SEQUALSE 20340000 000 96506650666 04096060666 известия академии наук армянской сср

Зра-бир., рб. L перий, артор. V. No 2, 1952 Физ.-мат., естеств. и техн. науки

математика

Т. М. Тер-Микаэлян

К непрерывности однолистных функций в замкнутых областях, ограниченных некоторыми спрямляемыми кривыми

В настоящей статье рассматривается характер непрерывности в замкнутом круге |w| < 1 функции w = f(z), конформно отображающей круг |w| < 1 на область D, ограниченную некоторой спрямляемой кривой.

В общем виде этот вопрос до конца разрешен М. А. Лаврентьевым [1], который ввел для этого понятие относительного расстояния ρ (z_1 , z_2) между двумя точками z_1 и z_2 произвольной ограниченной области D, положив

$$\rho(z_1, z_2) = \min \{\rho_1(z_1, z_2), \rho_2(z_1, z_2)\},\$$

где ρ_1 — нижная граница длин линий, содержащихся в D и соединяющих точки z_1 и z_2 , а ρ_2 — нижняя граница длин линий, разбивающих область D на две связанные области и отделяющих точки z_1 и z_2 от точки z=0 (z=0 \in D). Граничной точкой z области D M. А. Лаврентьев называет каждую последовательность z_1 , z_2 , ... точек D, имеющую все свои предельные точки на границе Γ области D и такую, что

$$\lim_{n_* m \to \infty} \rho (z_n, z_m) = 0.$$

Относительное расстояние ρ ($z^{(1)}$, $z^{(2)}$) между двумя граничными точками $z^{(1)} = \{z_n^{(1)}\}$ и $z^{(2)} = \{z_n^{(2)}\}$ определяется как $\lim \rho (z_n^{(1)}, z_n^{(2)})$; если оно равно нулю, то точки $z^{(1)}$ и $z^{(2)}$ считаются идентичными.

Так, введенное метризованное понятие граничной точки совпадает с понятием простого конца Каратеодори.

При этих обозначениях М. А. Лаврентьев доказывает следующую теорему.

Пусть функция w = f(z), f(0) = 0 отображает круг |w| < 1 на область D, содержащую внутри себя круг |z| < 1. Если z_1 и z_2 —две любые точки области D (граничные или внутренние) и w_1 и w_2 — точки единичного круга, соответствующие им при отображении w = f(z), то имеет место следующее двойное неравенство

$$e^{-\frac{K_{1}}{\rho^{2}(z_{1}, z_{2})}} < |w_{1} - w_{2}| < K \sqrt{\rho(z_{1}, z_{2})}, \tag{1}$$

где K — абсолютная константа, K_1 — константа, зависящая лишь от диаметра d области D.

В дальнейшем, методом близким к методу, предложенному М. А. Лаврентьевым [1], указанное двойное неравенство уточняется для следующего частного вида областей.

Обозначим через D(q) произвольную однолистную, односвязную область, содержащую внутри себя круг |z| < 1, ограниченную спрямляемой кривой Γ , удовлетворяющей следующему условию: отношение длины l (γ) произвольной дуги γ границы Γ к длине d (γ) ее хорды ограниченно одной и той же константой q, не зависящей от дуги γ , $\frac{l(\gamma)}{d(\gamma)} < q$,

если только $l\left(\gamma \right) < \frac{l\left(\Gamma \right)}{2}$, где $l\left(\Gamma \right)$ — длина границы Γ .

Для областей D (q) доказываются следующие две теоремы.

Теорема 1. Если на границе области D (q) дана одна дуга γ_z длины ϵ , то при конформном отображении w=f(z) области D (q) на круг |w| < 1, дуге γ_z границы области D (q) соответствует на окружности |w| = 1 дуга γ_w , длина η которой удовлетворяет неравенствам

$$M \epsilon^{60q^2} < \eta < 2\pi \epsilon^{\frac{\pi}{2\pi - 2/q}},$$
 (2)

где M — константа, зависящая от длины l (Г) границы Г и числа q-При этом верхняя оценка точная в том смысле, что показатель при в не может быть понижен.

Теорема 2. Пусть точка z_0 области D (q) отстоит от границы области на расстоянии ε . Тогда при конформном отображении w = f(z), f(0) = 0, области D (q) на единичный круг |w| < 1 точка $w_0 = F(z_0)$, соответствующая точке z_0 , отстоит от окружности |w| = 1 на расстоянии h, которое удовлетворяет неравенствам

$$M \epsilon^{60q^2} < h < 6\pi\epsilon^{\frac{\pi}{2\pi - 2/q}},$$
 (3)

где M зависит от l (Γ) и числа q. Правая оценка точная в указанном в теореме Γ смысле.

В правых частях неравенств (2) и (3) уточняется для этого частного вида областей общая оценка М. А. Лаврентьева: показатель $\frac{1}{2}$ при ϵ в (1) заменяется показателем $\frac{\pi}{2\pi-2/q}$, который больше $\frac{1}{2}$

и стремится к $\frac{1}{2}$, когда $q \to \infty$, т. е. когда мы рассматриваем

произвольные области, ограниченные спрямляемыми кривыми.

Переписав неравенство (3) в виде

$$\frac{1}{360} \; h^{2 \left(\; 1 \; - \; \frac{1}{\pi q} \; \right)} \; \; \leqslant \epsilon \; \leqslant \frac{1}{M} \; \; h^{\frac{1}{60q^3}}$$

и заметив, что для круга |w| < 1 функцией Грина с полюсом в точке w = 0 будет функция $\ln |w|$, мы можем сформулировать теорему 2 в следующем виде:

Теорема 2'. Линии уровня функции Грина области D(q) с полюсом в точке z=0, на которых функция принимает значение $\ln (1-h)$, 0 < h < 1, удалены от границы области D(q) на расстояние не мень-

mee
$$\frac{1}{360}$$
 h $^{2\left(1-\frac{1}{eq}\right)}$ и не большее M_1 h $^{\frac{1}{60q^2}}$, где M_1 зависит от $I\left(\Gamma\right)$ и q.

