УДК 535.323; 539.234

# ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПРЕЛОМЛЕНИЯ И ТОЛЩИНЫ НАНОРАЗМЕРНЫХ ПЛЕНОК АМОРФНОГО УГЛЕРОДА ПО СПЕКТРАМ ОТРАЖЕНИЯ ВИДИМОГО ДИАПАЗОНА

Г.А. ДАБАГЯН $^1$ , Л.А. МАТЕВОСЯН $^2$ , К.Э. АВДЖЯН $^{2*}$ 

<sup>1</sup>Национальный политехнический университет, Ереван, Армения <sup>2</sup>Институт радиофизики и электроники НАН Армении, Аштарак, Армения

\*e-mail: avjyan@gmail.com

(Поступила в редакцию 21 февраля 2019 г.)

Из спектров отражения в видимом диапазоне длин волн экспериментально определены значения толщины и коэффициента преломления ( $1.92 < n_{\rm f} < 2.19$ ) аморфных наноразмерных пленок углерода, полученных на подложке кристаллического кремния методом лазерно-импульсного осаждения. Полученные пленки могут быть использованы в качестве однослойных антиотражающих покрытий для полупроводников Si и GaAs.

#### 1. Введение

Использование пленок различных форм углерода в функциональной электронике сильно ограничено из-за высокой плотности дефектов, и их успешное применение носит лишь дополняющий характер (биосовместимость [1,2], защита [3] и антиотражающая способность). Наиболее удачное применение нашли пленки аморфного углерода (а-С) при производстве однослойных антиотражающих покрытий ближнего инфракрасного диапазона для Si и Ge. Ведутся также работы по применению таких пленок в качестве антиотражающих покрытий для кремниевых солнечных элементов [4]. Для всех вышеописанных случаев толщина  $(d_0)$  и коэффициент преломления  $(n_f)$  пленок являются ключевыми параметрами.

Решение обратной задачи оптики тонких пленок позволяет определять  $d_0$ ,  $n_f$  и коэффициент экстинкции  $(k_f)$  по результатам измерений коэффициентов отражения (R) и пропускания (T). Из ряда разработанных методов часто используются эллипсометрия и спектрофотометрические методы измерения R и T. Точность определения  $d_0$  и  $n_f$  с помощью эллипсометрии сильно зависит как от состояния границы пленка-подложка, так и состояния поверхности самой

пленки. Тонкий загрязненный слой, оксидный слой или небольшие дефекты на поверхности могут привести к неконтролируемым отклонениям при определении оптических констант и толщины пленок [5]. Для спектрофотометрических методов, являющихся наиболее простыми по сравнению с другими методами, эти влияния несущественны. Нужно отметить, что при спектрофотометрических измерениях для моделирования и вычисления таких важных параметров антиотражающих покрытий, как толщина и коэффициент преломления, часто применяют метод оптических матриц [6–8].

Частным случаем определения  $d_0$  и  $n_{\rm f}$  являются спектры антиотражения от структуры пленка-подложка, когда известна дисперсия коэффициента преломления подложки ( $n_{\rm s}$ ). Этот случай обеспечивает нам точное определение значений  $d_0$  и  $n_{\rm f}$  при использовании формул  $n_{\rm s}^2 = n_{\rm f}$  и  $n_{\rm f} d_0 = \lambda_0/4$  при перпендикулярном падении неполяризованного света на структуру пленка-подложка. В данной работе, используя экспериментальные спектры отражения от структуры «а-С пленка на кристаллическом кремнии (c-Si)», определены  $d_0$  и  $n_{\rm f}$  для а-С пленок. а-С пленки на подложках с-Si получены методом лазерно-импульсного осаждения (ЛИО). Отметим, что этот способ определения  $d_0$  и  $n_{\rm f}$  не является универсальным, так как налагается строгое требование  $n_{\rm s}^2 = n_{\rm f}$  при конкретной длине волны  $\lambda_0$ , что сужает количество применяемых материалов.

## 2. Детали эксперимента и результаты исследований

Пленки а-С были получены вакуумным ( $2 \times 10^{-5}$  Тор) ЛИО (длительность импульса ~30 нс, энергия лазера 0.35 Дж, интенсивность излучения на мишени  $6.6 \times 10^8$  Вт/см², частота повторения 1 Гц) при комнатной температуре из плоской мишени чистого мелкозернистого изотропного графита (расстояние мишеньподложка – 4 см). Перед осаждением с-Si подложки (толщина – 400 мкм, шероховатость – 2.5 нм, кристаллографическая ориентация – (100)) были подвергнуты кратковременному (20–30 мин) отжигу в вакууме  $2 \times 10^{-5}$  Тор при  $100^{\circ}$ С. Толщину слоя, нанесенного одиночным лазерным импульсом, определяли путем деления измеренного на Surftest SJ-410 (Mitutoyo) профилометре относительно толстого слоя ( $d_p$ ) на число лазерных импульсов (~0.12 нм за импульс). Кристаллическая структура пленок определена методом дифракции электронов на электронографе ЭМР-100М (ускоряющее напряжение 75 кВ). Установлено, что углеродные пленки, осажденные в указанных технологических условиях, имеют аморфную структуру независимо от толщины.

