վ. թ. ՍԿՈՐԻԿ, Ե. Ս. ՍԱՖՈՆՈՎԱ, Տ. Մ. ՄԱԶԻԿՈՎԱ, Մ. Ա. ՄԻԿՈՒՏԵՆՈԿ, Տ. Ցու. ՍՏՐԵԺՆԵՎԱ

ՍՐՏԱՄԿԱՆԻ ՉԲԱՐԴԱՑԱԾ ՓՈՐՁԱՐԱՐԱԿԱՆ ԻՆՖԱՐԿՏԻ ՆԱԽՆԱԿԱՆ ՇՐՋԱՆՆԵՐՈՒՄ ՈՐՈՇ ԲԻՈՔԻՄԻԱԿԱՆ ՑՈՒՑԱՆԻՇՆԵՐԻ ԳՆԱՀԱՏԱԿԱՆԸ

Udhnhnid

էջսպերիմենտում ուսումնասիրված են սրտամկանի չրարդացած փորձարարական ինֆարկտի վաղ շրջաններում բիորիմիական ցուցանիչները և Հայտնաբերված են նրանցից առավել ինֆորմատիվները վաղ և առավել ուշ շրջանների համար։

V. I. SKORIC, E. S. SAPHONOVA, T. M. MALIKOVA, M. A. MIKUTENOK, T. Yu. STREZHENOVA

TO VALUE OF SOME BIOCHEMICAL INDICES IN EARLY TERMS OF UNCOMPLICATED EXPERIMENTAL MYOCARDIAL INFARCTION

Summary

Biochemical indices in early terms of uncomplicated myocardial infarction are studied in experiment and revealed more informative ones for early and later terms.

УДК 612.014.46:612.14:612.172:612.65

В. А. КУЗЬМЕНКО

АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ И ЧАСТОТА СЕРДЦЕБИЕНИИ ПРИ ФАРМАКОЛОГИЧЕСКОМ ВЫКЛЮЧЕНИИ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ НА РАЗНЫХ ЭТАПАХ ОНТОГЕНЕЗА

Известно, что у взрослых людей и животных блокада тонических нервных влияний на сосуды и сердце вызывает падение среднего АД и сдвиги частоты сердцебнений (ЧС), зависящие ст ее исходной величны. Возрастные особенности таких реакций изучены недостаточно. Поэтому у 51 котенка 5 возрастных групп и у 15 взрослых кошек в условиях слабого уретанового наркоза (1 г на кг веса) мы изучали изменения АД и ЧС при введении в бедренную вену за 10—15 сек. 2,5% раствора пентамина (в дозе 20 мг/кг). Блокаду передачи возбуждения в симпатических и парасимпатических танглиях подтверждали отсутствием рефлекторных реакций и реакций на ваготомню.

В ходе постнатального онтогенеза отмечались фазные изменения пульсового давления и ЧС (табл. 1), нарастание АД. После введения пентамина у животных всех возрастных групп среднее АД вначале резко падало, но после достижения минимума увеличивалось в течение некоторого времени, затем задерживалось на временно устойчивом уровне и лишь после этого медленно возвращалось к исходному уровню вследствие ослабления блокирующего действия пентамина. После снятия нейрогенного тонуса сосудов, по-видимому, происходила приспособительная перестройка базового миогенного тонуса, перераспределение и увеличение объема циркулирующей крови. На этом фоне отсутствовали рефлекторные реакции АД и ЧС, котя реакции дыхания сохранялись. Относительные величины сдвигов АД, ЧС и пульсового давле-

Таблица 1 Изменения АД и ЧС вследствие блокады ганглиев вегетативной нервной системы