Сформулируем предварительно некоторые понятия и теоремы, которыми мы воспользуемся при доказательстве теорем 1 и 2.

Пусть область D ограничена жордановой кривой Γ и на Γ задана конечная система попарно непересекающихся дуг γ_1 , ..., γ_n . Рассмотрим гармоническую в D функцию и (z), принимающую значение 1 во внугренних точках дуг γ_i и значение 0 в прочих точках границы Γ . Такая функция всегда существует [2]. Гармонической мерой $\omega(\Sigma_{\Gamma_i}$, z, D) дуг γ_i ,..., γ_n границы Γ области D в точке z называется значение в точке z указанной гармонической функции и (z) [3]. Если мы отобразим функцией w = f(z), $f(z_0) = 0$, $z_0 \in D$, область D на круг |w| < 1, то сумма длин дуг окружности |w| = 1, соответствующих при этом отображении дугам γ_1 ,..., γ_n , будет равна 2π и (z_0) [4].

Заменим теперь дуги γ_1 , ..., γ_n также попарно непересекающимися дугами γ_1^* ,..., γ_n^* , лежащими вне области D и обозначим через D* область, содержащую внутри себя область D, ограниченную дугами γ_1^* ,..., γ_n^* и границей Г. Как гласит принцип расширения области [5], если $z_0 \in D$, то

$$\omega (\Sigma \gamma_i, z_o, D) \geqslant \omega (\Sigma \gamma_i^*, z_o, D^*).$$

Геометрически это значит, что, если мы отобразим функциями: $w=f(z), \ f(0)=0, \ u \ w=f^*(z), \ f^*(0)=0$ соответственно области D и D^* на круг |w|<1, то сумма длин дуг окружности |w|=1, соответствующих дугам $\gamma_1,..., \gamma_n$, не меньше суммы длин дуг той же окружности, соответствующих дугам $\gamma_1^*,..., \gamma_n^*$.

Приведем, наконец, одно неравенство, принадлежащее Р. Неванлинна [6].

Пусть γ —дуга жордановой границы Γ области D и $z_o \in D$. Соединим точку z_o с произвольной точкой A дуги γ гладкой кривой L и пусть длина этой кривой от точки A до точки $z_t \in L$ есть t, а расстояние от точки z_t до дополнения $\Gamma - \gamma$ дуги γ до границы Γ

равно s (*l*). Если ω (γ , z, D) означает гармоническую меру дуги γ в точке $z \in D$ и m (*l*) означает минимум ω в пересечении D с кругом $(z-z_t)\frac{s(l)}{e}$, e=2, 71..., то

$$\frac{\mathrm{d}\,\mathrm{m}\,(l)}{\mathrm{d}\,l} < -4\,\frac{\mathrm{m}\,(l)}{\mathrm{s}\,(l)}\,,\tag{4}$$

где под $\frac{\mathrm{d}\;\mathrm{m}}{\mathrm{d}\;l}$ понимается нижняя производная.

Перейдем к доказательству правой части неравенства (2), переписав его в виде

$$\omega\left(\,\gamma,\,0,\,D\left(q\right)\right)\!<\!\epsilon^{\,\frac{\pi}{2\,\pi\,-\,2/q}}\,.$$

Возьмем для этого на γ такую точку z^* , чтобы окружность K с центром в точке z^* и радиуса $\frac{z}{2}$ содержала дугу γ внутри себя. Без ограничения общности мы можем считать, что точка z^* расположена на отрицательной части действительной оси. Пусть γ^* —дуга окружности K, лежащая внутри области D (q) и разбивающая D (q) на две односвязные области, из которых одна— D^* содержит точку z отделяет в области D(q) точку z от точки z^* . В силу принципа расширения области ω (γ , 0, D) ω (γ^* , 0, D^*).

Обозначим через \widetilde{D}^* дополнение области D^* до расширенной плоскости. Так как граница Γ^* области D^* есть жордановая кривая, то \widetilde{D}^* есть односвязная область, содержащая внутри себя точку $z=\infty$. Пусть K_r — окужность с центром в точке z^* и радиуса г. Кривая Γ^* выделяет на окружности K_r счетное множество интервалов, лежащих в области \widetilde{D}^* . Обозначим через α_r те из них, которые отделяют в области \widetilde{D}^* точку $z=\infty$ от точки z^* . Покажем, что длина каждого из интервалов α_r не меньше $\frac{2\,\mathrm{f}}{\mathrm{q}}$. Действительно, обозначим через C и F концы интервала α_r . Длина дуги CF границы Γ , содержащей точку z^* , не меньше $2\,\mathrm{r}$; следовательно, длина хорды CF окружности K_r не меньше $\frac{2\,\mathrm{f}}{\mathrm{q}}$ и, тем более, длина интервала α_r не меньше $\frac{2\,\mathrm{f}}{\mathrm{q}}$.

Совершим теперь замену переменной, положив $z' = 2 \frac{z-z^*}{\epsilon}$ и обозначим через γ' , Γ' , D' соответственно образы γ^* , Γ^* , D^* . Окруж-

ность К перейдет при этом в единичную окружность |z'|=1, а дуга γ^*- в дугу γ' этой окружности. При этом, если D' есть дополнение D' до расширенной плоскости, то каждый интервал α_r окружности K_r радиуса r и с центром в точке z'=0, лежащий внутри области D' и отделяющий в области D' точку z'=0 от точки $z'=\infty$, по длине не меньше 2 r/q.

Если расстояние от точки z^* до точки z=0 было равно r_o , то точка z=0 переходит в точку $\frac{2r_o}{\epsilon}$ на действительной оси и

$$\omega\left(\gamma^{s},\;0,\;\;D^{s}\right)=\omega\;\left(\;\gamma',\;\frac{2r_{o}}{\epsilon}\;,\;D'\;\right).$$

Совершим теперь преобразование инверсии и обозначим через ξ полученную переменную. При этой инверсии область D' перейдет в область D_{ξ} , лежащую внутри единичного круга, граница которой состоит из дуги γ' единичного круга и из жордановой кривой γ_{ξ} , лежащей внутри единичного круга, причем концы дуги γ_{ξ} совпадают с концами дуги γ' . При этом точка $\xi=0$ лежит вне области D_{ξ} . Наконец, точка $\frac{2r_0}{s}$ переходит в точку $s/2r_0$ и

паконец, точка — переходит в точку в/2г, и

$$\omega\bigg(\,\gamma',\,\frac{2r_0}{\epsilon}\,,\,\,D'\,\bigg)=\omega\,\bigg(\gamma'\,,\,\frac{\epsilon}{2r_0}\,,\,D\epsilon\,\bigg).$$

Кроме того, если D_ξ обозначает дополнение области D_ξ и α_i обозначает любой из тех интервалов окружности K_r с центром в точке $\xi=0$ и радиуса r, которые лежат внутри области D_ξ и отделяют в

области
$$\bar{D}_{\xi}$$
 точку $\xi=0$ от точки $\xi=\infty$, то длина α_r не меньше $\frac{2r}{q}$.

Нам достаточно установить— какова форма границы области D_{ϵ} , удовлетворяющей только что высказанным свойствам, при которой гармоническая мера $\omega\left(\gamma',\frac{\epsilon}{2r_o},\,D_{\epsilon}\right)$ достигает своего максимума или, что то же самое, при которой гармоническая мера $\omega\left(\gamma_{\epsilon},\,\frac{\epsilon}{2r_o},\,D_{\epsilon}\right)$ достигает своего минимума.

Положим для этого $\varsigma=\xi^{\pi-\frac{1}{q}}$. В силу указанного свойства до-

полнения D_ξ область D_ξ перейдет при этом преобразовании в однолистную область D_ζ , лежащую внутри единичного круга | ζ | < 1, границей которой служит дуга единичной окружности и дуга γ_ζ , соответствующая дуге γ_ζ , лежащая внутри единичного круга, причем концы γ_ζ лежат на единичной окружности и точка $\zeta=0$ не принад-

лежит области D_{ξ} . Как это доказывается у P. Неванлинна [7] минимум гармонической меры дуги γ_{ξ} в точке, лежащей на отрезке (0,1), достигается для случая, когда кривая γ_{ξ} совпадает с отрезком (—1,0). В области D_{ξ} этому отрезку соответствует угол с вершиной в точке $\xi = 0$, раствора $\frac{2}{q}$, биссектрисой которого служит отрицательная часть действительной оси.

Итак, нам надо вычислить гармоническую меру дуги γ' единичной окружности в точке $\epsilon/2r_o$ относительно области D_ϵ , состоящей из единичного круга, из которого удален указанный выше угол.

Для этого возведем
$$\xi$$
 в степень $\delta = \frac{\pi}{2\left(\pi - \frac{1}{q}\right)}$; тогда наша об-

ласть перейдет в единичный полукруг, опирающийся на мнимую ось и лежащий в правой полуплоскости, а точка $\epsilon/2r_o$ перейдет в точку $(\epsilon/2r_o)^b$ на действительной оси, и нам остается вычислить гармоническую меру полуокружности в точке $(\epsilon/2r_o)^b$ относительно указанного полукруга. Последняя равна [8] величине $2(1-\Theta/\pi)$, где Θ —угол, под которым виден из точки $(\epsilon/2r_o)^b$ отрезок (-i,+i).

Следовательно

$$\begin{split} \omega(\gamma,0,D) &\leqslant 2\bigg(1-\frac{2}{\pi}\ \text{arctg}\ \bigg(\frac{2r_o}{\epsilon}\bigg)^{\delta}\ \bigg) = \frac{4}{\pi}\left(\frac{\pi}{2}-\text{arctg}\ \bigg(\frac{2r_o}{\epsilon}\bigg)^{\delta}\ \bigg) = \\ &= \frac{4}{\pi}\ \text{arctg}\ \bigg(\frac{\epsilon}{2r_o}\bigg)^{\delta} \leqslant \frac{4}{\pi}\left(\frac{\epsilon}{2r_o}\right)^{\delta} < \epsilon^{\delta}\ , \end{split}$$

так как
$$\delta > \frac{1}{2}$$
 и потому $\pi 2^{\epsilon} > 3,14.\sqrt{2} > 4$ и $r_0 > 1$.

Выясним теперь степень точности полученной нами верхней оценки.

Из приведенных рассуждений следует, что указанная верхняя оценка достигается для следующего случая. Рассмотрим окружность К

радиуса
$$\frac{\epsilon}{2}$$
 и с центром в точке $z=-1$. Проведем из точки $z=-1$

две бесконечные полупрямые, так, чтобы они образовывали угол α раствора 2/q, биссектрисой которого служит часть x < -1 действятельной оси. Обозначим через γ дугу окружности K, лежащую вне

угла
$$\alpha$$
, через ϵ_i —длину дуги γ , равную $\epsilon\left(\pi-\frac{1}{q}\right)$ и через D — об-

ласть, содержащую точку z=0 и ограниченную дугой γ и частями полупрямых, лежащих вне окружности K.

