi_{g} = -\frac{P}{a} \left[-\frac{\frac{\sinh \frac{2\pi y}{a}}{\cosh \frac{2\pi y}{a} - \cos \frac{2\pi (x+\xi)}{a}} + \frac{\sinh \frac{2\pi y}{a} - \cos \frac{2\pi (x+\xi)}{a}}{\cosh \frac{2\pi y}{a} - \cos \frac{2\pi (x-\xi)}{a}} - 2\frac{P}{a} \right].$$
(1.9)

 Рассмотрим теперь напряженное состояние упругой полуплоскости при действии нагрузки, показанной на фиг. 3. Присоединим к

$$\mathbf{p}_1 = \mathbf{p} = \frac{\mathbf{p}}{a}, \ \mathbf{p}_2 = -\mathbf{p} = -\frac{\mathbf{p}}{a}.$$

Комбинируя надлежащим образом эти равномерные нагрузки с данными сосредоточенными силами, нетрудно убедиться, что функция ф в этом случае выразится формулой:

При $\xi = \frac{a}{4}$ получим:

$$\varphi_{\epsilon} = \frac{4\mathrm{P}}{a} \frac{\mathrm{sh} \frac{2\pi\mathrm{y}}{a} \sin \frac{2\pi\mathrm{x}}{a}}{\mathrm{ch} \frac{4\pi\mathrm{y}}{a} + \cos \frac{4\pi\mathrm{x}}{a}}.$$
(1.10')

§ 2. Разложение полученных решений в ряды.

В дальнейшем, наряду с полученными нами конечными решениями, понадобятся и решения в тригонометрических рядах. Непосредственное разложение полученных решений в ряды требует громоздких выкладок, а между тем все эти разложения легко получаются при использовании нижеприведенного разложения ctg $\frac{\pi z}{a}$, где z = x + iy -комплексное переменное.

Р. А. Манукян

Применяя известное тождество

$$\operatorname{ctg}\frac{\pi z}{a} = -i \frac{1 + e^{\frac{2\pi i z}{a}}}{1 - e^{\frac{2\pi i z}{a}}}$$
(1.11)

и разложение

$$\frac{+x}{-x} \Rightarrow 1 + 2\sum_{k=1}^{\infty} x^{k}, \qquad (1.12)$$

можем написать

$$-\operatorname{ctg}\frac{\pi z}{a} = i + 2i\sum_{1}^{\infty} e^{\frac{2k\pi i z}{a}}.$$
(1.13)

Учитивая (1.13), разложение функции ф₂ из формулы (1.8), можно написать в виде

$$\varphi_{\rm e} = -\frac{2\mathrm{P}}{a} \sum_{1}^{\infty} \mathrm{e}^{-\frac{2\,\mathrm{k}\pi\mathrm{y}}{a}} \cos\frac{2\,\mathrm{k}\pi\mathrm{x}}{a}.$$
 (1.14)

Так же легко находятся разложения решений (1.9) а (1.10). Первое из них имеет вид

$$\psi_2 = -\frac{4P}{a} \sum_{1}^{\infty} e^{-\frac{2k\pi y}{a}} \cos \frac{2k\pi \xi}{a} \cos \frac{2k\pi x}{a},$$
(1.15)

второе-

$$\psi_t = -\frac{4P}{a} \sum_{1}^{\infty} e^{-\frac{2k\pi y}{a}} \sin\frac{2k\pi\xi}{a} \sin\frac{2k\pi x}{a}. \qquad (1.16)$$

2sery

Вследствне наличия под знаком суммы множителя е ряды (1.14). (1.15) и (1.16) сходятся очень быстро со свонми производными до n-ого порядка, где п-конечное число, даже при сравнительно малых у.

Глава П. Расчет высоких балок

§ 1. Балка свободно опертая по концам под действием поперечной силы, сосредоточенной в некоторой точке верхней грани.

 Предположим, что в некоторой точке верхней грани балки, на расстоянии ξ от левого конца, действует сосредоточенная поперечная свла Р, направленная по положительной осн ОУ (фиг. 4). Пусть по концам балки условия закрепления таковы, что

тде

$$R_1 = \frac{P(l-\xi)}{l}, R_2 = \frac{\xi P}{l}.$$

Для решения этой задачи обратимся к функции \$4 из формулы (1.10). Напряженное состояние, выражаемое этой функцией, определяется напряжениями:

$$X'_{x} = \frac{P}{2l} \left\{ \frac{\sinh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x + \xi)}{l}} - \frac{\sinh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}} + \frac{\pi y}{l} \left[\frac{1 - \cosh \frac{\pi y}{l} \cos \frac{\pi (x + \xi)}{l}}{\left(\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}\right)} - \frac{1 - \cosh \frac{\pi y}{l} \cos \frac{\pi (x - \xi)}{l}}{\left(\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}\right)^{2}} \right] \right\},$$

$$y'_{y} = \frac{P}{2l} \left\{ \frac{\sinh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x + \xi)}{l}} - \frac{\cosh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}} - \frac{\cosh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}} \right],$$

$$(2.2)$$

$$-\frac{\pi y}{l} \left[\frac{1 - \cosh \frac{\pi y}{l} \cos \frac{\pi (x + \xi)}{l}}{\left(\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}\right)^{2}} - \frac{1 - \cosh \frac{\pi y}{l} \cos \frac{\pi (x - \xi)}{l}}{\left(\cosh \frac{\pi y}{l} - \cos \frac{\pi (x - \xi)}{l}\right)^{2}} \right] \right\},$$

Р. А. Манукян

$$\mathbf{x}_{\mathbf{y}} = \frac{\pi \mathbf{P}_{\mathbf{y}}}{2l^{\gamma}} \left[\frac{\operatorname{sh} \frac{\pi \mathbf{y}}{l} \sin \frac{\pi (\mathbf{x} + \boldsymbol{\xi})}{l}}{\left(\operatorname{ch} \frac{\pi \mathbf{y}}{l} - \cos \frac{\pi (\mathbf{x} + \boldsymbol{\xi})}{l} \right)^{2}} - \frac{\operatorname{sh} \frac{\pi \mathbf{y}}{l} \sin \frac{\pi (\mathbf{x} - \boldsymbol{\xi})}{l}}{\left(\operatorname{ch} \frac{\pi \mathbf{y}}{l} - \cos \frac{\pi (\mathbf{x} - \boldsymbol{\xi})}{l} \right)^{2}} \right].$$

На линиях x=0 и x=l отсутствуют нормальные напряжения X_x, а касательные напряжения равны:

$$X'_{y}(0, y) = \frac{\pi P_{y}}{l^{2}} \frac{\sinh \frac{\pi y}{l} \sin \frac{\pi \xi}{l}}{\left(\cosh \frac{\pi y}{l} - \cos \frac{\pi \xi}{l} \right)^{2}},$$

$$X_{y}(l, y) = -\frac{\pi P_{y}}{l^{2}} \frac{\sinh \frac{\pi y}{l} \sin \frac{\pi \xi}{l}}{\left(\cosh \frac{\pi y}{l} + \cos \frac{\pi \xi}{l} \right)^{2}},$$
(2.3)

Таким образом, для получения решения, удовлетворяющего граничным условиям (2.1). нужно компенсировать напряжения, действующие на грани y==h.