Возраст	Число опытов	Фон			Действие пентамина, °/ ₀					
					в момент наибольшего падения АД			во временно устойчивом состоянии		
		АД	пд	чС	АД	пд	чс	АД	пд	чс
1—2 дня	7	43 <u>+</u> 4	23±2	205±14	-23 <u>±</u> 3	—17±3	+1±2	_5 <u>+</u> 7	-15±9	+2+2
1 нед.	12	54 <u>+</u> 1	32 <u>+</u> 2	260±12	-35±3	-13 <u>+</u> 4	-3 <u>+</u> 4	-22±4	-16 <u>+</u> 7	-8±3
2 нед.	10	61 <u>+</u> 3	45 <u>+</u> 3	246±9	-39 <u>+</u> 3	-15 <u>+</u> 4	-4 <u>±2</u>	-28 <u>+</u> 8	-16 <u>+</u> 4	—11 <u>+</u> 3
1 мес.	11	94 <u>+</u> 3	43 <u>+</u> 2	200 <u>+</u> 8	-33 <u>+</u> 5	-11±5	0 <u>+</u> 4	-19 <u>+</u> 4	-10±4	-2±3
4 мес.	11	125 <u>+</u> 6	31 <u>±</u> 3	239 <u>+</u> 11	-31 <u>+</u> 4	+15±9	0 <u>±</u> 3	-18±3	-8±7	-8±4
Взрослые	15	138+3	- 64±3	185+6	-42±4	+9+4	0 <u>+</u> 4	_27 <u>+</u> 3	-34±4	-8 <u>+</u> 2

ния сразу после блокады тонических нервных влияний и в период установившегося равновесня деэфферентированной сердечно-сосудистой системы приведены в табл. 1.

По средним данным нейрогенный компонент тонуса периферических сосудов (по АД) в ходе развития организма претерпевал фазные изменения, которые коррелировали с величиной пульсового давления. По-видимому, происхождение тонических влиний на периферические сосуды обусловлено барорецепцией пульсаций крови, которые, как известно, играют ведущую роль в формировании афферентного потока от главных рефлексогенных зон. Уменьшение доли нейрогенного компонента тонуса сосудов может быть связано с увеличением удельного веса гормональной активности в пубертатном периоде. Сходные фазные возрастные изменения претерпевало время, в течение которого обычно развивалось блокирующее действие пентамина, свидетельствуя о вариациях функциональной подвижности Н-холинореактивных систем. Наибольшая скорость развития гипотонии (0,8±0,1 мин.) отмечена у 4-месячных котят и взрослых кониек.

При разделении животных каждой из возрастных групп по уровию АД в фоне условно на гипертоников и гипотоников было отмечено, что относительная величина нейрогенного компонента тонуса сосудов в 2 группах приблизительно одинакова. Так, например, у взрослых кошек (с АД=161±3 и 123±4 мм рт. ст.) максимальное снижение составило ссответственно 40 и 42, а снижение во временно устойчивом состоянии—27%. Можно заключить, что индивидуальные колебания АД обусловлены сочетанным изменением нейрогенной и базовой составляющих тонуса периферических сосудов.

Время компенсаторной перестройки деэфферентированной гемодинамической цепи по мере взросления сокращалось (от 5±1 у новорожденных котят до 3±0,4 мин. у взрослых), что может являться проявлением созревания миогенных механизмов ее саморегуляции. Компенсаторный прирост АД по абсслютной величине почти не менялся в первые 2 недели жизни и увеличивался по мере дальнейшего роста. Однако, если у новорожденных кстят оп был достаточным для почти полного восстановления исходного уровня АД после снятия тонических влияний, то у более старших животных этого не наблюдалось. Относительная величина нейрогенного компонента тонуса сосудов, который не мог быть компенсирован миогенными механизмами, с возрастом также менялась (см. табл. 1).

По средним данным блокада нервных влияний на сердце вызывала очень слабые сдвиги ЧС у котят в возрасте до 2 недель включительно и была неэффективной у более старших животных. Следовательно, значительные возрастные колебания ЧС кошек обусловлены не изменением тонических влияний вегетативных нервов, а внутренними факторами развития сердца и его гормональной регуляции. Существенные сдвиги ЧС, обнаруженные другими исследователями при раздельном выключении парасимпатических и симпатических нервов, и отсутствие сдвигов при их одновременной блокаде позволяет предположить равновесие тонических влияний на сердце кошек. Однако при сравнении животных одного и того же возраста с повышенной и пониженной ЧС в фоне можно было отметить преобладание у первых брадикардии, а у вторых—тахикардии в ответ на введение пентамина. К моменту, когда перестройка гемодинамики в условиях деэфферентации сердца и сосудов заканчивалась, у животных всех возрастных групп (кроме новорожденных) ЧС была ниже, чем в фоне.