Отражательные свойства полученной структуры «a-C пленка на c-Si» изучена на тонкопленочной измерительной системе F20 (Filmetrics) в диапазоне

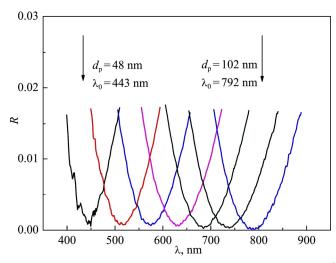



Рис.1. Спектры отражения структуры «a-C пленка на c-Si» в зависимости от толщины a-C пленки.

длин волн 400-1000 нм при нормальном падении света. На рис. 1 приведены спектры отражения в зависимости от толщины  $d_{\rm p}$  а-C пленки, измеренной на профилометре.

Из рис.1 очевидно существование мод антиотражения  $(R \to 0)$  при конкретных длинах волн  $\lambda_0$ . Это означает, что при условии  $k_{\rm f}^2 < \ll n_{\rm f}^2$  с достаточной точностью выполняется соотношение  $n_{\rm s}^2 = n_{\rm f}$ . При этом фазовая толщина ( $\phi_{\rm f} = 2\pi n_{\rm f} d_0/\lambda_0$ ) а-С пленок есть  $\phi_{\rm f} = \pi/2$ , т.е. имеем для оптической толщины соотношение  $n_{\rm f} d_0 = \lambda_0/4$ . Приведенные соотношения позволяют определить значения  $d_0$  и  $n_{\rm f}$  пленок а-С с помощью экспериментальных графиков мод антиотражения (рис.1). Результаты простых расчетов представлены в таблице (значения  $n_{\rm s}$  для подложки с-Si взяты из [9]), где  $d_{\rm p}$  и  $d_0$  — толщины, соответственно, измеренные на профиломере и определенные по спектрам. Полученные пленки a-С со

Расчетные данные  $n_{\rm f}$  и  $d_0$  для конкретных длин волн  $\lambda_0$ 

| $\lambda_0$ , nm | $d_{\rm p}$ , nm | $d_0$ , nm | $n_{\mathrm{f}}$ |
|------------------|------------------|------------|------------------|
| 443              | 48               | 50.5       | 2.19             |
| 519              | 62               | 63.3       | 2.05             |
| 575              | 71               | 71.8       | 2                |
| 630              | 78               | 80         | 1.97             |
| 686              | 87               | 88.4       | 1.94             |
| 739              | 94               | 95.7       | 1.93             |
| 792              | 102              | 103.1      | 1.92             |

значениями  $1.92 < n_{\rm f} < 2.19$  могут быть применены в качестве однослойных антиотражающих покрытий для таких полупроводников, как Si и GaAs. Использованная нами технология ЛИО для осаждения пленок a-C по своей сути весьма проста и исключает процессы высокотемпературного осаждения и отжига.

#### 3. Заключение

Исследования спектров отражения структуры «а-С пленка на с-Si», полученной методом ЛИО, показали, что во всем исследуемом диапазоне длин волн (400–1000 нм) существуют моды антиотражения, которые позволяют определить  $d_0$  и  $n_{\rm f}$  пленок а-С, зная значения  $n_{\rm s}$  для подложки с-Si. Полученные значения  $n_{\rm f}$  позволяют применять эти пленки в качестве однослойных антиотражающих покрытий для таких полупроводников, как Si и GaAs.

## ЛИТЕРАТУРА

- 1. R. Hauert. Diamond and Related Materials, 12, 583 (2003).
- 2. S.C.H. Kwok, J. Wang, P.K. Chu. Diamond and Related Materials, 14, 78 (2005).
- 3. **A.C. Ferrari.** Surface and Coatings Technology, **180–181**, 190 (2004).
- 4. F.J. Pern, Zh. Panosyan, A.A. Gippius, et al. NREL/CP-520-37374. February 2005.
- 5. D. Poelman, P. Smet. J. Phys. D Appl. Phys., 36, 1850 (2003).
- V.M. Aroutiounian, Kh.S. Martirosyan, P. Soukiassian. Journal of Physics D: Applied Physics, 37, L25 (2004).
- 7. V.M. Aroutiounian, Kh.S. Martirosyan, P. Soukiassian. Journal of Physics D: Applied Physics, 39, 1623 (2006).
- 8. A.S. Hovhannisyan. J. Contemp. Phys. (Armenian Ac. Sci.), 43, 136 (2008).
- 9. **D.E. Aspnes, A.A. Studna.** Phys. Rev. B, **27**, 985 (1983).

# DETERMINATION OF REFRACTIVE INDEX AND THICKNESS OF NANOSIZED AMORPHOUS CARBON FILMS VIA VISIBLE RANGE REFLECTANCE SPECTRA

G.A. DABAGHYAN, L.M. MATEVOSYAN, K.E. AVJYAN

The values of thickness and refractive index  $(1.92 < n_f < 2.19)$  of amorphous nanosized carbon films obtained on a crystalline silicon substrate by pulsed laser deposition were experimentally determined via an analysis of visible range reflection spectra. Obtained films can be used as single-layer anti-reflective coatings for semiconductors Si and GaAs.