УДК 616.127-005.7.001.5+017.2(2307)

Г. А. ЗАХАРОВ

ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОЙ АДАПТАЦИИ К СРЕДНЕ-ГОРНОМУ КЛИМАТУ НА СЕРДЕЧНО-СОСУДИСТУЮ СИСТЕМУ У СОБАК С ИНФАРКТОМ МИОКАРДА

Многими исследованиями было доказано наличие особенностей течения сердечнососудистых заболеваний в условиях горной местности, в частности гипертонии, атеросклероза, инфаркта миокарда, и меньшая распространенность этих заболеваний в условиях высокогорья Киргизии.

Целью настоящего исследования явилось изучение функции сердечно-сосудистой системы при экспериментальном инфаркте миокарда в условиях горно-морского климата среднегорья (Иссык-Куль, 1600 м над ур. м.) после 30 дней адаптации «равнинных» собак, а также у собак-«аборигенов» среднегорья (адаптированных в течение многих поколей). Для сравнения аналогичные спыты проведены в г. Фрунзе на «равнинных» животных (760 м над ур. м.).

Инфаркт вызывали перевязкой нижней трети нисходящей ветви левой коронарной артерии. Изучался уровень артериального давления (ежедневно) и изменения ЭКІ показателей на 1, 2, 3, 5, 7, 10 и 16-й день после инфаркта.

Полученные данные, обработанные статистическим методом, свидетельствуют о более быстром течении инфаркта миокарда у собак, адаптированных к условиям среднегорья. В чем же причина благоприятного влияния высокогорной адаптации?

В настоящее время уже установлены некоторые механизмы, которые могут объяснить этот процесс.

При тренировке к гипоксии увеличивается содержание миоглобина—тканевого акцептора и переносчика кислорода—в сердечной и скелетной мышцах, что ведет к увеличению резерва кислорода и повышению резистентности.

При недостатке кислорода большое значение имеет поддержание функциональной иктивности тканей и органов, которая зависит от компенсаторных способностей биоэнергетических механизмов и транспортных систем клетки.

Тренировка к гипоксии направленно приспосабливает обмен тканей к дефициту кислорода, активизируя анаэробный путь образования энергии, о чем свидетельствует повышение содержания ферментов, участвующих в гликолизе и ускорении распада глюкозы до лактата.

Поскольку сердечная мышца отличается высокой интенсивностью окислительного сбмена, а гликолитический путь распада углеводов занимает небольшое место, состояние окисления при гипоксии имеет большое значение. Установлено, что при адаптации к высотной гипоксии не отмечалось существенных нарушений в системе окисления и окислительного фосфорилирования, а повышенное усвоение кислорода у тренированных животных обеспечивает сгорание энергетических субстратов, о чем свидетельствуют усилегие активности ферментов окисления и цикла Кребса.

Работами Ф. З. Меерсона показано, что под влиянием барокамерной тренировки и в условиях высокогорья происходит активация синтеза нуклеиновых кислот и белков вмиокарде, что повышает резистентность сердечной мышцы, в том числе и к инфаркту миокарда. Это выражается в меньших размерах некроза и меньшем дефекте сократительной функции, что подтвердили и наши исследования; при этом доминирует увеличение мощности системы, обеспечивающей транспорт кислорода и преобразование энергии,—от увеличения васкуляризации миокарда и концентрации миоглобина до увеличения цепи транспорта электронов и АТФ-азной активности мнофибрилл; в итоге сократительная функция сердца становится более совершенной.

Сохранение энергетического и пластического обмена при адаптации к гипоксии, а также профилактическое влияние длительной адаптации на течение экспериментального инфаркта можно объяснить также повышенной васкуляризацией миокарда.

Определенное влияние, направленное на повышение резистентности миокарда (в

норме и патологии), в условиях высокогорья имеют снижение функциональной активности щитовидной железы, повышение функциональной резистентности коры надпочечников, снижение коагуляционных свойств крови.

Очевидно, комплекс вышеизложенных механизмов, вызванных адаптацией к среднегорью, уменьшает влияние перевязки коронарной артерии и снижает дефект сократительной функции миокарда, в результате чего быстрее развиваются компенсаторные процессы.

Выводы

- 1. Экспериментальный инфаркт миокарда у «равнинных» собак в г. Фрунзе характеризуется учащением сердечных сокращений, укорочением интервалов Р—Q и Q—Т, увеличением систелического показателя, нарушением функции возбудимости, изменением зубцов Q и T, смещением интервала S—T и сопровождается падением артериального давления в первые дни.
- Инфаркт миокарда у адаптированных к горному климату животных ЭКГ проявляется теми же нарушеннями, что и у «равнинных» животных, но функциональные нарушения сердечной деятельности у них менее выражены и ее восстановление происходит в более ранние сроки после окклюзии коронарной артерии.

Ин-т физиол. и экспер. патологии высокогорья

АН Кирг. ССР, г. Фрунзе

Поступило 26/VI 1976 г.

Գ. Ա. ԶԱԽԱՐՈՎ

ՆԱԽՆԱԿԱՆ ԱԴԱՊՏԱՑԻԱՅԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՄԻՋԻՆԼԵՌՆԱՅԻՆ ՊԱՅՄԱՆՆԵՐՈՒՄ ՍՐՏԱՄԿԱՆԻ ԻՆՖԱՐԿՏՈՎ ՇՆԵՐԻ ՍԻՐՏ–ԱՆՈԹԱՅԻՆ ՍԻՍՏԵՄԻ ՎՐԱ

Udhnhnid

Հեղինակները հաստատել են, որ միջինլեռնային պայմաններում շների նախնական ադապտացիան (համակերպումը) սրտամկանի էքսպերիմենտալ (փորձարարական) ինֆարկտի ընխացրի վրա բարենպաստ ազդեցություն է թողնում։

G. A. ZAKHAROV

THE INFLUENCE OF PRELIMINARY ADAPTATION TO MIDDLEMOUNTAIN CLIMATE ON CARDIOVASCULAR SYSTEM IN DOGS WITH MYOCARDIAL INFARCTION

Summary

The authors have established that preliminary adaptation to middle-mountain conditions has favourably influenced on experimental treatment of myocardial infarction in dogs.

УДК 612.592:612.173

Ф. Г. ШАХГЕЛЬДЯН, Э. Н. ВАЙНЕР

ОТДЕЛЬНЫЕ ВОПРОСЫ ОБМЕНА ФОСФОРНЫХ СОЕДИНЕНИЙ В СЕРДЦЕ В УСЛОВИЯХ КРАНИО-ЦЕРЕБРАЛЬНОЙ ГИПОТЕРМИИ

Ставится задача изучения обмена фосфорных соединений в миокарде в условиях преимущественного охлаждения головного мозга через наружные покровы головы. Собак охлаждали в гипотерме «Термохолод» до ректальной температуры 24°С (основной