Можно заключить, что увеличение АД в онтогенезе кошек до 3—4 месяцев связано с нарастанием миогенной и нейрогенной (по абсолютной величине) составляющей тонуса сосудов, а в более старшем возрасте—только ростом нейрогенной составляющей. Удельный вес нейрогенной составляющей претерпевал неоднозначные изменения, коррелировавшие с перестройками пульсового давления. Возрастные вариации ЧС также носили фазный характер, но лишь в очень слабой степени зависели от уровня тонических влияний симпатического и парасимпатического отделов вегетативной нервной системы. Эффективность бложады вегетативных ганглиев по отношению к состоянию сердечно-сосудистой системы различна на разных этапах онтогенеза.

Институт проблем передачи информации АН СССР, г. Москва

Поступило 23/VII 1976г.

Վ. Ա. ԿՈՒԶՄԵՆԿՈ

ԶԱՐԿԵՐԱԿԱՑԻՆ ՃՆՇՈՒՄԸ ԵՎ ՍՐՏԻ ԿԾԿՈՒՄՆԵՐԻ ՀԱՃԱԽԱԿԱՆՈՒԹՑՈՒՆԸ ՕՆՏՈԳԵՆԵԶԻ ՏԱՐԲԵՐ ԷՏԱՊՆԵՐՈՒՄ ՎԵԳՎՏԱՏԻՎ ՆԵՐՎԱՑԻՆ ՍԻՍՏԵՄԻ ՖԱՐՄԱԿՈԼՈԳԻԱԿԱՆ ԱՆՋԱՏՄԱՆ ԺԱՄԱՆԱԿ

Udhnhnid

Ուսումնասիրունիյունները ցույց տվեցին, որ դարկերակային ճնչման մեծացումը 3—4 ամսական կատուների օնտողենեղում պայմանավորված է միոդեններից և նելրոգեններից, իսկ ավելի մեծ Հասակում միայն նելրոգեններից կազմված անոβների տոնուսի բարձրացումով։

V. A. KUZMENKO

ARTERIAL PRESSURE AND HEART RATE DURING PHARMACOLOGIC CUTTING-OFF OF THE VEGETATIVE NERVOUS SYSTEM IN DIFFERENT STAGES OF ONTOGENESIS

Summary

The investigation has shown that arterial pressure increase in ontogenesis of the cats up to 3-4 months is due to the increase of myogenic and neurogenic constituent vessels' tension and in elder ages-only neurogenic constituent.

УДК 577.31

г. з. микаелян

К ИССЛЕДОВАНИЮ ПРОЦЕССА, ПРОТЕКАЮЩЕГО ПРИ ИЗМЕРЕНИИ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ МЕТОДОМ КОРОТКОВА

При измерении кровяного давления методом Короткова в манжете в момент появления хлопающих звуков отмечается приближенное значение наибольшего давления в артерии, а давление, при котором звуки исчезают,—жак наименьшее.

Метод Короткова широко применяется в клинической медицине. Вопрос его усовершенствования и уточнения предельных значений кровяного давления представляет значительный интерес. Изучению этого попроса посвящено множество работ. Однако сложность рассматриваемого процесса затрудняет окончательное выявление физического механизма возникновения хлопающих звуков и установление зависимости между искомым давлением в артерии и известным давлением в манжете. В настоящей работе еще раз обсуждается вопрос о том, что происходит в артерии при измерении кровяного давления.

Исследование поведения некруговой цилиндрической артерии под действием равномерно распределенного трансмурального давления (разности давления на внутренней и внешней поверхностях артерии) с учетом воздействия окружающей среды показывает, что зависимость площади поперечного сечения сжатого отрезка артерии S от трансмурального давления р в безразмерном виде можно приближенно представить следующей формулой: