S Б Д Б Ч Ц Ч Ц Ч Ц Ч Ц Ч Ч Б З П Р В П Р В П Р В С Т И Я В К А Д Е М И И Н А У К А Р М Я Н С К О И С С Р

36-ра.-бшр., рб. 6. мырьб. аршир. V, № 2, 1952 Физ.-мат., естеств. и техн. науки

теория упругости

Л. К. Капанян

О кручении некоторых полых призматических стержней

Как известно, компоненты касательного напряжения по осям координат в сечении стержия, скручиваемого парами, приложенными по концам, будут [1]:

$$X_z = \frac{\partial \Phi}{\partial y}$$
, (1)

$$Y_z = -\frac{\partial \Phi}{\partial x}$$
, (2)

где Ф — функция напряжений, определяемая из уравнения

$$\nabla^2 \Phi = -2G\tau. \qquad (3)$$

Так как боковая поверхность стержия свободна от внешних усилий, функция Ф на внешнем и внутреннем контурах должна принимать постоянные значения.

Общее решение уравнения (3) в функции комплексных переменных z и z выражается в виде:

$$\Phi = -\frac{G\tau}{2}z\overline{z} + \varphi_1(z) + \overline{\varphi}_1(\overline{z}), \qquad (4)$$

где $\varphi_1(z)$ и $\overline{\varphi_1(z)}$ — сопряженные аналитические функции z и \overline{z} .

Пользуясь теоремой о циркуляции касательного напряжения, доказываем, что для двусвязной области функция $\phi_1(z)$ однозначна.

Задача о кручении призматического полого стержия постоянного поперечного сечения может быть решена, если известна функция, отображающая двусвязную область данного сечения на кольцо.

В некоторых случаях эту отображающую функцию можно определить следующим приближенным способом.

Пусть $z = \omega(\zeta)$ конформно отображает некоторую односвязную область плоскости z на внутреннюю или внешнюю область единичного круга в плоскости ζ . Начиная с некоторых $|\zeta| = \rho$ окружностям в плоскости ζ будут соответствовать замкнутые кривые в области z, весьма близкие к окружностям. Таким образом, $z = \omega(\zeta)$ можно рассматривать как функцию, приближенно отображающую

на кольцо двусвязную область, ограниченную по одному контуру произвольной кривой, а по другому—окружностью.

Введя в (4) $z = \omega(\zeta)$ [2], получим:

$$\Phi = -\frac{G\tau}{2}\omega(\zeta)\bar{\omega}(\zeta) + \varphi(\zeta) + \bar{\varphi}(\zeta). \qquad (5)$$

Функция φ(ζ) голоморфна в области кольца и разлагается в ряд Лорана:

$$\phi(\zeta) = \sum_{\kappa=0}^{\infty} a_{\kappa} \zeta^{\kappa} + \sum_{\kappa=1}^{\infty} \frac{b_{\kappa}}{\zeta^{\kappa}} . \qquad (6)$$

Для определения $\varphi(\zeta)$ пользуемся условиями на контуре, приняв на внешнем контуре

$$\Phi = 0$$
, (7)

а на внутреннем контуре

$$\Phi == A$$
. (8)

Рассмотрим кручение стержия, сечение которого эграничено извне произвольной кривой, а изнутри—окружностью.

Если функция $z = \omega(\zeta)$ конформно отображает внутренность векоторой односвязной области плоскости z на единичный круг плоскости ζ , то она представляется степенным рядом:

$$\omega(\zeta) = \sum_{\kappa=1}^{\infty} C_{\kappa} \zeta^{\kappa}, \qquad (9)$$

где Ск — постоянные коэффициенты (комплексные или вещественные).