Разложение функции 4, согласно формуле (1.16), имеет вид

$$\psi_{4} = -\frac{2P}{l} \sum_{1}^{\infty} e^{\frac{-\frac{k\pi y}{l}}{l}} \sin\frac{k\pi\xi}{l} \sin\frac{k\pi x}{l}, \qquad (1.16')$$

Подставляя это выражение в (1.4) для напряжений У_у и Х_у получим следующие разложения:

$$\begin{aligned} \mathcal{V}_{\mathbf{y}}'(\mathbf{x}, \mathbf{h}) &= -\frac{2\mathbf{P}}{l} \sum_{1}^{\infty} e^{-\frac{\mathbf{k}\pi\mathbf{h}}{l}} \sin\frac{\mathbf{k}\pi\xi}{l} \cdot \sin\frac{\mathbf{k}\pi\mathbf{x}}{l} \left(1 + \frac{\mathbf{k}\pi\mathbf{h}}{l}\right), \\ \mathcal{X}_{\mathbf{y}}'(\mathbf{x}, \mathbf{h}) &= \frac{2\mathbf{P}}{l} \sum_{1}^{\infty} \frac{\mathbf{k}\pi\mathbf{h}}{l} e^{-\frac{\mathbf{k}\pi\mathbf{h}}{l}} \sin\frac{\mathbf{k}\pi\xi}{l} \cos\frac{\mathbf{k}\pi\mathbf{x}}{l}. \end{aligned}$$
(2.4)

Для компенсации напряжений Уу(x, h) и Ху(x, h) используем решение Файлона в тригонометрических рядах.

2. Напишем функцию напряжений Эри в виде

$$\Phi = \sum_{l}^{\infty} F_{\kappa}(y) \sin \frac{k\pi x}{l}, \qquad (2.5)$$

$$F_{\kappa}(y) = A_{\kappa} \operatorname{ch} \frac{k\pi y}{l} + B_{\kappa} \operatorname{sh} \frac{k\pi y}{l} + B_{\kappa} \operatorname{$$

где

$$+C_{k} \frac{k\pi y}{l} \operatorname{ch} \frac{k\pi y}{l} + D_{k} \frac{k\pi y}{l} \operatorname{sh} \frac{k\pi y}{l}.$$
 (2.6)

Напряжения при этом напишутся в виде:

$$X_{x}^{"} = \sum_{l}^{\infty} F_{k}^{"} \sin \frac{k\pi x}{l},$$

$$Y_{y}^{"} = -\sum_{l}^{\infty} \left(\frac{k\pi}{l}\right)^{2} F_{k}(y) \sin \frac{k\pi x}{l},$$

$$X_{y}^{"} = -\sum_{l}^{\infty} \frac{k\pi}{l} F_{k}'(y) \cos \frac{k\pi x}{l}.$$
(2.7)

Граничные условия напишутся в виде

$$-\sum_{l}^{\infty} \left(\frac{k\pi}{l}\right)^{2} F_{k}(0) \sin \frac{k\pi x}{l} = 0,$$

$$-\frac{k\pi}{l} \sum_{l}^{\infty} F_{k}'(0) \cos \frac{k\pi x}{l} = 0,$$

$$-\sum_{l}^{\infty} \left(\frac{k\pi}{l}\right)^{2} F_{k}(h) \sin \frac{k\pi x}{l} = -\frac{2P}{l} \sum_{l}^{\infty} e^{-\frac{k\pi h}{l}} \sin \frac{k\pi \xi}{l} \sin \frac{k\pi x}{l} \left(1 + \frac{k\pi h}{l}\right),$$

$$-\sum_{l}^{\infty} \frac{k\pi}{l} F_{k}'(h) \cos \frac{k\pi x}{l} = \frac{2P}{l} \sum_{l}^{\infty} \frac{k\pi h}{l} e^{-\frac{k\pi h}{l}} \sin \frac{k\pi \xi}{l} \cos \frac{k\pi x}{l}.$$
(2.8)

Из первого уравнення этой системы найдем:

$$A_{k} == 0.$$

Решая систему следующих трех уравнений, получим:

$$B_{k} = \frac{2P}{l} \sin \frac{k\pi\xi}{l} \left\{ \frac{\frac{k\pi\hbar}{l} \left(1 + \frac{k\pi\hbar}{l} \operatorname{cth} \frac{k\pi\hbar}{l}\right)}{\left[\frac{\sin^{2} \frac{k\pi\hbar}{l} - \left(\frac{k\pi\hbar}{l}\right)^{2}}{\left[\frac{\sin^{2} \frac{k\pi\hbar}{l}}{l} - \left(\frac{k\pi\hbar}{l}\right)^{2} \right]} + \frac{e^{-\frac{k\pi\hbar}{l}}}{\sin \frac{k\pi\hbar}{l}} \right\} \cdot \left(\frac{l}{k\pi}\right)^{2},$$

$$C_{k} = -B_{k}, \quad D_{k} = \frac{2Ph^{2} \sin \frac{k\pi\xi}{l}}{l\left[\sin^{2} \frac{k\pi\hbar}{l} - \left(\frac{k\pi\hbar}{l}\right)^{2} \right]}.$$

$$(2.9)$$

Таким образом, для компенсирующих напряжений мы получим следующие выражения:

$$X_{s}^{'} = -\sum_{l}^{\infty} \left(\frac{k\pi}{l}\right)^{2} \left[B_{k} \left(sh \frac{k\pi y}{l} + \frac{k\pi y}{l} + \frac{k\pi y}{l} \right) + D_{k} \left(2ch \frac{k\pi y}{l} + \frac{k\pi y}{l} sh \frac{k\pi y}{l} \right) \right] sin \frac{k\pi x}{l} + \frac{k\pi y}{l} ch \frac{k\pi y}{l} - \sum_{l}^{\infty} \left(\frac{k\pi}{l} \right)^{2} \left[B_{k} \left(sh \frac{k\pi y}{l} - \frac{k\pi y}{l} + \frac{k\pi y}{l} \right) + D_{k} \frac{k\pi y}{l} sh \frac{k\pi y}{l} \right] sin \frac{k\pi x}{l} + \frac{k\pi y}{l} ch \frac{k\pi y}{l} + D_{k} \frac{k\pi y}{l} sh \frac{k\pi y}{l} - \frac{k\pi y}{l} ch \frac{k\pi y}{l} + D_{k} \frac{k\pi y}{l} sh \frac{k\pi y}{l} - \frac{k\pi y}{l} ch \frac{k\pi y}{l} + \frac{k\pi y}{l} ch \frac{k\pi y}{l} ch \frac{k\pi y}{l} + \frac{k\pi y}{l} ch \frac{k\pi y}{l} ch \frac{k\pi y}{l} + \frac{k\pi y}{l} ch \frac{k\pi y}{l}$$

где В_к и D_к определяются по формулам (2.9).