Тогда

$$\omega\left(\gamma,0,D\right) = \frac{4}{\pi 2^{\delta}} \epsilon^{\delta} = \frac{4}{\pi 2^{\delta} \left(\pi - \frac{1}{q}\right)^{\delta}} \epsilon_{1}^{\delta} < \epsilon_{1}^{\delta},$$

где
$$\delta = \frac{\pi}{2\pi - \frac{2}{q}}$$

Обозначим через D_R часть области D, лежащую внутри круга |z| < R. При в достаточно малом область DR содержит внутри себя круг, близкий к кругу |z| < 1. Далее, если К_г - окружность радиуса г с центром в точке z = -1, то длина дуги α_r окружности K_r , лежащей вне области D_R , равна 2r/q, а длина $l(\gamma_r)$ куска γ_r границы области DR, лежащей внутри окружности Кг, равна

$$2r-2\frac{\varepsilon}{2}+2\pi\frac{\varepsilon}{2}-\frac{2}{q}\frac{\varepsilon}{2}=2r+\varepsilon\Big(\pi-1-\frac{1}{q}\Big).$$

Так как при достаточно малом г > в длина хорды дуги 2, близка к длине дуги α_r , то мы можем считать, что $\frac{l(\gamma_r)}{d(\gamma_r)} = q$. Итак, область D_r есть область типа D(q).

Так как радиус R может быть сколь угодно велик, то полученная нами верхняя оценка в $\frac{\pi}{2\pi-2/q}$ является точной в том смысле, что показатель при є для областей типа D(q) не может быть

понижен. Доказательство левой части неравенства (2) проведем в несколько шагов.

1. Покажем, прежде всего, что если $r < \frac{s}{2(2a+1)}$, то на расстоянии г от произвольной точки А границы Г в области D(q) существует точка В, которая служит центром окружности радиуса $s = \frac{r}{2a}$, принадлежащей области D(q).

Действительно, проведем окружность К с центром в точке А и радиуса г. Кривая Г выделяет на окружности К счетное множество интервалов, содержащихся в области D(q); среди пих есть хоть один, разбивающий область D(q) на две односвязные части, из которых одва содержит точку z=0, а граница другой содержит точку А. Если при любом положении точки В на этом интервале окруж-

ность K_s с центром в точке B и радиуса $s=\frac{r}{2q}$ будет пересекать гра-

ницу Г, то существует на границе Г дуга у, содержащая внутри себя точку А и не имеющая с окружность точку А и не имеющая с окружностью К, иных общих точек, кроме

$$l(\tilde{\gamma}) > 2r - 2s = 2r - \frac{r}{q} = r\left(2 - \frac{1}{q}\right) > r$$

И

$$d(\widetilde{\gamma}) \leqslant 2s = \frac{r}{q} \, .$$

Следовательно

$$\frac{\widetilde{l(\gamma)}}{d(\widetilde{\gamma})} > \frac{\tau}{\frac{\tau}{q}} = q,$$

что неверно, так как каждая из точек С и F удалена от точки A на расстояние не большее

$$r + \frac{r}{2q} = r\left(1 + \frac{1}{2q}\right) < \frac{s}{2(2q+1)} \cdot \frac{2q+1}{2q} = \frac{s}{4q}$$

и, следовательно, каждая из дуг СА и FA по длине не больше $\frac{s}{4}$, а

нотому н $l(\tilde{\gamma}) < \frac{s}{2}$.

2. Докажем теперь следующее предложение. Пусть L обозначает дугу границы Г длины I. Будем катить вдоль границы Г окружность К радиуса s так, чтобы окружность все время принадлежала замкнутой области D (q). Пусть L'—кривая, которую опишет центр окружности К, когда окружность при движении вдоль Г будет иметь общие точки с дугой L. Покажем, что длина кривой не больше 2I + 2πs.

Заменим для этого границу Γ близкой к ней ломанной и обозначим через β тот из двух углов, образованных соседними звеньями ломанной, внутри которого проходит окружность K, когда она катится по ломанной Γ_k так, чтобы лежала внутри той из двух областей, ограниченных ломанной Γ_k , которая не содержит бесконечно удаленной точки. Обозначим через L_k те из звеньев ломанной Γ_k , которых коснется окружность K при движении вдоль Γ_k и будем считать соседними два последовательных звена системи L_k . Когда окружность K катится по двум соседним звеньям системы L_k , угол между которыми есть β , ее центр опишет кривую длины равной сумме длин этих звеньев плюс вличина $s(\beta-\pi)$, если $\beta > \pi$, и не большей суммы длин этих звеньев, если $\beta < \pi$. Таким образом, длина кривой L', которую опишет центр окружности K, когда она катится

вдоль L_k , не больше длины L_k плюс $\sum_{\beta > \pi} s(\beta - \pi)$ для всех углов меж-

ду двумя соседними звеньями ломанной L_k , для которых $\beta > \pi$.

Ясно, что
$$\sum_{\beta>\pi} (\beta-\pi)$$
 не может быть больше

$$2\pi\left(\frac{\text{длина } L_k}{\text{длина } K}+1\right) < 2\pi\left(\frac{l}{2\pi s}+1\right) = \frac{l}{s}+2\pi,$$

так как ломанную Γ_k можно взять сколь угодно близкой по длине к границе Γ .

Итак, длина L' не больше

$$l + s\left(\frac{l}{s} + 2\pi\right) = 2l + 2\pi s.$$

3. Положим теперь
$$r_0 = \frac{\pi}{4(2q+1)}$$
 .

Соединим отрезком L_1' точку z=0 с ближайшей точкой той части границы Γ , которая лежит вне окружности K_o радиуса r_o и с дентром в произвольной фиксированной точке A дуги γ .