Точкам единичного круга $\zeta = t_0 = e^{i\theta}$ соответствуют точки, лежащие на внешнем контуре области плоскости z. Возьмем внутри круга окружность $\zeta = t_1 = \rho_1 e^{i\theta}$ с таким радиусом ρ_1 , чтобы соответствующая ей замкнутая кривая на плоскости z была достаточно близка к окружности, и примем эту кривую за внутренний контур сечения (фиг. 1),

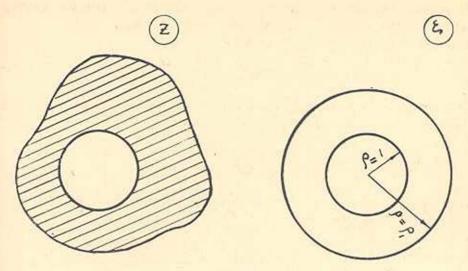
Подставив (9) и (6) при $\zeta = t_0$ и $\zeta = t_1$ в (7) и (8), получим:

$$\sum_{\kappa=0}^{\infty} a_{\kappa} e^{\kappa i \delta} + \sum_{\kappa=1}^{\infty} b_{\kappa} e^{-\kappa i \delta} + \sum_{\kappa=0}^{\infty} \overline{a}_{\kappa} e^{-\kappa i \delta} + \sum_{\kappa=1}^{\infty} \overline{b}_{\kappa} e^{\kappa i \delta} =$$

$$= \frac{G\tau}{2} \left(\sum_{\kappa=1}^{\infty} C_{\kappa} e^{\kappa i \delta} \right) \left(\sum_{\kappa=1}^{\infty} \overline{C}_{\kappa} e^{-\kappa i \delta} \right). \qquad (10)$$

$$\sum_{\kappa=0}^{\infty} a_{\kappa} \rho_{1}^{\kappa} e^{\kappa i \delta} + \sum_{\kappa=1}^{\infty} b_{\kappa} \rho_{1}^{-\kappa} e^{-\kappa i \delta} + \sum_{\kappa=0}^{\infty} \overline{a}_{\kappa} \rho_{1}^{\kappa} e^{-\kappa i \delta} + \sum_{\kappa=1}^{\infty} \overline{b}_{\kappa} \rho_{1}^{-\kappa} e^{\kappa i \delta} =$$

$$= \frac{G\tau}{2} \left(\sum_{\kappa=1}^{\infty} C_{\kappa} \rho_{1}^{\kappa} e^{\kappa i \theta} \right) \left(\sum_{\kappa=1}^{\infty} \overline{C}_{\kappa} \rho_{1}^{\kappa} e^{-\kappa i \theta} \right) + A. \tag{11}$$



фиг. 1.

Выполнив умножение рядов и приравнивая коэффициенты при одинаковых степенях е^{ків} в обеих частях равенств (10) и (11), получим систему уравнений:

$$\begin{split} a_0 + \, \bar{a}_0 &= \frac{G\tau}{2} \bigg(\sum_{\tilde{m}=1}^\infty C_m \overline{C}_m \bigg), \\ a_0 + \, \bar{a}_0 &= \frac{G\tau}{2} \bigg(\sum_{m=1}^\infty C_m \overline{C}_m \, \rho_1^{2m} \bigg) + A \,, \\ a_\kappa + \, \bar{b}_\kappa &= \frac{G\tau}{2} \bigg(\sum_{m=1}^\infty C_{m+k} \overline{C}_m \bigg), \\ b_\kappa + \, \bar{a}_\kappa &= \frac{G\tau}{2} \bigg(\sum_{m=1}^\infty \overline{C}_{m+k} \, C_m \bigg), \\ a_\kappa \, \rho_1^\kappa + \bar{b}_\kappa \, \rho_1^{-\kappa} &= \frac{G\tau}{2} \bigg(\sum_{m=1}^\infty C_{m+k} \, \bar{C}_m \, \rho_1^{2m+k} \bigg), \\ b_\kappa \, \, \rho_1^{-\kappa} + \, \bar{a}_\kappa \, \rho_1^\kappa &= \frac{G\tau}{2} \bigg(\sum_{m=1}^\infty \overline{C}_{m+k} \, C_m \, \rho_1^{2m+k} \bigg). \end{split}$$

Решая эту систему, получим:

$$A = \frac{G\tau}{2} \left[\sum_{m=1}^{\infty} C_m \bar{C}_m - \sum_{m=1}^{\infty} C_m \bar{C}_m \rho_1^{2m} \right], \tag{12}$$

$$a_{\kappa} = \frac{\int\limits_{-\infty}^{\infty} C_{m+k} \overline{C}_{m} \left[\rho_{1}^{2m+\kappa} - \rho_{1}^{-\kappa} \right]}{\rho_{1}^{\kappa} - \rho_{1}^{-\kappa}} , \qquad (13)$$

$$b_{\kappa} = \frac{G\tau}{2} \frac{\sum_{m=1}^{\infty} \overline{C}_{m+k} C_m \left[\rho_1^{2m+k} - \rho_1^{\kappa} \right]}{\rho_1^{-\kappa} - \rho_1^{\kappa}} . \tag{14}$$

Таким образом, функцин $\varphi(\zeta) = \varphi_1(z)$, а значит и Φ , полностью определены, следовательно, при известных коэффициентах C_κ , задача решена.

Этим же способом решается задача о кручении стержня с поперечным сечением, ограниченным извие окружностью, а изнутри произвольной кривой, при этом для отображения пользуемся функцией $z = \omega(\zeta)$, конформно отображающей внешность некоторой односвязной области на внешность единичного круга.

В том случае, когда внешний контур сечения—правильный многоугольник, функция ω(ζ) определяется из формулы Кристофеля Шварца:

$$\omega(\zeta) = K \int_{-\zeta}^{\zeta} \frac{d\zeta}{(1-\zeta^n)^{2n}} , \qquad (15)$$

где п - число сторон многоугольника,

К - постоянный параметр.

Раскладывая в (15) подинтегральную функцию в ряд и интегрируя, получим:

$$\omega(\zeta) = K \left[\zeta + \frac{2}{n(n+1)} \zeta^{n+1} + \frac{2(n+2)}{n^2(2n+1)2!} \zeta^{2n+1} + \cdots \right]. \quad (16)$$

Если в (16) удержать лишь конечное число членов, то получим полином, приближенно отображающий область, ограниченную извне правильным многоугольником, а изнутри—окружностью, на кольцо, у которого внешний радиус $\rho = 1$, а внутренний— $\rho = \rho_1$,

$$\omega(\zeta) = K \sum_{\kappa=0}^{\lambda} C_{nk+1} \zeta^{nk+1},$$
(17)

где х — число членов полинома,

Спк+1 — вещественные коэффициенты.

Решение числовых примеров для квадратного и шестнугольного сечений показало, что при числе членов полинома (17) $\lambda = 7$, внешний контур сечения практически близок к прямолинейному многоугольнику,

а внутренний—при $|\zeta| = \rho_1 \leqslant \frac{1}{2}$ является замкнутой кривой, у которой разница между наибольшим и наименьшим расстоянием от центра составляет менее 2%.

Имея в виду (17), выражения (12), (13) и (14) можно представить так:

$$A = \frac{G\tau K^2}{2} \left[\sum_{m=0}^{k} C_{mm+1}^2 - \sum_{m=0}^{k} C_{mm+1}^2 \rho_1^{2(mm+1)} \right], \quad . \tag{18}$$

$$a_{nk} = \frac{\sum_{k=0}^{k} C_{n(m+k)+1} C_{mn+1} \left[\rho_1^{n(2m+k)+2} - \rho_1^{-nk} \right]}{\rho_1^{nk} - \rho_1^{-nk}}, \quad (19)$$

$$b_{nk} = \frac{\sum_{k=0}^{\lambda} C_{n(m+\kappa)+1} C_{mn+1} \left[\rho_{1}^{n(2m+\kappa)+2} - \rho_{1}^{n\kappa} \right]}{2 \rho_{1}^{-n\kappa} - \rho_{1}^{n\kappa}}.$$
(20)

Пример 1. Сечение ограничено извне квадратом, а изнутриокружностью (фиг. 2).

Возьмем функцию $\omega(\zeta)$ в виде суммы семи членов ряда (16); при п = 4 имеем:

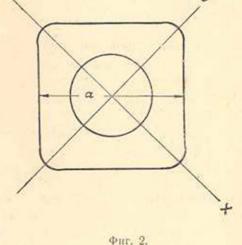
$$z=\omega(\zeta)=K[\zeta+0,1\zeta^5+0,041667\zeta^9+$$

+0,024038 ζ^{13} +0,016084 ζ^{17} +
+0,011719 ζ^{21} +0,004331 ζ^{25}]. (21)

Коэффициент при седьмом члене полинома (21) взят менее соответствующего коэффициента ряда (16) и вычислен так, чтобы устранить кривизну в

точке
$$\left(\mathbf{r}=\frac{a}{2}\cdot\mathbf{\phi}=45^{\circ}\right)$$
 внеш-

него контура, где касательное



напряжение принимает максимальное значение, а наличие кривизны искажает величину этого напряжения.

Параметр K определяется из условия, что точке $\left(r=\frac{a}{2}\right)$, $\varphi=45^{\circ}$ на плоскости z соответствует точка ($\rho=1,\;\theta=45^{\circ}$) на плоскости ζ .

$$K = 0.539768 a$$
. (22)

Определив коэффициенты а_{4к} и b_{4к} функции φ(ζ) по формулам (19) и (20), вычисляем напряжения в точках внешнего и внутреннего контуров из выражения

$$T_{n} - iT_{s} = 2i e^{i\sigma} \left[-\frac{G\tau}{2} \bar{\omega} \left(\overline{\zeta} \right) + \frac{\varphi_{1} \left(\zeta \right)}{\omega'(\zeta)} \right], \qquad (23)$$

где T_n и T_s — проекции касательного напряжения на направления внешней нормали и касательной к контуру в рассматриваемой точке, α — угол, образованный положительным направлением нормали в давной точке контура с осью ох.

Значения напряжений в долях от Ста приведены в таблице 1.

		Таблица	
0	p	Ts	Tn
0	1	0,315199	0
45"	1	0,685530	0
0	1/2	0,219952	0
45"	1/2	0,317697	0

Для двусвязного контура крутящий момент вычисляется по формуле:

$$M_{Kp} = -2A_0 F_0 + 2AF + 2 \iint \Phi dF$$
, (24)

где A_0 и A — значения функции напряжений Φ на внешнем и внутреннем контурах сечения (в нашей задаче принято $A_0 = 0$),

F₀ и F — площади, ограниченные внешним и внутренним контурами. Двойной интеграл последнего слагаемого распространен на площадь сечения за вычетом внутренней полости.

В рассматриваемом полом сечении получим:

Для сравнения приведем величину крутящего момента для стержня квадратного сплошного поперечного сечения по точному решению

$$M_{\rm Kp} = 0.1406$$
 Gra⁴.

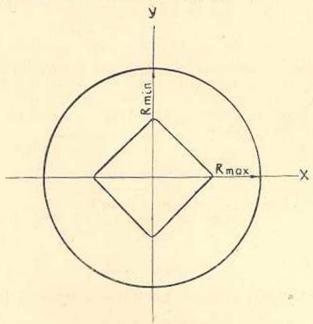
Пример 2. Сечение ограничено извне окружностью, а изнутри квадратом (фиг. 3).