Напряжение в балке при изгибе сосредоточенной силой Р, когда граничные условия имеют вид (2.1). определяется как результат вычитания напряжений (2.10) из напряжений (2.2). Для упрощения записи и вычислений, в формулах (2.2) сделаем следующие обозначевия:

$$\varphi_{1} = \frac{\operatorname{sh}\frac{\pi y}{l}}{\operatorname{ch}\frac{\pi y}{l} - \cos\frac{\pi x}{l}}, \quad \varphi_{2} = \frac{1 - \operatorname{ch}\frac{\pi y}{l}\cos\frac{\pi x}{l}}{\left(\operatorname{ch}\frac{\pi y}{l} - \cos\frac{\pi x}{l}\right)^{2}}, \quad (2.11)$$
$$\varphi_{3} = \frac{\pi y}{l} \cdot \frac{\operatorname{sh}\frac{\pi y}{l}\sin\frac{\pi x}{l}}{\left(\operatorname{ch}\frac{\pi y}{l} - \cos\frac{\pi x}{l}\right)^{2}}.$$

Имея в виду эти обозначения, выражение для окончательных напряжений можно написать в виде:

$$\begin{split} \mathbf{X}_{\mathbf{x}} &= \frac{\mathbf{p}}{2l} \left[\varphi_{1} \left(\mathbf{x} + \xi, \mathbf{y} \right) - \varphi_{1} \left(\mathbf{x} - \xi, \mathbf{y} \right) + \varphi_{2} \left(\mathbf{x} + \xi, \mathbf{y} \right) - \\ \varphi_{2} (\mathbf{x} - \xi, \mathbf{y}) \right] + \sum_{1}^{\infty} \left(\frac{\mathbf{k}\pi}{l} \right)^{2} \left[\mathbf{B}_{\mathbf{k}} \left(\operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} + \frac{\mathbf{k}\pi \mathbf{y}}{l} \operatorname{ch} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right) - \\ - \mathbf{D}_{\mathbf{k}} \left(2 \operatorname{ch} \frac{\mathbf{k}\pi \mathbf{y}}{l} + \frac{\mathbf{k}\pi \mathbf{y}}{l} \operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right) \right] \sin \frac{\mathbf{k}\pi \mathbf{x}}{l} , \\ \mathbf{Y}_{\mathbf{y}} &= \frac{\mathbf{P}}{2l} \left[\varphi_{1} (\mathbf{x} + \xi, \mathbf{y}) - \varphi_{1} (\mathbf{x} - \xi, \mathbf{y}) - \varphi_{2} (\mathbf{x} + \xi, \mathbf{y}) + \\ \varphi_{2} (\mathbf{x} - \xi, \mathbf{y}) \right] + \sum_{1}^{\infty} \left(\frac{\mathbf{k}\pi}{l} \right)^{2} \left[\mathbf{B}_{\mathbf{k}} \left(\operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} - \frac{\mathbf{k}\pi \mathbf{y}'}{l} \operatorname{ch} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right) + \\ + \mathbf{D}_{\mathbf{k}} \frac{\mathbf{k}\pi \mathbf{y}}{l} \operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right] \sin \frac{\mathbf{k}\pi \mathbf{x}}{l} , \\ \mathbf{X}_{\mathbf{y}} &= \frac{\mathbf{P}}{2l} \left[\varphi_{3} (\mathbf{x} + \xi, \mathbf{y}) - \varphi_{3} (\mathbf{x} - \xi, \mathbf{y}) - \\ - \sum_{1}^{\infty} \left(\frac{\mathbf{k}\pi}{l} \right)^{2} \left[\mathbf{B}_{\mathbf{k}} \frac{\mathbf{k}\pi \mathbf{y}}{l} - \operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} - \mathbf{D}_{\mathbf{k}} \left(\operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} + \\ + \frac{\mathbf{k}\pi \mathbf{y}}{l} \operatorname{ch} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right) \right] \cos \frac{\mathbf{k}\pi \mathbf{y}}{l} . \end{split}$$

Для функций φ_1 , φ_2 и φ_3 составлены таблицы, которые приведены в конце работы. Пользуясь этими таблицами легко можно вычислить конечные части напряжений (2.12). Что касается вычисления рядов, входящих в формулы (2.12), то благодаря их очень быстрой сходимости достаточно взять два-три, а для достаточно высоких балок, лишь один член этих рядов.

Пример. Балка с пролетом l свободно оперта поконцам. В точке верхней грани балки в середине ее пролета действует сосредоточенная поперечная сила Р. Отношение высоты балки к ее пролету равно $\frac{1}{2}$. Построить графики изменения напряжений по высоте балки в сечениях $x = \frac{l}{2}$ и x = 0.

Подставляя в формулы (2.12) $x = \frac{l}{2}$, $\xi = \frac{l}{2}$, получим:

$$\begin{split} X_{x} &= \frac{P}{2l} \left[\varphi_{1}\left(l,y\right) - \varphi_{1}\left(0,y\right) + \varphi_{2}\left(l,y\right) - \varphi_{2}\left(0,y\right) \right] + \\ &+ \sum_{l}^{\infty} \left[B_{k}^{\star} \left(\operatorname{sh} \frac{k\pi y}{l} + \frac{k\pi y}{l} \operatorname{ch} \frac{k\pi y}{l} \right) - D_{k}^{\star} \left(\operatorname{2ch} \frac{k\pi y}{l} + \\ &+ \frac{k\pi y}{l} \operatorname{sh} \frac{k\pi y}{l} \right) \right] \sin \frac{k\pi}{2}, \\ Y_{y} &= \frac{P}{2l} \left[\varphi_{1}\left(l,y\right) - \varphi_{1}\left(0,y\right) - \varphi_{2}\left(l,y\right) + \varphi_{2}\left(0,y\right) \right] + \\ &+ \sum_{l}^{\infty} \left[B_{k}^{\star} \left(\operatorname{sh} \frac{k\pi y}{l} - \frac{k\pi y}{l} \operatorname{ch} \frac{k\pi y}{l} \right) + D_{k}^{\star} \frac{k\pi y}{l} \operatorname{sh} \frac{k\pi y}{l} \right] \sin \frac{k\pi}{2}, \\ X_{y} &= 0, \\ THe \qquad B_{k}^{\star} &= \left(\frac{k\pi}{l} \right)^{2} B_{k}, \quad D_{k}^{\star} &= \left(\frac{k\pi}{l} \right)^{2} D_{k}, \end{split} \end{split}$$

а B_k и D_k определяются по формулам (2.9). Вычислим коэффициенты B^{*}_k и D^{*}_k:

$$B_{2k} = D_{2k} = 0$$
,

 $\begin{array}{ll} B_1^*=3,19353, & D_1^*=1.74462, \\ B_3^*=-0.017833, & D_3^*=-0.013793, \\ B_5^*=0.000084441, & D_5^*=0.74369.10^{-4}, \\ B_7^*=-0.83898.10^{-16}, & D_7^*=-0.76614.10^{-16}. \end{array}$

Имея значение коэффициентов B^{*}_k и D^{*}_k и пользуясь таблицами функций φ₁, φ₂ и φ₃, без особого труда можно найти значения напряжений в любой точке балки.

На фиг. 5 по вычисленным значениям напряжений X_x и V_y в сечении x = $\frac{l}{2}$ балки построены графики изменения этих напряжений по высоте балки. При вычислении взяты лишь три члена рядов.

Вычислим теперь напряжения в опорном сечении. При x = 0 из формул (2.12) имеем:

$$X_{y} = \mathcal{Y}_{y} = 0,$$
$$X_{y} = \frac{P}{2l} \left[\varphi_{3} \left(\frac{l}{2}, y \right) + \varphi_{3} \left(\frac{l}{2}, y \right) \right] -$$

Фиг. 5.

 $-\sum_{l=1}^{\infty} \left[B_{k}^{*} \frac{k\pi y}{l} \operatorname{sh} \frac{k\pi y}{l} - D_{k}^{*} \left(\operatorname{sh} \frac{k\pi y}{l} + \frac{k\pi y}{l} \operatorname{ch} \frac{k\pi y}{l} \right) \right],$

Результаты вычислений по этой формуле графически изображены на фиг. 6.

Таким образом, из решения этого примера видно, что распределение касательных напряжений в опорном сечении мало отличается от параболического закона. Из графика изменения нормальных напряжений X_x в сечении под сосредоточенной силой видно, что нормальное напряжение в этом сечении не следует линейному закону и в крайних волокнах балки напряжения меньше, чем следовало бы ожидать на основании элементарной теории изгиба балок. Более того, с первого взгляда может показаться, что в этом сечении нарушаются условия равновесия, а именно, момент пормальшых напряжений X_x относительно центра сечения меньше момента опорной реакции относительно середины пролета, и алгебраическая сумма площадей

Фиг. 6.

Фиг. 7.

Полученные в этом примере результаты хорошо согласуются с результатами, полученными Зсевальдом.

§ 2. Балка с заделанными концами.

 Комбинируя решения (1.8), (1.9) и (1.10) можно найти решение для нагрузки, показанной на фиг. 8. Функция ф для такой нагрузки имеет вид:

Расчет высоких балок

$$\psi_{5} = -\frac{P}{2l} \left[\frac{\sinh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x+\xi)}{l}} + \frac{\sinh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi (x-\xi)}{l}} \right] - \frac{P}{l} \frac{\sinh \frac{\pi y}{l}}{\cosh \frac{\pi y}{l} - \cos \frac{\pi x}{l}} - \frac{4P\xi}{l^{2}} \frac{\sinh \frac{\pi y}{l} \cos \frac{\pi x}{l}}{\cosh \frac{2\pi y}{l} - \cos \frac{2\pi x}{l}}, \quad (2.13)$$

Подставляя это выражение в формулы (1,4), для напряжений получим следующие выражения:

$$\begin{split} \mathbf{X}_{x}^{'} &= -\frac{P}{2l} \left\{ \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} + \xi)}{l}} + \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l}} + \right. \\ &+ \frac{\pi y}{l} \left[\frac{1 - \mathrm{ch} \frac{\pi y}{l} \cos \frac{\pi (\mathbf{x} + \xi)}{l}}{(\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} + \xi)}{l})^{2}} + \frac{1 - \mathrm{ch} \frac{\pi y}{l} \cos \frac{\pi (\mathbf{x} - \xi)}{l}}{(\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l})^{2}} \right] \right] + \\ &+ \frac{P}{l^{2}} \left\{ (l - \xi) \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi \mathbf{x}}{l}} + \xi \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} + \cos \frac{\pi \mathbf{x}}{l}} + \\ &+ \frac{\pi y}{l} \left[(l - \xi) \frac{1 - \mathrm{ch} \frac{\pi y}{l} \cos \frac{\pi \mathbf{x}}{l}}{(\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi \mathbf{x}}{l})^{2}} + \xi \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} + \cos \frac{\pi \mathbf{x}}{l}} \right] \right], \\ y_{y}^{'} &= -\frac{P}{2l} \left\{ \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} + \xi)}{l}} + \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l}} - \\ &- \frac{\pi y}{l} \left[\frac{1 - \mathrm{ch} \frac{\pi y}{l} \cos \frac{\pi (\mathbf{x} + \xi)}{l}}{(\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} + \xi)}{l})} + \frac{1 - \mathrm{ch} \frac{\pi y}{l} \cos \frac{\pi (\mathbf{x} - \xi)}{l}}{(\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l})^{2}} \right] \right\} + \\ &+ \frac{P}{l^{2}} \left\{ (l - \xi) \frac{\mathrm{sh} \frac{\pi y}{l}}{(\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} + \xi)}{l})^{2}} + \frac{1 - \mathrm{ch} \frac{\pi y}{l} \cos \frac{\pi (\mathbf{x} - \xi)}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l}} \right\} + \\ &+ \frac{P}{l^{2}} \left\{ (l - \xi) \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} + \xi)}{l}} + \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l}} \right\} + \\ &+ \frac{P}{l^{2}} \left\{ (l - \xi) \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi x}{l}} + \frac{\mathrm{sh} \frac{\pi y}{\mathrm{ch} \frac{\pi y}{l}} - \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi (\mathbf{x} - \xi)}{l}} \right\} + \\ &+ \frac{P}{l^{2}} \left\{ (l - \xi) \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi x}{l}} + \frac{\mathrm{sh} \frac{\pi y}{\mathrm{ch} \frac{\pi y}{l}} - \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi x}{l}} - \\ &+ \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{ch} \frac{\pi y}{l} - \cos \frac{\pi x}{l}} + \\ &+ \frac{\mathrm{sh} \frac{\pi y}{l} - \frac{\mathrm{sh} \frac{\pi y}{l}} - \frac{\mathrm{sh} \frac{\pi y}{l}} - \frac{\mathrm{sh} \frac{\pi y}{l}}{\mathrm{sh} \frac{\pi y}{l}} - \\ &+ \frac{\mathrm{sh} \frac{\pi y}{l}} + \frac{\mathrm{sh} \frac{\pi y}{l} - \frac{\mathrm{sh} \frac{\pi y}{l}} - \\ &+ \frac{\mathrm{sh} \frac{\pi y}{l} - \frac{\mathrm{sh} \frac{\pi y}{l}} - \frac{\mathrm{sh} \frac{\pi y}{l}} - \\ &+ \frac{\mathrm{sh} \frac{\pi y}{l} - \frac{\mathrm{sh} \frac{\pi y}{l$$

Известия VII, № 1-4

1

49

$$-\frac{\pi y}{l}\left[(l-\xi)\frac{1-\operatorname{ch}\frac{\pi y}{l}\cos\frac{\pi x}{l}}{\left(\operatorname{ch}\frac{\pi y}{l}-\cos\frac{\pi x}{l}\right)^{2}}+\xi\frac{1+\operatorname{ch}\frac{\pi y}{l}\cos\frac{\pi x}{l}}{\left(\operatorname{ch}\frac{\pi y}{l}+\cos\frac{\pi x}{l}\right)^{2}}\right],$$

$$X_{y}^{*}=-\frac{\pi P y}{2l^{2}}\left[\frac{\operatorname{sh}\frac{\pi y}{l}\sin\frac{\pi (x+\xi)}{l}}{\left(\operatorname{ch}\frac{\pi y}{l}-\cos\frac{\pi (x+\xi)}{l}\right)^{2}}+\frac{\operatorname{sh}\frac{\pi y}{l}\sin\frac{\pi (x-\xi)}{l}}{\left(\operatorname{ch}\frac{\pi y}{l}-\cos\frac{\pi (x+\xi)}{l}\right)^{2}}\right]+$$

$$+\frac{\pi P y}{l^{n}}\left[(l-\xi)\frac{\operatorname{sh}\frac{\pi y}{l}\sin\frac{\pi x}{l}}{\left(\operatorname{ch}\frac{\pi y}{l}-\cos\frac{\pi x}{l}\right)^{2}}-\xi\frac{\operatorname{sh}\frac{\pi y}{l}\sin\frac{\pi x}{l}}{\left(\operatorname{ch}\frac{\pi y}{l}+\cos\frac{\pi x}{l}\right)^{2}}\right],$$

Найдем разложения этих напряжений. На основании результатов второго параграфа первой главы имеем:

$$X'_{x} = -\frac{2P}{l} \sum_{j}^{\infty} e^{-\frac{k\pi y}{l}} \left(1 - \frac{k\pi y}{l}\right) \left[\cos\frac{k\pi\xi}{l} - \frac{l-\xi}{l} - (-1)^{k} \frac{\xi}{l} \left|\cos\frac{k\pi x}{l}\right|, \\ S'_{y} = -\frac{2P}{l} \sum_{j}^{\infty} e^{-\frac{k\pi y}{l}} \left(1 + \frac{k\pi y}{l}\right) \left[\cos\frac{k\pi\xi}{l} - \frac{l-\xi}{l} - (-1)^{k} \frac{\xi}{l} \left|\cos\frac{k\pi x}{l}\right|, \\ X'_{y} = -\frac{2P}{l} \sum_{j}^{\infty} \frac{k\pi y}{l} e^{-\frac{k\pi y}{l}} \left[\cos\frac{k\pi\xi}{l} - \frac{l-\xi}{l} - (-1)^{k} \frac{\xi}{l} \right] \sin\frac{k\pi x}{l}.$$
(2.15)

При х=0, Х_у=0, а

$$X_{k}^{*} = -\frac{2P}{l} \sum_{i}^{\infty} e^{-\frac{k\pi y}{l}} \left(1 - \frac{k\pi y}{l}\right) \left[\cos\frac{k\pi\xi}{l} - \frac{l-\xi}{l} - (-1)^{k} - \frac{\xi}{l}\right].$$
 (2.16)

При x = l, $X_y = 0$, а

$$X'_{x} = -\frac{2P}{l} \sum_{1}^{\infty} (-1)^{k} \overline{e^{l}} \left(1 - \frac{k\pi y}{l}\right) \left[\cos \frac{k\pi \xi}{l} - \frac{l - \xi}{l} - (-1)^{k} \frac{\xi}{l}\right] \cdot (2.16')$$

Таким образом, срезая полуплоскость по линиям x = 0, x = l и у=h, снимая при этом возникающие на линии у=h напряжения, мы получим решение задачи изгиба балки сосредоченной силой. Способ закрепления концов в рассматриваемой задаче показан на фиг. 9. Как видно из фигуры, в точках (0, 0) и (b, 0) предотвращены как вертикальные, так и горизонтальные перемещения*. В остальных точках опорных сечений отсутствуют горизонтальные, но возможны вертикальные перемещения.

Фнг. 9.

На линни у=h напряжения равны:

$$\mathbf{y}_{\mathbf{y}} = -\frac{2\mathbf{P}\sum_{l}^{\infty} e^{-\frac{\mathbf{k}\pi\mathbf{h}}{l}} \left(1 + \frac{\mathbf{k}\pi\mathbf{h}}{l}\right) \left[\cos\frac{\mathbf{k}\pi\mathbf{\xi}}{l} - \frac{l - \mathbf{\xi}}{l} - (-1)^{\mathbf{k}}\frac{\mathbf{\xi}}{l}\right] \cos\frac{\mathbf{k}\pi\mathbf{x}}{l},$$

$$\mathbf{X}_{\mathbf{y}}^{*} = -\frac{2\mathbf{P}\sum_{l}^{\infty} \frac{\mathbf{k}\pi\mathbf{h}}{l} e^{-\frac{\mathbf{k}\pi\mathbf{h}}{l}} \left[\cos\frac{\mathbf{k}\pi\mathbf{\xi}}{l} - \frac{l - \mathbf{\xi}}{l} - (-1)^{\mathbf{k}}\frac{\mathbf{\xi}}{l}\right] \sin\frac{\mathbf{k}\pi\mathbf{x}}{l}.$$

$$(2.17)$$

Для компенсации этих напряжений используем решение Рибьера в тригонометрических рядах.

2. Напишем функцию напряжений в виде

$$\Phi = \sum_{1}^{\infty} F_k(y) \cos \frac{k\pi x}{l}, \qquad (2.18)$$

тде F_k (у) имеет вид (22). Напряжения при этом будут выражаться формулами:

$$X_{x}^{*} = \sum_{l}^{\infty} F_{x}^{"}(y) \cos \frac{k\pi x}{l},$$

$$Y_{y}^{*} = -\sum_{l}^{\infty} \left(\frac{k\pi}{l}\right)^{2} F_{k}(y) \cos \frac{k\pi x}{l},$$

$$X_{y}^{*} = \sum_{l}^{\infty} \frac{k\pi}{l} F_{k}(y) \sin \frac{k\pi x}{l}.$$
(2.19)

 Вместо этих точек возможно закреплять любые другие точки опорных сечений, но тогда, конечно, всесто системы сил, показанных на фиг. 8, нужно брать другую систему. Граничные условия напишутся в виде: $\sum_{i}^{\infty} \left(\frac{k\pi}{l}\right)^{2} F_{k}(0) \cos \frac{k\pi x}{l} = 0,$ $\sum_{i}^{\infty} \frac{k\pi}{l} F_{k}'(0) \sin \frac{k\pi x}{l} = 0,$ $\sum_{i}^{\infty} \left(\frac{k\pi}{l}\right)^{2} F_{k}(h) \cos \frac{k\pi x}{l} = -\frac{2P}{l} \sum_{i}^{\infty} e^{-\frac{k\pi h}{l}} \left(1 + \frac{k\pi h}{l}\right) \left[\cos \frac{k\pi \xi}{l} - \frac{l - \xi}{l} - (-1)^{k} \frac{\xi}{l}\right] \cos \frac{k\pi x}{l},$ $\sum_{i}^{\infty} \frac{k\pi}{l} F_{k}'(h) \sin \frac{k\pi x}{l} = -\frac{2P}{l} \sum_{i}^{\infty} \frac{k\pi h}{l} e^{-\frac{k\pi h}{l}} \left[\cos \frac{k\pi \xi}{l} - \frac{l - \xi}{l} - (-1)^{k} \frac{\xi}{l}\right] \sin \frac{k\pi x}{l}.$ (2.20)