Возьмем окружность K_{s_0} с центром в точке z=0 и радиуса $s_0=\frac{r_0}{4q}$. Окружность $K_{s_0} \subset D$, ибо область D(q) содержит внутри себя круг |z|<1 и $s_0<1$. Будем сдвигать центр окружности K_{s_0} вдоль L_1 до тех пор, пока K_{s_0} не коснется границы Γ . При этом центр опишет отрезок L_1 , длина которого меньше s. Далее будем катить окружность K_{s_0} вдоль границы Γ , пока центр ее не совпадет с некоторой точкой B_{s_0} на окружности K_{s_0} . При этом центр окружности опишет кривую L_2 , длина которой не больше

$$2s + 2\pi s_o = 2s + \frac{\pi^2}{8q(2q+1)}.$$

Покажем, что при этом движении окружность Кs, все время принадлежит области D(q). Для этого будем катить окружность Kso вдоль Г пока это возможно, не выходя за пределы области D(q). Если мы остановимся раньше, чем центр Кь, попадет на окружность K_0 , то окружность K_{S_0} будет иметь с Γ не менее двух общих точек, причем две из них, С и F, будут ограничивать дугу САF границы Г, содержащую внутри себя точку А и не имеющую с Ква иных общих точек, кроме своих концов С и F. Ясно при этом, что хорда СF принадлежит области D(q) и разбивает D(q) на две области D_1 и D_2 , из коих D_1 содержит внутри себя точку z=0, а граница другой содержит точку А. Если длина дуги СГ, дополняющей дугу САГ до Г, не больше s/2, то хорда СГ не может быть меньше π/q , ибо область D(q) содержит круг |z| < 1, а область D_1 содержит точку z = 0. Это неверно, так как длина СF не больше диаметра окружности K_{S_0} , равного $2s_0 = \frac{r_0}{2q} = \frac{\pi}{8q(2q+1)} < \frac{\pi}{q}$. Если же длина дуги CAF меньше s/2, то она во всяком случае не больше

$$2r_o - 2s_o = 2r_o - \frac{r_o}{2q} = r_o \left(2 - \frac{1}{2q}\right) > r_o$$
, $q > 1$.

В то же время длина хорды CF не больше $2s_0 = r_0/2q$ и, следовательно, отношение длины дуги CAF к длине ее хорды CF неменьше 2q, что тоже невозможно.

4. Построим теперь кривую L_3 , соединяющую точку A с точкой B_{t_0} и удовлетворяющую следующему условию: если длина этой кривой от точки A до точки z_t равна l, то точка z_t служит центром окружности радиуса $s(l) = l/15q^2$, целиком принадлежащей области D(q).

Для этого окружность K_{s_0} радиуса $s_a = r_0/4q$ и с центром в точке B_{r_0} будем катить вдоль Γ до тех пор, пока ее центр не окажется лежащим в точке $B_{r_0/2}$ на окружности радиуса $r_0/2$ и с центром в точке A, что возможно в силу п. 1. Проведем радиус, соединяющий центр $B_{r_0/2}$ с той точкой окружности, с которой Γ имеет общуюточку (или с любой из них, если их несколько). Возьмем окружности,

ность $K_{80/2}$ с центром в точке $B_{10/2}$ и радиуса $\frac{s_0}{2} = \frac{r_0}{8q}$ и сдвинем

центр этой окружности вдоль проведенного радиуса, пока окружность $K_{50/2}$ не коснется границы. После этого будем катитьэту окружность вдоль границы, пока ее центр не окажется лежащим в точке $B_{10/4}$ на окружности радиуса $s_{0/4}$ и с центром в точке
А. Заменим теперь окружность $K_{50/2}$ окружностью $K_{50/4}$ с центром
в той же точке, но радиуса $s_{0/4}$ и сдвинем центр этой окружности
вдоль радиуса, соединяющего точку $B_{10/4}$ с ближайшей точкой
границы, пока окружность $K_{50/4}$ не коснется границы Γ .

Если обозначить через L₃ кривую, которую опишут центры окружностей, то продолжая так шаг за шагом мы получим в пределе кривую, оканчивающуюся в точке A.

Пусть z—некоторая точка этой кривой, служащая центром окружности радиуса $r_0/2^n$ q. Вычислим длину l этой кривой от точки A до точки z. Эта длина равна сумме длин прямодинейных участков кривой L_3 , равной

$$\frac{r_0}{2^{n+1}q} + \frac{r_n}{2^{n+2}q} + \cdots = \frac{r_0}{2^{n} \, q} \, ,$$

плюс сумма длин криволинейных участков, которая не больше

$$2l_1 + 2\pi \frac{r_0}{2^{\pi}q} + 2l_2 + \frac{r_0}{2^{n+1}q} + \dots = 2(l_1 + \iota_2 + \dots) + 2\pi \frac{r_0}{2^{n-1}q}$$

где l_1 —длина того куска границы Γ , по которому катится окружность радиуса $r_0/2^n$ q, l_2 —длина того куска Γ , по которому катится окружность радиуса $r_0/2^{n+1}$ q и т. д. Следовательно, сумма $l_1+l_2+\cdots$ не больше длины куска границы Γ от точки Λ дө точки границы, ближайшей к точке z, и потому не больше

$$\left(\frac{r_0}{2^{n-2}} + \frac{r_0}{2^n q}\right) q$$
.

Итак,

$$l \leqslant \frac{r_0}{2^n q} + 2\pi \frac{r_0}{2^{n-1}q} + \frac{r_0 q}{2^{n-3}} + \frac{r_0}{2^{n-1}} = r_0 \frac{8q^2 + 2q + 4\pi + 1}{2^n q}.$$

Таким образом,

$$S(l) > \frac{r_0}{2^n q} > \frac{l}{8q^2 + 2q + 4\pi + 1} > \frac{l}{15 q^2},$$

так как $q > \frac{\pi}{2}$ и, следовательно, $2_q + 4\pi + 1 \leqslant 7_q^2$; здась s(l)—расстояние от точки z_l кривой L_3 до границы Γ .

Следовательно, длина $l(L_3)$ всей кривой L_3 , соответствующая случаю n=2, не больше

$$I(L_3) \leqslant r_0 \, \frac{8q^2 + 2q + 4\pi + 1}{2^2q} = \frac{\pi}{4(2q+1)} \cdot \frac{8q^2 + 2q + 4\pi + 1}{4q} \cdot \frac{}{}$$

5. Обозначим через L* кривую, соединяющую точку A с точкой z=0 и составленную из кривых L_3 , L_2 и L_1 . Если z_t —точка кривой L*, t —длина этой кривой от точки A до точки z_t и s(t) — расстояние от точки A до границы Γ , то при $z \in L_3$ имеем $s(t) > \frac{t}{15q^2}$, а при $z \in L_2 + L_1$ имеем

$$s(l) = s_0 = \frac{r_0}{4q} = \frac{\pi}{16q(2q+1)} = p(q).$$

Заменим теперь кривую L* гладкой кривой L, соединяющей точку z=0 с точкой A, длина $l(\widetilde{L})$ которой равна сумме длин кривых $L_1+L_2+L_3$ и которая удовлетворяет следующему условию: если l—длина куска этой кривой, отсчитанная от точки A до некоторой точки z и s(l)—расстояние от этой точки до границы Γ , то при $\varepsilon \leqslant l \leqslant l(L_3)$ имеем $s(l) \geqslant \frac{l-a}{15q^2}$, а при $l(L_2) \leqslant l(\widetilde{L})$ имеем $s(l) \geqslant p(q) - a$, где a—произвольно малое число, меньшее ε .

Проинтегрируем теперь неравенство (4) вдоль кривой \widetilde{L} в пределах от ε до $I(\widetilde{L})$. Получим

$$-4\int\limits_{\epsilon}^{l(\widetilde{L})}\frac{\mathrm{d}l}{\mathrm{s}(l)}$$
 $\omega(\gamma,0,\mathrm{D}(q))\geqslant\mathrm{m}(l(\widetilde{L}))>\mathrm{m}(\epsilon)\mathrm{e}$ $=$

TO

$$\begin{aligned} & 60q^2 \int\limits_{\epsilon}^{l(L_3)} \frac{al}{l-a} - 4 \int\limits_{l}^{l(\widetilde{L})} \frac{al}{p(q)-a} \\ &= m(\epsilon) \ e \qquad , \ e \qquad = \\ &= m(\epsilon) e^{60q^3 | n(\epsilon-a)|} \cdot e^{-\left\{60q^2 l(L_3) + \frac{4l(L_1 + L_2)}{p(q)-a}\right\}} = \\ &= m(\epsilon) \ (\epsilon - a)^{60q^2} \cdot e^{-N(q, l(L_1 + L_2), l(L_3))}. \end{aligned}$$

Следовательно, ввиду произвольности а,

$$\begin{split} \omega(\gamma,0,D(q)) &\geqslant m(\epsilon) \epsilon^{60q^2} \ e^{-N}. \end{split}$$
 Так как при этом $\mathit{l}(L_3) \leqslant \frac{\pi}{4(2q+1)} \cdot \frac{8q^2 + 2q + 4\pi + 1}{4 \ q}$,
$$\mathit{l}(L_1) \leqslant S, \ \mathit{l}(L_2) \leqslant 2s + \frac{\pi^2}{8q \ (2q+1)}, \\ e^{-N(q,\mathit{l}(L_1 + L_2),\mathit{l}(L_3))} &\geqslant \mathit{M}_1(s_1q). \end{split}$$

6. Докажем теперь, что

$$m(\varepsilon) > m_1(q)$$
,

где m₁(q) зависит лишь от q.

Для этого заметим, что точка z_{ϵ} кривой L_a , отстоящая от A на расстояние не большее ϵ , служит центром окружности радиуса $s(\epsilon) = \epsilon/15q^2$ принадлежащей области D(q), а $m(\epsilon)$ есть минимум гармонической меры дуги γ в точках круга K, концентрическим с предыдущим и радиуса $s(\epsilon)/e$. Далее, относительная длина $p(\gamma)$ дуги γ в области D(q) не меньше ϵ/q и $m(\epsilon)$ только уменьшится, если заменить область D(q) той ее связанной частью D', которая лежит внутри круга радиуса $q(2\epsilon + \epsilon/15q^2)$ с центром в точке A и содержит круг K.

Растянем теперь всю плоскость в

$$\frac{1}{s(\epsilon) - s(\epsilon)/e} = \frac{15q^2}{\epsilon} \cdot \frac{e}{e - 1}$$

раз и обозначим через у*, К*, D* соответственно образы у, К, D' Тогда расстояние каждой точки круга К* до границы области D* будет не больше

$$2\left(2\epsilon + \frac{\epsilon}{15q^2}\right)q\frac{15q^2}{\epsilon}\frac{e}{e-1} = N_1(q)$$

и, наконец, относительная длина ρ (γ *) дуги γ * в области D*—не меньше $\frac{\epsilon}{q} \frac{15q^2}{\epsilon} \frac{e}{e-1} = 15q \frac{e}{e-1}$.

В силу левой части неравенства (1)

$$m(\epsilon) > e^{\frac{-K_1(a)}{p^2(\gamma^*)}} > e^{\frac{-K_1(N_1(q))}{15^2q^2\left(\frac{e}{e-1}\right)^2}}$$

откуда $m(\varepsilon) > m_1(q)$.

Таким образом мы доказали и левую часть неравенства (2).

Для доказательства теоремы 2 нам надо будет предварительно доказать следующую теорему.

Теорема 3. Пусть D_w — область, содержащая точку w=0 и ограничения дугой окружности |w|=1 и кривой γ_w принадлежащей кругу |w|<1, концы которой лежат на окружности |w|=1. Если диаметр кривой γ_w равен d<1, то гармоническая мера $\omega(\gamma_w$, 0, D_w) дуги γ_w в точке w=0 относительно области D_w не больше $\frac{4}{}$ d:

$$\omega\left(\gamma, 0, D_{w}\right) \leqslant \frac{4}{\pi} d.$$
 (5)

Эта теорема является обратной к теореме М. А. Лаврентьева 191, согласно которой

$$\frac{1}{4\pi} d \leqslant \omega(\gamma_w, 0, D_w). \tag{6}$$

Для доказательства будем считать, что точка w' дуги γ , лежащая на окружности |w|=1, совпадает с точкой w=1. Так как расстояние от точки w' до любой точки γ_w не больше d, то дуга γ целиком попадет внутрь окружности радиуса d и с центром в точке w=1.

Рассмотрим теперь окружность K, ортоганальную окружности w = 1, проходящую через точку w = 1 - d, центр которой лежит в $d^2 = d(2-d)$

точке
$$w^* = 1 + \frac{d^2}{2(1-d)}$$
 и радиус которой равен $\frac{d(2-d)}{2(1-d)}$.

Если окружность К пересекает окружность [w] = 1 в точках $w_1 = e^{i\phi}$ и $w_2 = e^{-i\phi}$, то по правилу решения прямоугольных треугольников

$$\sin \varphi = \frac{d(2-d)}{d^2-2d+2}$$
 if $\cos \varphi = \frac{2(1-d)}{d^2-2d+2}$.

Ясно, что кривая γ лежит внутри окружности К. Если обозначить через γ^* дугу окружности К, лежащую внутри окружности |w|=1 и через D^* —область, содержащую точку w=0 и ограниченную дугой γ^* и дугой окружности |w|=1, то в силу принципа расширения области,

$$\omega(\gamma, 0, D) \leqslant \omega(\gamma^*, 0, D^*).$$

Для вычисления последней гармонической меры отобразим область D* преобразованием

$$\frac{1+\xi}{1-\xi} = \frac{(e^{-i\phi}-z)(e^{i\phi}-1+d)}{(e^{i\phi}-z)(e^{-i\phi}-1+d)}$$

на полукруг, опирающийся на отрезок (-1, +1) действительной оси и лежащей в верхней полуплоскости. При этом дуга γ^* перейдет в отрезок (-1, +1), а точка w = 0 - в точку

$$\xi_0 = i \frac{(1-d)\sin\varphi}{1-(1-d)\cos\varphi} = i \frac{d^2 - 3d + 2}{2-d}$$

на мнимой оси.

Гармоническая мера $\omega(\gamma^*,0,D^*)$ равна гармонической мере отрезка (-1,+1) в точке ξ_0 полукруга, а последняя равна величине

$$\frac{2}{\pi}\left(\Theta-\frac{\pi}{2}\right)$$
,

где Θ —угол, под которым виден отрезок (-1, +1) из точки ξ_0 [8]. Таким образом,

$$\begin{split} \omega(\gamma^{\bullet},0,\,D^{*}) &= \frac{2}{\pi} \left(\, 2 \, \text{arc tg} \, \frac{1}{|\xi_{0}|} - \frac{\pi}{2} \, \right) = \frac{4}{\pi} \, \text{arc tg} \, \frac{1 - |\xi_{0}|}{1 + |\xi_{0}|} = \\ &= \frac{4}{\pi} \, \text{arc tg} \, \frac{d}{2 - d}, \end{split}$$

откуда

$$\omega(\gamma^*,0,D^*) \leqslant \frac{4}{\pi} \quad \frac{d}{2-d} \leqslant \frac{4}{\pi} \, d.$$

Таким образом теорема 3 полностью доказана.

С помощью оценок (6) и (5) можно доказать неравенство (3).

Докажем сначала правую часть этого неравенства. Заметим для этого, что при доказательстве правой части неравенства (2) было доказано, что если A—точка границы Γ и γ^* —дуга окружности радиуса ϵ и ϵ центром ϵ точке ϵ дазбивающая область ϵ ϵ односвязные области, из которых одна— ϵ 0 содержит точку ϵ 1 граница другой содержит точку ϵ 3.

$$\omega(\gamma^*, 0, D^*) < (2\epsilon)^{\frac{\pi}{2\pi - 2/q}}$$
 (7)

Отобразим теперь область D(q) на единичный круг |w| < 1 так, чтобы точка z=0 перешла в точку w=0. При этом дуга γ^* перейдет в дугу γ_w , принадлежащую кругу |w| < 1, концы которой лежат на окружности |w| = 1. Обозначим через D_w область,

содержащую точку w=0 и ограниченную дугой единичной окружности и дугой γ_w . Так как при этом $\omega(\gamma^*,0,D^*)=\omega(\gamma_w,0,D_w)$. то из неравенств (7) и (6) получаем

$$h < 4\pi(2\epsilon)^{\frac{\pi}{2\pi - 2/q}} < 6\pi\epsilon^{\frac{\pi}{2\pi - 2/q}}$$

где h-диаметр континуума үw.

Докажем теперь левую часть неравенства (3).

Для этого соединим точку w_0 с окружностью |w|=1 двумя отрезками длины h+d, совокупность которых мы обозначим через γ_w , так, чтобы они отсекали на окружности |w|=1 дугу длины не больше h и обозначим через D_w область, содержащую точку w=0 и ограниченную дугой окружности |w|=1 и дугой γ_w . Так как диаметр кривой γ_w равен h+d, то согласно неравенству (5) имеем

$$\omega(\gamma_w, 0, D_w) \leq \frac{4}{\pi}(h+d).$$
 (8)

Кривой γ_w соответствует в области D(q) жордановая дуга γ^* области D(q), концы которой лежат на границе области D(q), а области D_w соответствует в области D(q) область D^* , ограниченная жордановой кривой и при этом

$$\omega(\gamma_w, 0, D_w) = \omega(\gamma^*, 0, D^*).$$
 (9)

Остается вычислить последнюю гармоническую меру.

