L. L. BRANCHEVSKY

THE EXCRETION OF ELECTROLITS AND WATER BY THE KIDNEY DURING THE CHANGE OF ARTERIAL PRESSURE BY THE USE OF FOUROSEMIDS

Summary

It has been proposed that the quick phase of regulation of water-salt hemostasis during special bemodynamical changes taking place in curved renal channels at the expence of hydrodynamical factors, influencing on the reabsorption of the intrachannel liquid.

УДК 616.322.002.2-072

А. Р. МУРАДЯН, С. А. ИСААКЯН, С. Ш. ПАПОЯН

НАРУШЕНИЕ ИОННОГО РАВНОВЕСИЯ У БОЛЬНЫХ С ТОНЗИЛЛО-КАРДИАЛЬНЫМ СИНДРОМОМ

Поражение сердца у больных с тонзилло-кардиальным синдромом носит не воспалительный, а скорее нейродистрофический характер, и поэтому в патологическую цепь вовлекается диэнцефальная область, точнее—гипоталамическая. Наличие гипоталамических расстройств в виде функциональной патологии со стороны ряда внутренних органов и систем не м. гло не отразиться на соотношении электролитов в жидкостных проспранствах организма, в регуляции которых немаловажную роль играет гипоталамус.

Исходя из вышеизложенного, мы поставили перед собой цель изучить концентрацию электролитов, а также их соотношение в разных биологических жидкостях у больных с тонзилло-кардиальным синдромом.

Нами обследованы 48 больных в возрасте от 15 до 49 лет (26 женщин, 22 мужчин). У всех больных до тонзиллэктомии и на 7-й день после нее определяли натрий, калий в плазме, эритроцитах, моче—пламеннофотометрически, магний в плазме—по Кункелю и Пирсону, неорганический фосфор в крови—по Ю. М. Островскому, хлор в плазме и эритроцитах по Левинсону. Кроме того, выведены коэффициенты

Кэр/Кпл; Сlпл/Сlэр; Naпл/Naэг; Naмoча/Кмоча

Результаты исследований представлены в табл. 1.

Изучение электролитного равновесия у больных с тонзилло-кардиальным синдромом выявило закономерные изменения соотношения электролитов в различных биологических жидкостях.

Таблица 1 Концентрация электролитов в крови и моче у больных тонзиллокардиальным синдромом до и после тонзиллэктомии (в крови в мэкв/л, в моче—в мэкв/24 час)

Ионы и среда	Статисти- ческие по- казатели	До тонзилл- эктомин	После тон- зиллэктомин	Здоровые лица
Натрий в плазме	M ± m P	132,5±0,88 <0.001	133,2±0,95 >0,05	140.9 <u>+</u> 1,1
Натрий в эритроцитах	M+m P	21±0,45 <0,001	20,65±0,53 >0,05	18,15±0,42
Nапл/Nаэр	M	6,3	6,46	7,9+0,12
Натрий в моче	M+m P	108,6±10,3 <0,001	75,56±9,9 <0,05	210 <u>+</u> 9,9
Калий в плазме	M+m P	4,25±0,097 <0,05	4,37±0,09 >0,05	4,51±0.07
Калий в эритроцитах	M+m P	74,3±1,32 <0,001	78±1.7 >0.05	93±1,31
Кэр/ Кпл	M	17,5	17,9	21,1±0,6
К в моче	M±m P	54,3±4,9 >0,05	39,9±3,8 <0,05	57,28 <u>+</u> 3,5
Nа в моче/К в моче	M	2,0	1,89	3.7±0,13
Фосфор в крови	M+m P	1,52±0.05 >0,05	1,4±0,09 >0,05	2,3±0,05
Магний в плазме	M±m P	2,35±0,232 <0,05	2,5±0,282 >0,05	1,8 <u>+</u> 0,02
Хлор в плазме	M±m P	101,8±2,44 >0,05	83,75±2,77 - 0,001	103,6±1,28
Хлор в эритроцитах	M±m P	44,7±1,5 <0,05	$40,25\pm1,73$ >0,05	40,1 <u>+</u> 1,36
СІ пл./СІ эр.	M	2,28	2,08	2,58±0,14

Эти изменения, вероятно, связаны с гипоталамическими расстройствами, имеющими место при давной патологии. Однако палогенез этих сдвигов пока не вполне ясен и требует дальнейшего изучения.

