XI, № 5, 1978

УДК 616.12.002.234

Г. П. ИТКИН, В. Е. ТОЛПЕКИН, К. Л. МЕЛУЗОВ, Р. М. КУРГИНЯН

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАЗЛИЧНЫХ СТЕПЕНЕЙ ОСТРОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ

Отсутствие четких показаний и противопоказаний к применению вспомогательного кровообращения затрудняет ввод данного метода в широкую клиническую практику для лечения больных с острой сердечной недостаточностью. В этих условиях весьма заманчивой представляется возможность математического моделирования сердечно-сосудистой системы, которая исключает методические сложности эксперимента, факторы случайности и дает правильную оценку эффективности метода. В литературе известно большое число математических моделей, описывающих как отдельные, так и связанные звенья системы кровообращения, включающие экстраваскулярные факторы [2—4, 6, 8].

В лаборатории математического и физического моделирования ИТОиТ МЗ СССР разработана математическая модель системы кровообращения при различных степенях сердечной недостаточности. При построении модели мы первоначально изучали воздействия искусственного желудочка сердца (ИЖС) на центральную гемодинамику в условиях острой сердечной недостаточности. Эти вопросы можно рассматривать на относительно простой модели, включающей в себя модели большого и малого кругов кровообращения, правого и левого сердца. С этой целью была разработана и реализована на аналоговой вычислительной машине МН-18 математическая модель, в которой приняты следующие ограничения и допущения:

а) не учитывались быстротекущие процессы гемодинамики, связанные с пульсирующим характером кровотока; б) рассматривались только те процессы, которые включаются в общий гомеостаз в начальный период нарушения сократительной способности миокарда; в) уровень метаболизма в организме принят постоянным; г) система артериальных и венозных сосудов большого и малого круга объединены в соответствующие гипотетические резервуары.

Принятые допущения и ограничения позволили решать поставленные задачи на относительно простой модели, блок-схема которой представлена на рис. 1. Модель описывает замкнутую гемодинамику большого и малого жругов кровообращения, насосную функцию левого и правого сердца, контура управления сосудистым тонусом и сердцем; содержит 19 уравнений 4-порядка с нелинейностями типа ограничений и множителей. В модельном представлении кровь, вытекающая из левого желудочка и после прохождения по известным магистралям поступает с задержкой в венозный резервуар:

$$Q_b = \frac{1}{T_I P + 1} \cdot Q,$$

где Q—артериальный кровоток большого круга кровообращения или выброс крови левым сердцем; Q_b —венозный кровоток; T_I —постоянная времени большого круга кровообращения.

Аналогично будет выражаться и кровоток в малом круге кровооб-

ращения:

$$Q_b^{\mathtt{M}} = \frac{1}{T_{\mathtt{s}}P + 1} \cdot Q_n,$$

где $Q_b^{\rm M}$ —венозный кровоток малого круга; T_2 —постоянная времени малого круга.

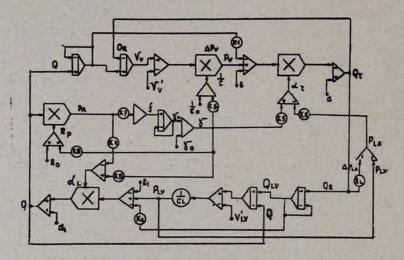


Рис. 1. Блок-схема модели острой сердечной недостаточности.

Поскольку артериальное давление малого круга в 5—6 раз меньше чем в большом круге, то на него существенное влияние оказывает давление в легочных венах и левом предсердии, что можно выразить следующим образом:

$$P_A^{M} = \Delta P_A^{M} + P_b^{M},$$

где P_A^M —давление в легочной артерии; ΔP_A^M —перепад давления в легочных артериях; P_b^M —давление в легочных венах.

Величина ΔP_A^{M} — определяется гидравлическим сопротивлением сосудов малого круга кровообращения и легочным кровотоком:

$$\Delta P_A^M = Q_n \cdot R_M$$

где Q_n — легочный артериальный кровоток; R_M — общее периферическое сопротивление малого круга. В идентичных условиях величину R_M можно принять постоянной.