Для этого обозначим через z^* один из концов дуги γ^* , лежащий на границе Γ области D_q и через f—наиболшее расстояние от точки z^* до прочих точек дуги γ^* .

Проведем окружность К радиуса f+b, b>0, и с центром в точке z^* . Соединим точку z^* с точкой z=0 гладкой кривой L, удовлетворяющей свойствам, описанным в п. 5 и заметим, что расстояние от точек L до границы Γ области D(q) совпадает с расстоянием от этих точек до дополнения дуги γ^* до границы области D^* . Пусть l_0 —длина кривой L от точки z^* до последней точки встречи кривой L с окружностью K. Ясно, что $l_0>$ ϵ . Соединим точку z' с любой точкой дуги γ^* гладкой кривой L' длины l_0 и обозначим через L^* кривую, составленную из кривой L' и куска кривой L от точки z' до точки z=0. Пронитегрируем неравенство (4) вдоль

$$\omega(\gamma^*, 0, D^*) > m(l_0) l_0^{60q^2} e^{-N(q, \ell(L^*))}$$

кривой L^* в пределах от l_0 до $l(L^*)$. Также, как и в п. 5, получим

и так как $l_{\scriptscriptstyle 0} >$ ϵ , то

$$\omega(\gamma^*, 0, D^*) \gg m(l_0) \epsilon^{60q^2} M_1(s_1q),$$

где $M_1(s_1q)$ зависит только от s и q.

Нам остается оценить $m(l_b)$ снизу. Для этого заметим, что расстояние от точки z' до точек границы области D*, не принадлежащих дуге γ^* , не меньше $\frac{l_0}{15 q^2} + \frac{f}{15 q^3}$, относительная длина дуги γ^* в области D* не меньше f/q и расстояние от точки z* дуги у* до точки z' равно f+b. Так как b может быть взято сколь угодно малым,

то также, как и в п. 6, можно доказать, что
$$^{\rm ESTD}_{\rm CHWY} m(l_0) > m_1({\bf q}).$$

Итак,

$$\omega(\gamma^*, 0, D^*) > M_2 \epsilon^{60q^2},$$
 (10)

где M₂ зависит лишь от s и q. В силу (8), (9) и (10) имеем

$$h+a>\frac{\pi M_2}{4}\,\epsilon^{60q^2}$$

и, так как "а" может быть взято сколь угодно малым, то

$$h \gg M \epsilon^{60q^2}$$
,

где М зависит лишь от в и q. Теорема полностью доказана.

Сектор математики и механики Академии наук Арминской ССР

Поступило 15 IV 1952

ЛИТЕРАТУРА

- 1. Лаврентьев М. А. ДАН СССР, IV, 5, 1936.
- 2. Неванлинна Р. Однозначные аналитические функции, ОГИЗ, 1941, стр. 29.
- 3. Неванлинна Р. Там же, стр. 32.
- 4. Неванлинна Р. Там же, стр. 13.
- 5. Неванлинна Р. Там же, стр. 70.
- 6. Неванлинна Р. Там же, стр. 84.
- Неванлинна Р. Там же, стр. 105.
- 8. Неванлинна Р. Там же, стр. 49.
- 9. Лаврентьев М. А. Труды Физико-математического института им. В. А. Стекаова, отдел математики, V, 1934, стр. 188.

Թ. Մ. Shr-Միքայհրյան

ՈՐՈՇ ՈՒՂՂԵԼԻ ԿՈՐԵՐՈՎ ՍԱՀՄԱՆԱՓԱԿՎԱԾ ՏԻՐՈՒՅՔՆԵՐՈՒՄ ՄԻԱԹԵՐԹ ՖՈՒՆԿՑԻԱՆԵՐԻ ԱՆԸՆԴՀԱՏՈՒԹՅԱՆ ՄԱՍԻՆ

UUTONONFU

 $z_{n\eta}$ if $u\delta n v d$ is a contribution of $v \in V = v \in V$ for $v \in V$ in $v \in V$ in $v \in V$ for $v \in V$ in $v \in V$ for $v \in$ ջրջանը կոնֆորմ կերպով այնպիսի [ուղղելի կորով սահմանափակված D(q) տիրույնի վրա արտապատկերող w=i(z) ֆունկցիայի անընդհատության բնույթը, որը բավարարում է հետևյալ պայմանին՝ Ր կորի ցանկացած գտղեզի հարաբերությունն իր լարի երկարությանը, անկախ գ ազևգից, սանմանափակ է զ հաստատունով։

Թևորեմ, Երև D(q) տիրույթի հղրի վրա տված է չ երկարության մեկ γ_t աղեղ, ապա w=f(z) կոնֆորմ կերպով D(q) տիրույթի |w|<1 չրջանի վրա, արտապատկերման ժամանակ D(q) տիրույթի նզրի γ_t աղեղին ծամապատասխանում է |w|=1 չրջանագծի վրա γ_w տղեղը, որի դ հրկարությունը բավարարում է նետևյալ անձավասարություններին.

Ms
$$^{60q^2}$$
 $< \eta < 2\pi \epsilon^{\frac{\pi}{2\pi-2/q}}$.

number M-p summanes ξ , hadadad Γ baph $l(\Gamma)$ behaves P inclined q

Նշված Թեորևմում աիրույթների մասնավոր գեպքի համար ձշաված են ակադեմիկոս Մ. Ա. Լավրենաևի ստացած ընդհանուր դնահասականները-