Функцией, отображающей внешность правильного многоугольника на внешность единичного круга, будет:

$$\omega(\zeta) = K \left[\zeta + \frac{2}{n(n-1)} \zeta^{1-n} + \frac{n-2}{n^2(2n-1)} \zeta^{1-2n} + \cdots \right]. \quad (25)$$

Взяв полином из четырех первых членов ряда (25), при n=4, получим функцию, достаточно точно отображающую область, ограниченную изнутри квадратом, а извне—окружностью, на кольцо, у которого внутренний радиус $\rho=1$, а внешний $\rho=\rho_1=2$.

$$z = \omega(\zeta) = K \left[\zeta + 0.166667 \zeta^{-3} + 0.017857 \zeta^{-7} + 0.005681 \zeta^{-11} \right].$$
 (26)



Фиг. 3.

Точкам ($\rho=2$, $\theta=0$) и ($\rho=2$ и $\Theta=45^\circ$) на плоскости ζ соответствуют точки ($r=R_{max}$, $\phi=0$) и ($r=R_{min}$, $\phi=45^\circ$) на плоскости z, где R_{max} и R_{min} — максимальное и минимальное расстояния точек внешнего контура сечения от центра, которые отличаются между собой менее чем на $2^{\circ}/_{0}$.

Параметр K из (26) выразим через
$$R_{cp} = \frac{R_{max} + R_{min}}{2}$$
 ,

тогда $K = 0,499960 R_{cp}$.

Коэффициенты функции φ(ζ) определяются тем же способом, как в предыдущем случае.

Напряжения (в долях от Gt Rep.), вычисленные по формуле (23), приведены в таблице 2.

Крутящий момент вычисляем по формуле (24) и выражаем в зависимости от среднего радиуса окружности внешнего контура

$$M_{\kappa p} = 1,460354 \, Gr \, R_{\kappa p}^4$$
.

Для цилиндрического сплошного стержня круглого поперечного сечения величина крутящего момента

$$M_{KP} = 1,5708 \, \text{Git R}^4$$
.

		Габлица	
θ		T _*	Tn
0	1	2,006073	0
45"	1	0,220578	0
0	1/2	0,988767	0
45	1/2	1,009405	0

Ослабление от квадратного отверстия в круглом сечении составляет 7°/о.

Ереванский политехнический институт им. К. Маркса

Поступило 10 111 1952

ЛИТЕРАТУРА

- 1. Лейбензон Л. С. Курс теории упругости. М.-Л., 1947.
- 2. Мусхелишвили Н. И. Некоторые задачи теории упругости. М.-Л., 1935.

լ. Կ. Կապանյան

ՄԻ ՔԱՆԻ «ՍՆԱՄԵՋ ՊՐԻԶՄԱՏԻԿ ՁՈՂԵՐԻ ՈԼՈՐՄԱՆ ՄԱՍԻՆ

UUTONONPU

Սնամեջ պրիզմատիկ ձողերի ոլորման խնդիրը ճնարավոր է լուծել, եթե հայանի է այդ ձողի հատվածքը ներկայացնող երկկապ տիրույթը օղակի վրա կոնֆորմ ձևով արտապատկերող ֆունկցիան։

Հոդվածում ընթված է երկկապ տիրույթները օգակի վրա կոնֆորմ ձևով արտապատկերելու մոտավոր եղանակը, երը հայտնի է միակապ տիբույթը շրջանի վրա արտապատկերելու ֆունկցիան։ Այդ եզանակը օգտագործված է սնամեջ պրիզմատիկ ձողերի ոլորման խնդրի լուժման համար, երը ձողի հատվածջի արտաջին եղրագիծը կանոնավոր բազմանկյուն է, իսկ ներջինը՝ սահմանափակ շառավիղով շրջանագիծ, և ընդհակառակը։

Լուծված օրինակներում արվում են լարումները և կոչաությունները որոշելու համար հաշվարկային րանաձևեր երկու մասնավոր դեպքում՝ ա) երբ ձողի հատվածքի արտաքին եզրագիծը քառակուսի է, իսկ ներքինը՝ շրջանագիծ, և թ) երբ հատվածքի արտաքին եզրագիծը շրջանագիծ է, իսկ ներքինը՝ քառակուսի։