Из первого уравнения этой системы находим:

 $A_k = 0.$

Решая систему остальных трех уравнений, имеем:

$$B_{k} = \left(\frac{l}{k\pi}\right)^{2} \frac{2P}{l} \begin{cases} \frac{k\pi h}{l} + \left(\frac{k\pi h}{l}\right)^{2} \operatorname{cth} \frac{k\pi h}{l} \\ \frac{k\pi h}{sh^{2}} \frac{k\pi h}{l} - \left(\frac{k\pi h}{l}\right)^{2} + \frac{2}{e^{\frac{2k\pi h}{l}}} \end{cases}$$
$$+ \frac{2}{e^{\frac{2k\pi h}{l}} - 1} \left[\cos \frac{k\pi \xi}{l} - \frac{l-\xi}{l} - (-1)^{k} \frac{\xi}{l} \right]$$

$$C_{k} = -B_{k}, \quad D_{k} = \frac{2Ph^{2}}{l} - \frac{\cos \frac{k\pi\xi}{l} - \frac{l-\xi}{l} - (-1)^{k} \frac{\xi}{l}}{\sinh^{2} \frac{k\pi h}{l} - \left(\frac{k\pi h}{l}\right)^{2}}$$

Компенсирующие напряжения будут выражаться формулами:

(2.21)

$$X_{x}^{"} = -\sum_{l}^{\infty} \left[B_{k}^{*} \left(\operatorname{sh} \frac{k\pi y}{l} + \frac{k\pi y}{l} \operatorname{ch} \frac{k\pi y}{l} \right) - D_{k}^{*} \left(2\operatorname{ch} \frac{k\pi y}{l} + \frac{k\pi y}{l} \operatorname{sh} \frac{k\pi y}{l} \right) \right] \cos \frac{k\pi x}{l},$$

$$\mathbf{y}_{\mathbf{y}}^{*} = -\sum_{l}^{\infty} \left[\mathbf{B}_{\mathbf{k}}^{*} \left(\operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} - \frac{\mathbf{k}\pi \mathbf{y}}{l} \operatorname{ch} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right) + \mathbf{D}_{\mathbf{k}}^{*} \frac{\mathbf{k}\pi \mathbf{y}}{l} \operatorname{sh} \frac{\mathbf{k}\pi \mathbf{y}}{l} \right] \cos \frac{\mathbf{k}\pi \mathbf{x}}{l},$$

$$X_{y}^{"} = -\sum_{l}^{\infty} \left[B_{k}^{*} \frac{k\pi y}{l} \operatorname{sh} \frac{k\pi y}{l} - D_{k}^{*} \left(\operatorname{sh} \frac{k\pi y}{l} + \frac{k\pi y}{l} \operatorname{ch} \frac{k\pi y}{l} \right) \right] \sin \frac{k\pi x}{l}$$

где

 $\mathbf{B}_k^* = \left(\frac{k\pi}{l}\right)^2 \mathbf{B}_k, \ \mathbf{D}_k^* = \left(\frac{k\pi}{l}\right)^2 \mathbf{D}_k \ .$

Применяя обозначения (2.11), выражения для окончательных напряжений можно написать в виде:

$$\begin{split} X_{x} &= -\frac{P}{2l} [\varphi_{1}(x+\xi,y) + \varphi_{1}(x-\xi,y) + \varphi_{2}(x+\xi,y) + \varphi_{2}(x-\xi,y)] + \\ &+ \frac{P}{l^{2}} \left[(l-\xi) [\varphi_{1}(x,y) + \varphi_{2}(x,y)] + \xi [\varphi_{1}(l-x,y) + \varphi_{2}(l-x,y)] \right] + \\ &+ \sum_{i}^{\infty} \left[B_{k}^{*} \left(\sinh \frac{k\pi y}{l} + \frac{k\pi y}{l} \cosh \frac{k\pi y}{l} \right) - D_{k}^{*} \left(2 \cosh \frac{k\pi y}{l} + \\ &+ \frac{k\pi y}{l} \sinh \frac{k\pi y}{l} \right) \right] \cos \frac{k\pi x}{l} + \\ &+ \frac{k\pi y}{l} \sinh \frac{k\pi y}{l} \right) \left] \cos \frac{k\pi x}{l} + \\ &+ \frac{P}{2l} [\varphi_{1} (x+\xi,y) + \varphi_{1}(x-\xi,y) - \varphi_{2} (x+\xi,y) - \varphi_{2}(x-\xi,y)] + \\ &+ \frac{P}{l^{2}} [(l-\xi)[\varphi_{1}(x,y) - \varphi_{2}(x,y)] + \xi [\varphi_{1}(l-x,y) - \varphi_{2}(l-x,y)]) + \\ &+ \sum_{i}^{\infty} \left[B_{k}^{*} \left(\sin \frac{k\pi y}{l} - \frac{k\pi y}{l} \cosh \frac{k\pi y}{l} \right) + D_{k}^{*} \frac{k\pi y}{l} \sinh \frac{k\pi y}{l} \right] \cos \frac{k\pi x}{l} + \\ &+ \sum_{i}^{\infty} \left[B_{k}^{*} \left(\sin \frac{k\pi y}{l} - \frac{k\pi y}{l} \cosh \frac{k\pi y}{l} \right) + D_{k}^{*} \frac{k\pi y}{l} \sinh \frac{k\pi y}{l} \right] \cos \frac{k\pi x}{l} + \\ &+ \sum_{i}^{\infty} \left[B_{k}^{*} \frac{k\pi y}{l} \sinh \frac{k\pi y}{l} - D_{k}^{*} \left(\sinh \frac{k\pi y}{l} + \frac{k\pi y}{l} \cosh \frac{k\pi y}{l} \right) \right] \sin \frac{k\pi x}{l} \cdot \end{split}$$

При пользовании таблицами функций 91, 92 и 93 напряжения (2.22) вычисляются так же легко, как и напряжения (2.12).