Левый и правый желудочки выражены линейными функциями с ограничениями вида:

$$Q = L(P_{np} - b) + a$$

где Q — производительность желудочка; а и b — постоянные коэффициента; P_{np} — давление в предсердии, являющееся функцией венозного давления и притока; L — коэффициент усиления.

Давление в других областях системы кровообращения определялось соответствующими объемами крови и эластичностью сосудов. Коэффициент усиления по каждому желудочку выражался уравнением:

$$L = K\gamma \cdot \gamma - K_p \cdot P_A,$$

где $\gamma = \gamma_r + \gamma$ — сумма нервных и гуморальных факторов.

 P_{A} — артериальное давление; $K_{7} \cdot K_{p}$ — коэффициенты, определяющие сократительную способность сердца.

При этом падение насосной функции моделировалось уменьшением соответствующих коэффициентов Ку. На модели снимали статические и динамические характеристики системы при изменении Ку для левого и правого желудочков. Адекватность модели при переводе ее в состояние сердечной недостаточности была подтверждена физиологическими данными и результатами экспериментов на животных с искусственным сердцем.

На модели проведен сравнительный анализ методов управления лево-желудочкового шунтирования, основанных на стабилизации давления в предсердии и пропорциональном управлении. На рис. 2 представлены статические характеристки модели, отражающие зависимость основных переменных.

На модели снимали статические и динамические характеристики системы при изменении коэффициента передачи K_3 между нейрогуморальными факторами управления и сократительной способностью левого и правого сердца в зависимости от типа моделируемой недостаточности. Динамические характеристики, снятые на модели, сравнивались с характеристиками, полученными в экспериментах с искусственным сердцем при мгновенном снижении производительности левого и правого насосов.

Из рис. 2 видно, что при K₃≥0,6 сердечный выброс и давление в аорте не изменяются. Однако прогрессивно нарастает давление в левом предсердии и легочной артерии. Эта область (зона I) характеризуется компенсированной недостаточностью левого желудочка. Эта компенсация происходит за счет включения механизма Франка-Старлинга, который обеспечивает необходимый организму кровоток при большом диастолическом наполнении полости левого желудочка.

При дальнейшем уменьшении К3 от 0,6 до 0,25 сердечный выброс и

давление в аорте начинают постепенно снижаться. Эта область (зона II) характеризуется тем, что рабочая точка на кривой переходит в область насыщения (I) и, таким образом, механизм Франка-Старлинга отключается—при увеличении давления в предсердии сердечный выброс практически не изменяется. Вместе с тем, зона II характеризуется стабилизирующим действием нейро-гуморального канала управления. При значениях K₃ ≤ 0,25 нейро-гуморальный канал управления уже не может обеспечить стабилизацию кровотока и артериального давления в заданном диапазоне, и модель системы кровообращения переходит в состояние необратимого кардиогенного шока (зона III).

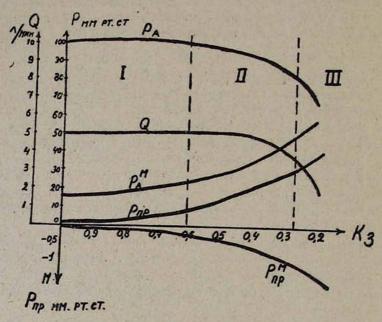


Рис. 2. Статические характеристики в условиях дозированной сердечной недостаточности.

 P_a — давление в аорте; P_a^{M} — давление в легочной артерии; $P_{\text{пр}}$ — давление в правом предсердии; $P_{\text{пр}}^{\text{M}}$ — давление в правом предсердии; Q — сердечный выброс.

На модели исследовали также корригирующее воздействие насоса вспомогательного кровообращения, подключенного параллельно левому желудочку при различной степени сердечной недостаточности. Для этого система уравнений дополнялась уравнением насоса:

$$\Sigma Q = Q + K_{10} \cdot Q_{H}$$

где Q—производительность сердца; Q_H —максимальная производительность насоса, равная 5 л/мин; K_{10} —коэффициент, характеризующий текущую производительность насоса; ΣQ —суммарная производительность сердца и насоса.