Ин-т кардиологии МЗ Арм. ССР, Филиал ВНИИК и ЭХ МЗ СССР, г. Ереван

Поступило 25/XII 1974 г.

Ա. Ռ. ՄՈՒՐԱԳՑԱՆ, Ս. Ա. ԻՍԱՀԱԿՑԱՆ, Ս. Շ. ՊԱՊՈՑԱՆ

ԻՈՆԱՅԻՆ ՀԱՎԱՍԱՐԱԿՇՌՈՒԹՅԱՆ ԽԱՆԳԱՐՈՒՄՆԵՐԸ ԿԱՐԳԻՈ-ՏՈՆԶԻԼՅԱՐ ՍԻՆԳՐՈՄՈՎ ՏԱՌԱՊՈՂ ՀԻՎԱՆԳՆԵՐԻ ՄՈՏ

Ամփոփում

Կարդիոտոնզիլյար սինդրոմով տառապող հիվանդների մոտ էլեկտրոլիտային հավասարակշռության ուսումնասիրությունը բացահայտել է վերջիններիս հարաբերության օրինաչափ փոփոխությունները տարբեր բիոլոգիական հեղուկներում։

A. R. MURADIAN, S. A. ISAAKIAN, S. Sh. PAPOYIAN

THE DISTURBANCE OF IONIC EQUILIBRATION IN PATIENTS WITH TONSIL-CARDIAC SYNDROME

Summary

The study of electrolytic equilibration in patients with tonsil-cardiac syndrome has revealed the regular changes of their correlation in different biological liquids,

УДК 616.61-008.616.12-008.46

В. С. ЗЕЛИГМАН, Н. П. МОСКАЛЕНКО

ВЛИЯНИЕ ПОЛОЖЕНИЯ ТЕЛА НА ГЕМОДИНАМИКУ И ФУНКЦИЮ ПОЧЕК ЧЕЛОВЕКА

Работа посвящена изучению влияния ортостаза на общую и почечную гемодинамику и функцию почек у здоровых людей.

Обследованы 35 здоровых лиц в возрасте от 20 до 45 лет.

Определялись: высота артериального давления—осциллографически; величина сердечного выброса, объемы циркулирующей плазмы и крови—методом разведения синей Эванса; периферическое сопротивление—по Франку-Пуазейлю; почечный кровоток по клиренсу диодтраста; клубочковая фильтрация по клиренсу эндогенного креатинина; концентрация электролитов в плазме и моче—методом пламенной фотометрии (Цейс-III); концентрация осмотически активных веществ в плазме и моче—осмометром фирмы «Кпацег». Исследования проводились утром, натощак, на фоне свободного водного режима в горизонтальном, затем в вертикальном положении.

Выявленное уменьшение эффективного объема циркулирующей крови (в среднем на 7%) объясняется депонированием части крови в нижней половине тела под действиєм силы тяжести. Показатель гематокрита увеличивался (в среднем—на 3,1%), в речультате траносудации плазмы из капилляров в интерстициальное пространство вследствие увеличения гидростатического давления.

Мы выявили также значительное снижение ударного индекса (на 20,8%). Однако благодаря рефлекторному учащению сердечного ритма (на 17%) сердечный индекс снижается в меньшей степени (на 7,3%), чем ударный индекс. Заметное увеличение периферического сосудистого сопротивления (на 10,3%) свидетельствует о периферической вазоконстрикции, возникающей в ортостазе вследствие активации симпато-адреналовой системы.

Найденное снижение почечного кровотока (в среднем на 16,7%) обусловлено не столько уменьшением сердечного выброса, сколько выраженной почечной вазоконстрикцией, так как сосудистое сопротивление в почках повышается больше общего сосудистого сопротивления. При этом почечная фракция минутного объема уменьшается. Таким образом, в поддержании достаточного уровня циркуляции в жизнемно важных органах большую роль играет компенсаторное перераспределение крози между различными органами.

Описанные гемодинамические сдвиги у всех обследованных сопровождались уменьшением диуреза и экскрещии натрия (табл.).

В уменьшении диуреза, вероятно, играет роль выброс антидиуретического гормона в ортостазе под влиянием возникающей здесь стимуляции волюморецепторов.