Р. А. Манукян

Таблица функций фі, ф2 и ф3

$\frac{x}{l} = 0$			$\frac{x}{l} = 0,1$				
y Î	φ ₁	φ2	φ3	y l	φ ₁	φ ₂	φa
0	20	- ~	0	0	0	0	0
0,05	12,76133		74 0	0,05	2,57308	1,55420	2,03744
0,10	6,41930	-6,314	77 0	0,10	3,23599	0,05225	3,18321
0,15	4,32217	4,166	21 0	0,15	2,01685	-1,05212	2,71098
0,20	3,28715	-3,080	45 0	0,20	2,65106	-1,42492	2,03536
0,25	2,67604	-2,419	52 0	0,25	2,32545	-1,46217	1,51091
0,30	2,27686	_1,971	72 0	0,30	2,03071	-1,33390	1,10586
0,35	1,99646	-1,646	22 0	0,35	1,86215	-1,25447	0,88264
0,40	1,79571	-1,397	66 0	0,40	0,70301	-1,12714	0,69757
0,45	1,64281	-1,200	88 0	0,45	1,57724	-1,00674	0,56194
0,50	1,52487	-1,040	83 0	0,50	1,47697	-0,89702	0,46013
0.55	1,43214	-0,907	89 0	0,55	1,39624	0,79852	0,32190
0,60	1,35804	-0,795	69 0	0,60	1,33055	-0,71065	0,32054
0,65	1,29822	-0,699	80 0	0,65	1,27681	-0,63242	0,27156
0,70	1,24945		04 0	0,70	1,23253	-0,56279	0,23182
0,75	1,20941		07 0	0,75	1,19387	-0,50083	0,19918
0,80	1,17628	-0,482	0 010	0,80	1,16534	-0,44558	0,17200
0,85	1,14876	-0,426	0	0,85	1,13984	-0,39633	0,14916
0,90	1,12577	-0,377	97 0	0,90	1,11846	-0,35237	0,12976
0,95	1,10652	0,334	82 0	0,95	1,10047	-0,31315	0,11329
1,0	1,09033	-0,296	60 0	1,0	1,08532	-0,20488	0,07294
	$\frac{N}{l}$	-=0,2			$\frac{\mathbf{x}}{l}$	=0,3	
<u>y</u> 1	φ1	φ	93	$\frac{y}{l}$	φ1	φ2	φ3
0	0	0	0	0	0	0	0
0,05	0,77566	0,68753	0,35218	0,05	0,37150	0,35287	0,11119
0,10	1,32658	0,81711	1,01757	0,10	0,69130	0,56380	0,38030
0,15	1,60763	0,50693	1,46431	0,15	0,93062	0,59038	0,67536

 $\frac{x}{l} = 0,2$

X	0.2
T	=0,5

<u>y</u> I	şı	92	φ3	
0,20	1,69759	0,10465	1,58742	
0,25	1,68478	-0,21159	1,50852	
0,30	1,62684	-0,41216	1,34717	
0,35	1,55418	-0.52072	1,16947	
0,40	1,48109	0,56724	1,00355	
0,45	1,41349	- 0,57499	0,85845	
0,50	1,35357	-0,55970	0,73507	
0,55	1,30152	-0,53137	0,63121	
0,60	1,25672	-0,49632	0,54391	
0,65	1,21847	-0,45838	0,47041	
0,70	1,18559	-0,41968	0,40801	
0,75	1,15824	-0,38235	0,35538	
0,80	1,13470	-0,34651	0,31018	
0,85	1,11473	-0,31294	0,27143	
0,90	1,09775	- 0,28157	0,23781	
0,95	1,08330	- 0,25275	0,20878	
1,00	1,07102	-0,22637	0,18341	

$\frac{y}{l}$	φı	φ2	φ3
0,20	1,08811	0,48375	0,89762
0,25	1,17893	0,32031	1,01664
0,30	1,19484	0,14911	1,00020
0,35	1,21314	0,01782	0,98147
0,40	1.23122	-0,08495	0,95454
0,45	1,21675	-0,15654	0,87554
0,50	1,19772	-0,20204	0,79218
0,55	1,17767	0,22802	0,71175
0,60	1,15675	-0,23887	0,63426
0,65	1,13753	-0,23990	0,56429
0,70	1,11992	-0,23404	0,50108
0,75	1,10412	-0,22371	0,44452
0,80	1,09008	-0,21062	0,39401
0,85	1,07776	-0,19605	0,34911
0,90	1,06698	-0,18085	0,30922
0,95	1,05760	-0,16564	0,27382
1,00	1,04949	-0,15083	0,24240

$$\frac{x}{l} = 0,4$$

$\frac{y}{l}$	φ ₁	92	φ ₃
0	0	0	0
0,05	0,224	9,21820	0,04763
0,10	0,43114	0,38683	0,17389
0,15	0,60798	0,47814	0,33886
0,20	0,74917	0,49262	0,50022
0,25	0,85523	0,44978	0,62907
0,30	0,93101	0,37469	0,71385
0,35	0,98234	0,28854	0,75593

$$\frac{x}{l} = 0.5$$

$\frac{y}{l}$ φ_1		φ ₂	φ ₃	
0,0	0	0	0	
0,05	0,15580	0,15327	0,02417	
0,10	0,30422	0,28509	0,09105	
0,15	0,43920	0,38033	0,18675	
0,20	0,55689	0,43346	6,29068	
0,25	0,65580	0,44763	0,38884	
0,30	0,73636	0,43144	0,46956	
0,35	6,80034	0,39524	0,52762	

Р. А. Манукян

 $\frac{x}{l} = 0.4$

Х	0 F	
1	=0.5	

v	1	1	
Ĩ	$\overline{\mathbb{V}}_1$	φ ₂	93
0,40	1,01536	0,20534	0,76314
0,45	1,03510	0,13253	0,74499
0,50	1,04596	0,07290	0,71021
0,55	1,05067	0,02642	0,66554
0,60	1,05137	-0,00826	0,61594
0,65	1,04966	-0,03304	0,56485
0,70	1,04655	-0,04984	0,51443
0,75	1,04273	-0,06062	0,46604
0,80	1,03861	-0,06633	0,42047
0,85	1,03451	-0,06873	0,37817
0,90	1,03058	-0,06862	0,33913
0,95	1,02691	-0,06686	0,30347
1,00	1,02356	-0,06372	0,27105

l	φ _i	ç.	φa
0,40	0.85013	0,34828	0,56281
0,45	0,88828	0,29823	0,57677
0.50	0,91715	0,24949	0,57416
0,55	0,93881	0,20501	0,55878
0,60	0,95493	0,16608	0,53431
0,65	0,96688	0,13302	0,50392
0,70	0,97570	0,10557	0,47011
0.75	0,98220	0,08317	0,43479
0,80	0,98696	0,06511	0,39923
0,85	0,99045	4,05070	0,36446
0,90	0,99302	0,03931	0,33108
0,95	0,99490	0,03037	0,29951
1,00	0,99628	0,02338	0,27001