На рис. З представлены кривые мощности левого желудочка, снятые в условиях различной степени недостаточности. Кривая 1 характеризует мощность желудочка в зоне I, кривая 2—в зоне II, кривая 3—в зоне III. Как видно в зоне II мощность левого желудочка превышает исходную (до подключения насоса) при производительности 1,7 л/мин, а в зоне III—до производительности 2,3 л/мин. Вместе с тем известно [4, 7], что основным показателем эффективности шунтирования сердца является уменьшение его насосной функции за счет снижения перекачиваемого им объема крови.

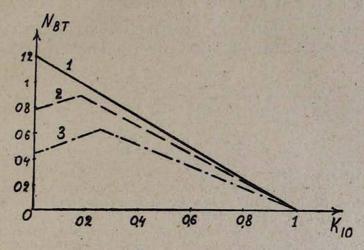


Рис. 3. Зависимость мощности левого желудочка от производительности шунта: 1—при компенсированной недостаточности, 2—при частично компенсированной недостаточности, 3—при декомпенсированной недостаточности.

Таким образом, исследования на математической модели показывают, что в условиях сердечной декомпенсации параллельное шунтирование левого желудочка может привести к увеличению его насосной функции в том случае, когда объем шунтирования менее 50% ударного выброса крови. В случае шунтирования всего ударного объема насосная мощность и внешняя работа сердца практически равна 0. В связи с этим при управлении насосом вспомогательного кровообращения необходимо учитывать степень сердечной недостаточности и в зависимости от этого оптимизировать производительность насоса.

Институт трансплантации органов и тканей МЗ СССР, г. Москва

Поступило 15/V 1977 г.

Գ. Պ. ԻՏԿԻՆ, Վ. Ե. ՏՈԼՊԵԿԻՆ, Կ. Լ. ՄԵԼՈՒՋՈՎ, Ռ. Մ. ԿՈՒՐՂԻՆՑԱՆ

ՍՈՒՐ ՍՐՏԱՅԻՆ ԱՆԲԱՎԱՐԱՐՈՒԹՅԱՆ ՄԱԹԵՄԱՏԻԿԱԿԱՆ ՄՈԴԵԼԸ, ՆՐԱ ԱՍՏԻՃԱՆԸ ԵՎ ՍՐՏԻ ՁԱԽ ՓՈՐՈՔԻ ՇՈՒՆՏԱՎՈՐՈՒՄԸ

Udhnhnid

Տրված է արյան ջրջանառության համակարդի մաթեմատիկական մոդելի նկարագրությունը, անց է կացված «ձախ փորոթ-աորտա» շունտավորման արդյունավետության հետադոտություն։

G. P. ITKIN, V. E. TOLPEKIN, K. L. MELOUZOV, R. M. KURGINIAN

MATHEMATICAL MODEL OF ACUTE CARDIAC INSUFFICIENCY, ITS DEGREE AND SHUNTING OF THE LEFT VENTRICLE

Summary

The authors give the mathematical model of circulatory system and the results of study of shunting efficiency, according to the scheme—left ventricle—aorta.

ЛИТЕРАТУРА

1. Гайтон А. В кн.: Физнология кровообращения. М., 1969. 2. Лищук В. А. В журнале Автоматика, 1967, 3, 27. 3. Петровский Б. В., Шумаков В. И. и др. Труды Межд. снмп. ИФАК по техническим и биологическим проблемам. Ереван, 1968, 65. 4. Шумаков В. И., Новосельцев В. Н. и др. Моделирование физиологических систем организма. М., 1971. 5. Шумаков В. И., Могилевский Э. В. и др. Кардиология, 1968, 11, 25. 6. Beneken E. Proc. of the 1-th Symp. of pulsativ blood flow, 1963, 11, 5, 7. Dennis C. et al. Circ. res. 1962, 10, 298. 8. Gradins F. et al. Bevav Sci. 1970, 1, 88.