УДК 537.9

НИЗКОТЕМПЕРАТУРНЫЕ ТРАНСПОРТНЫЕ СВОЙСТВА МОНОКРИСТАЛЛОВ ГЕКСАБОРИДА ЛАНТАНА La_{1-x}Ce_xB₆

С.Р. АРУТЮНЯН^{1,2*}, В.О. ВАРДАНЯН¹, В.Р. НИКОГОСЯН¹

¹Институт физических исследований НАН Армении, Аштарак, Армения ²Российско–Армянский университет, Ереван, Армения

*e-mail: sergeyhar56@gmail.com

(Поступила в редакцию 11 апреля 2018 г.)

Удельное сопротивление (ρ), теплопроводность (k) и коэффициент Зеебека (S) монокристаллов La_{1-x}Ce_xB₆ с различными концентрациями ионов Се были измерены в широком температурном диапазоне 3–300 К. Полученные данные были проанализированы в рамках модели Кокблина–Шриффера. Выделены вклады рассеяния носителей на магнитных ионах Се для всех транспортных параметров $\rho(T)$, k(T), S(T). Выявлена сильная зависимость магнитного рассеяния от концентрации ионов Се. Аномальное поведение транспортных параметров $\rho(T)$, k(T), S(T) в районе 30 К приписывается расщеплению $\Delta \sim 30$ К уровня Γ_8 .

1. Введение

Интерметаллические соединения церия (Се), как и гексабориды лантана с церием, привлекают внимание на протяжении многих лет ввиду присущих им таких явлений, как тяжелые фермионы, Кондо-решетки и эффекты, связанные с промежуточной валентностью [1–13]. Из-за высокого значения коэффициента Зеебека при низких температурах они рассматриваются как перспективные материалы для термоэлектрических приложений при криогенных температурах [14, 15].

Хорошо известно, что источником всех аномальных свойств соединений на основе Се является единственный 4*f*-электрон атома Се, который вследствие гибридизации с электронами проводимости вызывает поведение, присущее тяжелым фермионам и Кондо-эффекту [1]. Теоретические модели описывают свойства, связанные с Кондо-эффектом в предположении, что система имеет резонанс в плотности состояний на поверхности Ферми для каждой примеси с локальным моментом, который приводит к эффекту сильного рассеяния электронов проводимости [1, 16]. Расчеты третьего порядка в рамках эффективного обменного гамильтониана при наличии кристаллического поля (модель Кокблина– Шриффера) для теплового и зарядового переноса были выполнены и успешно применены при объяснении экспериментальных результатов некоторых интерметаллических соединений с ионами Се [17–19]. Важной особенностью Кондосистем является существование характерной температуры – Кондо-температуры $T_{\rm K}$, при которой происходит переход от высокотемпературного характера поведения в низкотемпературный. При температурах $T < T_{\rm K}$ система ведет себя как Ферми-жидкость, где электроны проводимости и 4*f*-электроны связаны в немагнитный синглет. Типичным представителем Кондо-систем является соединение La_{1-x}Ce_xB₆, свойства которого существенно зависят от концентрации ионов Се. Замещение ионов La на Се приводит к возникновению особенностей, присущих Кондо-эффекту. При x = 1 соединение CeB₆ – плотная Кондо-система, которая имеет три основные магнитные фазы–парамагнитную, антиферроквадрупольную и антиферромагнитную при нулевом магнитном поле, разделенных двумя температурами магнитного упорядочения (температура квадрупольного упорядочения $T_0 = 3.2$ K и температура Нееля $T_{\rm N} = 2.4$ K) [20].