 $\frac{x}{l} = 0.6$

 $\frac{x}{l} = 0.7$

y l	φ1	φ2	93	$\frac{y}{l}$	φı	Pa	\$3
0,0	0	0	0	0,0	0	0	0
0.05	0,11937	0,11811	0,01350	0,05	0;09857	0,09785	0,00783
0,10	0,23503	0,22536	0,05168	0,10	0,19503	0,18945	0,03027
0,15	0,34377	0,31316	0,10834	0,15	0,28743	0,26979	0,06442
0,20	0,44315	0,37660	0,17502	0,20	0,37420	0,33423	0,10616
0,25	0,53175	0,41476	0,24313	0,25	0,45423	0,38195	0,15092
0,30	0,60903	0,42992	0,30517	0,30	0,52163	0,40458	0,19063
0,35	0,67525	0,42635	0,35718	0,35	0,58654	0,42038	0,22942
0,40	0,73118	0,40898	0,39574	0,40	0,64922	0,43000	0,26540
0,45	0,77787	0,38257	0,42065	0,45	0,69945	0,42155	0,28932
0,50	0,81659	0,35113	0,43287	0,50	0,74308	0,40533	0,30493
0,55	0,84852	0,31769	0,43408	0,55	0,78097	0,38393	0,31281
0,60	0,87471	0,28440	0,42633	0,60	0,81308	0,35882	0,31337
0,65	0,89619	0,25264	0,41173	0,65	0,84075	0,33221	0,30826
0,70	0,91382	0,22322	0,39220	0,70	0,86437	0,30513	0,29850
0,75	0,92830	0,19662	0,36937	0,75	0,88452	0,27846	0,28527
0,80	0,94019	0,17252	0,34456	0,80	0,90166	0,25278	0,26957

 $\frac{x}{l} = 0.6$

$\frac{y}{l}$	φ1	1. 1.2	φa		
0,85	0,95001	0,15125	0,31888		
0,90	0,95811	0,13251	0,29312		
0,95	0,96483	0,11604	0,26789		
1,00	0,97040	0,10163	0,24362		

 $\frac{x}{l} = 0,7$ $\frac{y}{l}$ φ_1 92 93 0,85 0,91625 0,22847 0,25232 0,90 0,92866 0,20577 0,23425 0,95 0,93922 0,18476 0,21595 1,00 0,94819 0,16547 0,19786

 $\frac{x}{l} = 0.8$

X	-0.9
l	-0,0

y I	φı	φ ₂	φ3	yl	φ1	φ2	93
0,0	0,	0	0	0,0	0	0	0
0,05	0,08660	0,08613	0,00439	0,05	0,08033	0,07998	0,00199
0,10	0,17181	0,16815	0,01707	0,10	0,15962	0,31353	0,01548
0,15	0,25434	0,24241	0,03665	0,15	0,23684	0,22768	0,01671
0,20	0,33308	0,30609	0,06111	0,20	0,31112	0,29020	0,02803
0,25	0,40713	0,35742	0,08809	0,25	0,38172	0,34272	0,04071
0,30	0,47588	0,39565	0,11527	0,30	0,44640	0,38144	0,05333
0,35	0,53894	0,42105	0,14062	0,35	0,50971	0,41461	0,06613
0,40	0,59618	0,43461	0,16261	0,40	0,56647	0,43408	0,07718
0,45	0,64763	0+43777	0,18021	9,45	0,61823	0,44359	0,08634
0,50	0,69354	0,43228	0,19299	0,50	0,66507	0,44426	0,09330
0,55	0,73423	0,41989	0,20089	0,55	0,70717	0,43749	0,09797
0,60	0,77003	0,40232	0,20421	0,60	0,74471	0,42461	0,10041
0,65	0,80140	0,38106	0,20349	0,65	0,77802	0,40709	0,10083
0,70	0,82878	0,35757	0,19946	0,70	0,80743	0,38614	0,09949
0,75	0,85260	0,33252	0,19257	0,75	0,83330	0,36290	0,09671
0,80	0,87325	0,30716	0,18371	0,80	0,85594	0,33832	0,09279
0,85	0,89112	0,28201	0,17341	0,85	0,87570	0,31319	0,08894
0,90	0,90654	0,25755	0,16218	0,90	0,89289	0,28815	0,08272
0,95	0,91984	0,23415	0,15049	0,95	0,90781	0,26366	0,07706
1,00	0,93128	0,21242	0,13868	1,00	0,92073	0,24012	0,07127

X	4	0
1	1	,Ų

$\frac{y}{l}$	φ ₁	92	φ ₃	y I	φ ₁	9 ₂	φa
0,0	0	0 -	ŋ	0,55	0,69830	0,44210	0
0,05	0,07838	0,07806	0	0,60	0,73636	0,43144	0
0,10	0,15580	0,15327	0	0,65	0,77028	0,41521	0
0,15	0,23136	0/22301	0	0,70	0,80033	0,39524	0
0,20	0,30422	0,28509	0	0,75	0,82685	0,37206	0
0,25	0,37368	0,33786	0	0,80	0,85013	0,34843	0
0;30	0,43920	0,38047	0	0,85	0,87051	0,32340	0
0,35	0,50036	0,41214	0	0,90	0,88828	0,29823	0
0,40	0,55690	0,43346	0	0,95	0,90374	0,27346	0
0,45	0,60870	0,44495	0	1,00	0.91715	0,24949	0
0,50	0,65579	0,44763	0			and a second	

Ленинградский политехнический институт им. М. И. Калияниа

Поступило 31 VIII 1953

ЛИТЕРАТУРА

 Голушкевич С. С. О равновесии тонких плит. Труды Высшего инженерно-строительвого училища В. М. Ф., вып. П. Л., 1942.

 Мусхелинивили Н. И. Некоторые основные задачи математической теории упругости, М.—Л., 1949.

Ռ. Հ. Մանուկյան

ԲԱՐՁՐ ՀԵԾԱՆՆԵՐԻ ՀԱՇՎԱՐԿԸ՝ ՆՐԱՆՑ ՎԵՐԻՆ ՆԻՍՏԻ ԿԵՏԵՐՈՒՄ ԿԻՐԱՌՎԱԾ ԿԵՆՏՐՈՆԱՑԱԾ ՈՒԺԵՐԻ ԱԶԴԵՑՈՒԹՅԱՆ ՏԱԿ

ԱՄՓՈՓՈՒՄ

Հոդվածում բերվում է աղատ հենված և ծայրերն ամբացված թարձր հեծանների (հեծաններ—պատեր) հավասարակչոու խյան խնդրի լուծումը նթանց վերին նիստի կետերում կիթառված կենարոնացած ուժերի աղդման դեպթում։ Բոլոր լուծուններն արտահայտված են երկու դումարելիների գումարի տեսքով, որոնցից առաջինն արտահայտված է վերջավոր տեսքով և պարունակում է լարվածային վիճակի բոլոր առանձնահատկությունները։ Երկրորդ գումարելին արտահայտված է Ֆուրյեի՝ շատ արագ զուդամիտող շարքով։ Հաշվունների դյուրության համար կաղմված են որոշ ֆունկցիաների աղյուսակներ, որոնց օգնությամը առանց մեծ դժվարության կարելի է հաշվել ոտացված լուծունների վերջավոր մասերը։ Ստացված լուծունների կիթառման իլյուստրացիայի համար բերված է կոնկրետ թվական օրինակ։