Соединение $La_{1-r}Ce_rB_6$ имеет примитивную кубическую структуру с редкоземельным ионом в центре куба и октаэдра из ионов бора в вершинах куба. Спин-орбитальное взаимодействие разбивает четырнадцатикратно-вырожденный 4f-уровень энергии электрона атома Се на шестикратно-вырожденный ос- ${}^{2}F_{5/2}$ и восьмикратно-вырожденный vровень vровень ${}^{2}F_{7/2}$. новной Кристаллическое поле кубического кристалла расщепляет уровень ${}^{2}F_{5/2}$ на двухкратно-вырожденный возбужденный уровень Γ_7 и четырехкратно-вырожденный основной уровень Γ_8 (уровень Γ_7 располагается на ~530 К выше уровня Γ_8) [21]. В случае чистого СеВ₆ есть указание на существование дальнейшего расщепления уровня Γ_8 ($\Delta \sim 30$ K) на два крамерсовых дуплета [21, 22]. Такое расщепление может зависеть от концентрации ионов Се и, являясь дополнительным источником рассеяния, существенно влиять на транспортные свойства соединений $La_{1-x}Ce_{x}B_{6}$.

Удельное электрическое сопротивление, теплопроводность и коэффициент Зеебека непосредственно связаны с зонной структурой данной системы. В то же время эти свойства непосредственно связаны с источниками рассеяния внутри материала, которые изменяют коэффициенты переноса таким образом, что это приводит к уникальному температурному поведению. Таким образом, выделение конкретного механизма рассеяния, например, магнитного рассеяния на ионах Се из транспортных коэффициентов предоставит информацию о взаимодействии электронов проводимости с магнитным моментом локализованного электрона. Сравнение магнитного вклада в процессы рассеяния в широком температурном диапазоне с предсказаниями теории имеет фундаментальное и практическое значение. В настоящей работе изучены и представлены результаты измерений транспортных коэффициентов (удельное сопротивление, теплопроводность и коэффициент Зеебека) серии монокристаллов La_{1-x}Ce_xB₆ в диапазоне температур 3.5–300 К.

2. Условия эксперимента

Монокристаллы La_{1-x}Ce_xB₆, выращенные методом зонной плавки [23], представляли из себя прямоугольные стержни сечением 0.8 мм² и длиной 10–30 мм. Удельное сопротивление р измерялось 4-х зондовым методом на переменном токе, теплопроводность *k* измерялась методом стационарного теплового потока, термоэдс *S* определялась дифференциальным методом. Измерения проводились на образцах с концентрацией ионов Ce x = 0, 0.0025, 0.005, 0.02, 0.03, 0.05, 0.1 и 1 в криостате PT405 (Cryomech, Inc.) замкнутого цикла при температурах от 3 до 300 К. Вакуум в камере был не хуже, чем 10⁻⁶ мм. рт. ст. Абсолютная погрешность составляла ~10% для *k*(*T*), *S*(*T*) и 5% для $\rho(T)$.

3. Результаты и их обсуждение

Температурная зависимость удельного сопротивления $\rho(T)$ кристаллов La_{1-x}Ce_xB₆ приводится на рис.1. Кривые $\rho(T)$ (x = 0.0025, 0.005, 0.02, 0.03, 0.05 и 0.1) характеризуются ярко выраженным минимумом (аномалия, присущая Кондо-эффекту), который сдвигается по температуре от ~18 до 30 K, когда концентрация Се увеличивается от x = 0.0025 до x = 0.1. Зависимость $\rho(T)$ для

Рис.1. Температурные зависимости удельного сопротивления ρ монокристаллов La_{1-x}Ce_xB₆ для разных значений *x*: *l* – 1, *2* – 0.1, *3* – 0.05, *4* – 0.03, *5* – 0.02, *6* – 0.005, *7* – 0.0025 и *8* – 0.

соединения СеВ₆ существенно отличается и характеризуется минимумом при 150 К и максимумом при 3.5 К. Аналогичное поведение было также упомянуто в предыдущих публикациях [9, 24]. Максимум на зависимости $\rho(T)$ при 3.5 К свидетельствует о возникновении когерентности между спинами ионов Се при низких температурах. В предположении, что удельное сопротивление соединений LaB₆ и La_{1-x}Ce_xB₆ отличается только из-за процессов рассеяния электронов проводимости на ионах Се, можно выделить магнитную часть $\rho_m(T)$, ответственную за это рассеяние, из экспериментальных данных путем вычитания $\rho(La_{1-x}Ce_xB_6) - \rho(LaB_6)$. Соединение LaB₆ подходит для такой процедуры потому, что LaB₆ и La_{1-x}Ce_xB₆ имеют идентичную кристаллическую структуру, а массы La и Ce практически одинаковые.

Используя правило Матиссена, полное сопротивление для каждого из исследованных кристаллов выше 3 К можно записать как $\rho_{tot} = \rho_0 + \rho_{e-ph} + \rho_m$, где ρ_0 – сопротивление из-за рассеяния на неконтролируемых примесях и дефектах решетки, ρ_{e-ph} – сопротивление, вызванное электрон-фононным взаимодействием и ρ_m – магнитное сопротивление из-за *s-f* взаимодействия. В данном случае вычитание оправданно, поскольку вклад немагнитных (неконтролируемых) примесей в $\rho(T)$ намного меньше, чем магнитный вклад. Полученные зависимости $\rho_m(T)$ представлены на рис.2. Существуют две области температур 3 К < T < 30 К и 100 К < T < 300 К на кривых $\rho_m(T)$, где ρ_m практически пропорционально logT. В области температур 3 К < T < 20 К зависимость $\rho_m \sim \log T$ вызвана спин-флип Кондо-рассеянием. Такое поведение характерно для соединений на основе Се и

Рис.2. Температурная зависимость магнитного вклада ρ_m в удельное сопротивление монокристаллов La_{1-x}Ce_xB₆ для разных значений *x*: l - 1, 2 - 0.1, 3 - 0.05, 4 - 0.03, 5 - 0.02, 6 - 0.005 и 7 - 0.0025.

следует из результатов теории Кондо-эффекта [25], где расчет третьего порядка величины ρ_m дает зависимость $\rho_m \sim J^2 n(E_F)\log(T)$, где J – обменный интеграл и $n(E_F)$ – плотность состояний [18, 26]. Необходимо отметить, что в области низких температур наклон $\log(T)$ увеличивается с увеличением концентрации Се в решетке La_{1-x}Ce_xB₆ (следствие усиления Кондо-рассеяния). Наблюдаемый при 30 К максимум (вероятно, обязанный расщеплению уровня Γ_8) постепенно смазывается и сливается с общим подъемом ρ_m с повышением концентрации Се, как в случае CeB₆. Кристалл CeB₆ можно рассматривать как концентрированную Кондо-решетку – систему с сильным Кондо-рассеянием.

Рис.3. Температурные зависимости теплопроводности монокристаллов La_{1-x}Ce_xB₆ для разных значений x: 1 - 0, 2 - 0.0025, 3 - 0.00, 4 - 0.02, 5 - 0.03, 6 - 0.05, 7 - 0.1 и 8 - 1.

Коэффициент теплопроводности k как функция температуры кристаллов La_{1-x}Ce_xB₆ приводится на рис.3. Зависимости k(T) для церия с концентрациями $x \le 2$ показывают монотонный подъем теплопроводности с понижением температуры и выраженный пик при температурах 18–20 K, а затем – быстрое падение. В противоположность этому теплопроводность кристаллов La_{1-x}Ce_xB₆ с концентрациями $x \ge 3$ показывает монотонное уменьшение с понижением температуры во всем температурном диапазоне, в то же время значительное изменение наклона кривых k(T) появляется вблизи 30 K. Такое поведение объясняется усилением подавления электронной части теплопроводности Кондо-рассеянием с увеличением концентрации ионов Се. Для более подробного рассмотрения этого вопроса проанализируем составные части теплопроводности. Полная теплопроводность k_{tot} материала, как правило, представляется в виде $k_{tot} = k_e + k_{ph}$, где k_e и k_{ph} – электронный и фононный вклады в общую тепловую проводимость.

рода представление подразумевает, что тепловая энергия передается двумя независимыми каналами. Фононная теплопроводность не может игнорироваться, за исключением только случая, когда электронный вклад гораздо сильнее. Это предположение как правило приводится для чистого соединения LaB₆ и для него можно написать $k_{tot} = k_e$. Что касается соединения CeB₆, то имеются некоторые несоответствия в трактовке величины фононной составляющей в общей теплопроводности [27, 28]. Предполагается, что фононная часть общей теплопроводности в соединении La_{1-x}Ce_xB₆ мала и ею можно пренебречь. Это означает, что теплопроводности соединений LaB₆ и La_{1-x}Ce_xB₆ отличаются только значением магнитной составляющей теплового сопротивления. В этом случае полная теплопроводность представляется как $k_{\text{tot}} = 1/W_{\text{tot}} = 1/(W_{e0} + W_{m})$, где W_{tot} , W_{e0} и W_{m} – полное теплосопротивление, электронное теплосопротивление и магнитное теплосопротивление, соответственно. Вклад W_{e0} равен эквивалентному теплосопротивлению немагнитного соединения, которым в нашем случае является LaB₆. Как и в случае сопротивления, расчет третьего порядка величины W_m дает зависимость log(T), но на этот раз для магнитной части теплосопротивления [18, 28]. Таким образом, мы имеем $W_m T = J^2 n(E_F) \log(T)$. Ожидаемое поведение $W_m T(T)$ должно быть таким же, как и в случае $\rho_m(T)$. Полученные значения W_mT от температуры для всех концентраций Се приведены на рис.4. Существуют три области различного поведения этой зависимости: зависимость $\log(T)$ при T < 30 K, небольшой максимум на 30 К < T < 100 К и небольшой наклон при T > 100 К. В целом поведение $W_m T(T)$ аналогично $\rho_m(T)$ и особенность при 3.5 К для соединения CeB₆ на кривой $W_mT(T)$ того же происхождения.

Рис.4. Температурные зависимости магнитного вклада $W_m T$ в теплосопротивление монокристаллов La_{1-x}Ce_xB₆ для разных значений x: l - 1, 2 - 0.1, 3 - 0.05, 4 - 0.03, 5 - 0.02, 6 - 0.005 и 7 - 0.0025.

Результаты температурной зависимости термоэдс *S* отображены на рис.5. Коэффициенты Зеебека для $x \ge 3$ показывают интенсивный положительный максимум в области температур 4.5–8 К, который достигает «гигантского» значения 120 мкВ/К в соединении CeB₆. При x < 3 максимум на кривых S(T) появится при более низких температурах. Положение максимума на кривых чувствительно к концентрации и смещается в сторону высоких температур с увеличением концентрации Се.

Рис.5. Температурные зависимости коэффициента Зеебека S монокристаллов La_{1-x}Ce_xB₆ для разных значений x: l - 1, 2 - 0.1, 3 - 0.05, 4 - 0.03, 5 - 0.02, 6 - 0.005 и 7 - 0.0025.

Необходимо отметить, что знак термоэдс некоторых образцов изменяется при высокой температуре. Это происходит, поскольку энергия переносится как электронами, так и дырками, и в зависимости от типа носителей, которые доминируют при данной температуре, термоэдс принимает их знак. Величина термоэдс зависит от соотношения этих носителей, участвующих в переносе энергии, и их подвижности. При низкой температуре электроны сильно рассеиваются благодаря Кондо-рассеянию и поэтому знак термоэдс положительный. Правило Нордхайм–Гортера [16] было использовано для извлечения магнитной части термоэдс. Правило гласит, что вклад каждого механизма рассеяния в термоэдс определяется вкладом этого же механизма рассеяния в теплосопротивление, т. е. $S(T) = \Sigma_i S_i k_i^{-1}(T) / \Sigma_i k_i^{-1}(T)$. В нашем случае можно написать S(T) = S(T)W(T) / W(T), где пренебрегается членом, относящимся к LaB₆, из-за его пренебрежимой малости и в связи с тем, что он не относится к магнитному рассеянию. Величины *S* и *W* являются полными термоэдс и теплосопротивлением, соответственно. Таким образом, подставляя экспериментальные данные по *S*, *W* и уже извлеченные W_m для каждой концентрации ионов Се, можно рассчитать магнитные вклады термоэдс S_m , которые приведены на рис.6. Ясно выраженные максимумы наблюдаются для всех концентраций Се и их позиция на кривых $S_m(T)$ зависит от концентрации Се. Если для высокой концентрации ($x \ge 0.05$) максимум расположен в районе 7 К, то для низкой концентрации (x < 0.02) около 13 К.

Литературные данные по вычислению термоэдс для других соединений с Се, где принимаются во внимание эффекты Кондо и кристаллического поля, показали, что термоэдс имеет выраженный пик, который зависит от значения Δ расщепления, обменного взаимодействия и потенциала рассеяния [19]. Пик находится при температуре, приблизительно соответствующей величине $\Delta/3$. Сравнение полученных зависимостей $S_m(T)$ при низких концентрациях Се с поведением, которое предсказывается теорией, указывает на существование энергетического расщепления при температуре ~30 К. Поскольку расщепление кристаллическим полем в соединениях La_{1-x}Ce_xB₆ составляет ~500 К, единственной причиной появления этих максимумов может служить существование расщепления квадруплета основного уровня Γ_8 на два дуплета с щелью $\Delta \approx 30$ К. Дальнейшее увеличение концентрации ионов Се ведет к смещению пика на кривых $S_m(T)$ в сторону низких температур как результат усиления Кондо-рассеяния. Таким образом, особенности на кривой $S_m(T)$, можно полагать, являются результатом совместного эффекта обоих процессов рассеяния.

Рис.6. Температурные зависимости магнитного вклада S_m в термоэдс монокристаллов La_{1-x}Ce_xB₆ для разных значений *x*: l - 1, 2 - 0.1, 3 - 0.05, 4 - 0.03, 5 - 0.02, 6 - 0.005 и 7 - 0.0025.

4. Заключение

Проведено комплексное исследование с измерением транспортных коэффициентов $\rho(T)$, k(T) и S(T) серии монокристаллов La_{1-x}Ce_xB₆ в широком диапазоне температур 3–300 К. Полученные данные проанализированы в рамках модели Кокблина–Шрифера, учитывающего рассеяние на расщеплении энергетических уровней кристаллическим полем. Выявлены аномалии транспортных свойств, присущих Кондо-рассеянию и рассеянию на расщеплении энергетических уровней кристаллическим полем и выделены вклады по рассеянию на магнитных ионах Се. Получены свидетельства о существовании энергетической щели $\Delta \approx 30$ К.

Авторы выражают благодарность А.М. Гуляну за полезное обсуждение полученных результатов, С. Кунии и К. Винзеру за предоставленные кристаллы.

ЛИТЕРАТУРА

- 1. A.C. Hewson. The Kondo Problem to Heavy Fermions. Cambridge University Press, 1997.
- 2. N.B. Brandt, V.V. Moshchalkov. Advances in Physics, 33, 373 (1984).
- 3. C. Grenzebach, F.B. Anders, G. Czycholl, T. Pruschke. Phys. Rev. B, 74, 195119 (2006).
- 4. N.S. Vidhyadhiraja, D.E. Logan. J. Phys.: Condens. Matter., 17, 2959 (2005).
- 5. G. Zwicknagl. Advances in Physics, 41, 203 (1992).
- J. Sakurai. Several Aspects on Thermopower of Ce Compounds, in Transport and Thermal Properties of *f*-Electron Systems, G. Oomi, H. Fujii, T. Fuji (Eds.). New York, Plenum. Press, 1993. pp. 165–175.
- 7. S. Nakamura, T. Goto, O. Suzuki, S. Kunii, S. Sakatsume. Phys. Rev. B, 61, 15203 (2000).
- 8. N.E. Bickers, D.L. Cox, W. Wilkins. Phys. Rev. B, 36, 2036 (1987).
- 9. K. Winzer. Solid State Commun., 16, 521 (1975).
- 10. J. Mucha. J. Phys.: Condens. Matter, 18, 1427 (2006).
- 11. M. Lavagna, C. Lacroix, M. Cyrot. J. Phys. F: Met. Phys., 12, 745 (1982).
- 12. Y. Lassailly, A.K Bhattacharjee, B. Coqblin. Phys. Rev. B, 31, 7424 (1985).
- 13. Y. Aoki, M.A. Chernikov, H.R. Ott, H. Sugawara, H. Sato. Phys. Rev. B, 62, 87 (2000).
- S.R. Harutyunyan, V.H. Vardanyan, A.S. Kuzanyan, V.R. Nikoghosyan, S. Kunii, K.S. Wood, A.M. Gulian. Appl. Phys. Lett., 83, 2142 (2003).
- 15. A. Gulian, K. Wood, D.van Vechten, G. Fritz. J. Modern Optics., 51, 1467 (2004).
- 16. N.E. Bickers, D.L. Cox, J.W. Wilkins. Phys. Rev. B, 36, 2036 (1987).
- 17. B. Coqblin, J.R. Schrieffer. Phys. Rev., 185, 847 (1969).
- 18. B. Cornut, B. Coqblin. Phys. Rev. B, 5, 4541 (1972).
- 19. A.K Bhattacharjee, B. Coqblin. Phys. Rev. B, 13, 3441 (1976).
- 20. D. Hall, Z. Fisk, R.G. Goodrich. Phys. Rev. B, 62, 84 (2000).
- 21. E. Zirngiebl, B. Hillebrands, S. Blumenröder, G. Güntherodt, M. Loewenhaupt, J.M. Carpenter, K. Winzer, Z. Fisk. Phys. Rev. B, 30, 4052 (1984).
- 22. F.J. Ohkawa. J. Phys. Soc. Jpn., 52, 3897 (1983).
- J.D. Verhoeven, E.D. Gibson, M.A. Noack, R.J. Conzemius. J. Cryst. Growth, 36, 115 (1976).

- 24. M.I. Ignatov, A.V. Bogach, V.V. Glushkov, S.V. Demichev, Yu.B. Paderno, N.Yu. Shitsevalova, N.E. Sluchanko. Physica B, **378–380**, 780 (2006).
- 25. J. Kondo. Prog. Theor. Phys., 32, 37 (1964).
- 26. Z. Kletowski, B. Coqblin. Solid State Commun., 135, 711 (2005).
- Y. Peysson, C. Ayache, B. Salce, J. Rossat-Mignod, S. Kunii, T. Kasuya. J. Magn. Magn. Matter., 47–48, 63 (1985).
- 28. A.K. Bhattacharjee, B. Coqblin. Phys. Rev. B, 38, 338 (1988).

Ս.Ռ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Վ.Հ. ՎԱՐԴԱՆՅԱՆ, Վ.Ռ. ՆԻԿՈՂՈՍՅԱՆ

Չափված են La_{1-x}Ce_xB₆ մոնոբյուրեղների տեսակարար դիմադրությունը (ρ), ջերմահաղորդականությունը (k) և Ձեեբեկի գործակիցը (S) տարբեր ցերիումի Ce իոնների կոնցենտրացիաների համար լայն ջերմաստիձանային տիրույթում 3–300 Կ։ Ստացված տվյալները վերլուծվել են Կոկբլին-Շրիֆերի մոդելի սահմաններում. Առանձնացված են Ce իոնների վրա մագնիսական ցրման ներդրումները բոլոր տրանսպորտային գործակիցների $\rho(T)$, S(T), k(T) համար։ Ստացված է մագնիսական ցրման ուժեղ կախվածությունը ցերիումի Ce իոնների կոնցենտրացիայից։ Տրանսպորտային գործակիցների $\rho(T)$, S(T), k(T) անկանոն վարքագիծը 30 K ջերմաստիձանի մոտակայքում վերագրվում է Γ_8 մակարդակի $\Delta \sim 30$ K պառակտմանը։

LOW-TEMPERATURE TRANSPORT PROPERTIES OF LANTANUM HEXABORIDE La_{1-x}Ce_xB₆ SINGLE CRYSTALS

S.R. HARUTYUNYAN, V.H. VARDANYAN, V.R. NIKOGHOSYAN

Resistivity (ρ), thermal conductivity (k) and Seebeck coefficient (S) La_{1-x}Ce_xB₆ single crystals with various concentrations of cerium Ce ions was measured in a wide temperature range 3–300 K. The data obtained were analyzed in the framework of the Coqblin–Shrieffer model. The contributions of carrier scattering on magnetic ions Ce for all transport parameters $\rho(T)$, k(T), S(T) was revealed. Strong dependence of the magnetic scattering on concentration of the cerium ions was identified. The anomalous behavior of the transport parameters $\rho(T)$, k(T), S(T) in the region near 30 K is attributed to the $\Delta \sim 30$ K splitting of Γ_8 level.