УДК 53.083.2

МИКРОВОЛНОВЫЕ ФРАКТАЛЬНЫЕ ПОЛОСОВЫЕ ФИЛЬТРЫ, ОСНОВАННЫЕ НА МОДИФИЦИРОВАННЫХ КРИВЫХ ГИЛЬБЕРТА ПЕРВОГО И ВТОРОГО ПОРЯДКОВ

 Γ . ПАРСАМЯН^{1*}, А. БАБАДЖАНЯН¹, К. LEE²

¹Ереванский государственный университет, Ереван, Армения ²Sogang University, Seoul, Republic of Korea

*e-mail: henrik.parsamyan@ysumail.am

(Поступила в редакцию 12 февраля 2018 г.)

Экспериментально и численно проанализированы микроволновые фрактальные полосовые фильтры, основанные на модифицированных кривых Гильберта первого и второго фрактальных порядков. В качестве подложки была использована керамика Al₂O₃, поверхность которой покрыта слоем серебра толщиной 50 мкм. При создании структур фильтров использовалась техника лазерной гравировки. Фильтр, основанный на кривой Гильберта первого порядка имеет резонансную частоту ~4.01 ГГц, а фильтр, основанный на кривой Гилберта второго порядка имеет резонансные частоты ~3.09 и ~6.34 ГГц. Значение нагруженной добротности фильтра на основе кривой Гилберта первого порядка было оценено ~94. Распределение электромагнитного поля того же фильтра было визуализировано методом отображения близких полей с использованием термоупругой оптической индикаторной микроскопии.

1. Введение

Разработка и оптимизация миниатюрных устройств в диапазоне высоких частот (ВЧ) и сверхвысоких частот (СВЧ) до сих пор остается актуальной задачей [1–3]. В современных системах связи, где нужно совмещать высокую производительность, надежность и точность с высокой плотностью интегрирования компонент системы, фракталы могут играть важную роль. С конца 19-ого века Гильберт, Пеано, Минковский, Серпинский и другие предлагали разные типы самоповторяющихся и пространственно-заполняющих кривых и структур чисто математического характера. Спустя несколько десятилетий, когда стремление к миниатюризации устройств в СВЧ диапазоне поставило задачу разработать новые типы структур, фракталы нашли широкое применение в микроволновой инженерии и фотонике благодаря своим интересным особенностям, а именно, они являются пространственно-заполняющимися структурами, которые повторяют друг друга. На их основе были предложены широкополосные антенны [4–6], фильтры [7–9], резонаторы [10, 11] и даже микрометрические фрактальные структуры на основе фрактальных кривых Гилберта (КГ) высоких порядков в оптической области [12].

В настоящей работе представлены фрактальные полосовые фильтры на основе модифицированных КГ первого и второго порядков. Фрактальные КГ, впервые предложенные Гильбертом, являются пространственно-заполняющими, непрерывными, непересекающимися и незамкнутыми кривыми [13]. КГ первого и второго порядков были модифицированы в замкнутые непрерывные кривые, на основе которых были смоделированы фрактальные фильтры. Дизайн фильтров был оптимизирован с помощью численного анализа программой COMSOL Multiphysics на основе метода конечных элементов. Параметры рассеяния (*S*-параметры) фильтров были получены экспериментальными и численными методами. Отметим, что результаты экспериментов и моделирования довольно близки и соответствуют друг другу.

2. Материалы и методы исследования

Дизайн фрактальных фильтров, основанных на модифицированных КГ первого и второго порядков с размерами элементарных ячеек s_1 и s_2 , показан на рис.1, где h – ширина полосовых линий, d – дистанция между граничными линиями и КГ, a – ширина граничных линий и w – ширина кривых (для обоих

Рис.1. Изображения фильтров с увеличенной схемой структур на основе модифицированных КГ (а) первого и (b) второго порядков: s_1 и s_2 – размеры элементарных ячеек модифицированных КГ первого и второго порядков, соответственно. Для обоих фильтров были выбраны одинаковые значения h, a, w и d.

фильтров были выбраны одинаковые значения h, d, w и a). В качестве подложки была выбрана керамика оксида алюминия (Al₂O₃) с размерами $20 \times 40 \times 1$ мм³ и диэлектрической проницаемостью 9.2 в ГГц-овой области. Структуры фильтров были изготовлены путем лазерной гравировки слоя серебра толщиной 50 мкм на керамической подложке. После лазерной гравировки образцы отжигались в печи при температуре ~800°C для обеспечения конечного проводящего состояния металла.

До создания фильтров структуры были оптимизированы с помощью численного моделирования на основе уравнений Максвелла, чтобы получить наилучшую связь между входным и выходным портами. Оптимизация была реализована путем изменения размеров элементарной ячейки и ширины линий. Другим способом улучшения связи является добавление граничных линий слева и справа. Чтобы избежать перегрузки сетки в узких областях структуры в модели [14] и приблизить ее к реальному образцу, металлические части были реализованы с использованием так называемого граничного условия перехода (Transition Boundary Condition) программы COMSOL Multiphysics.

Комплексная диэлектрическая проницаемость металла определяется уравнением

$$\varepsilon = \varepsilon_{\rm r} - \frac{j\sigma}{\omega\varepsilon_0},\tag{1}$$

где ε_r – относительная диэлектрическая проницаемость, σ – проводимость, $\varepsilon_0 = 8.85 \times 10^{-12} \, \Phi/\text{M}$ – диэлектрическая проницаемость вакуума, $\omega = 2\pi f$ – угловая частота, а f – рабочая частота. При моделировании для относительной диэлектрической проницаемости и проводимости серебра были использованы значения $\varepsilon_r = 1$ и $\sigma = 6.16 \times 10^7$ С/м, соответственно. Для обратной стороны подложки было использовано граничное условие идеального электрического проводника Perfect Electric Conductor программы COMSOL Multiphysics. В результате оптимизации значения $s_1 = 2$ и $s_2 = 0.8$ мм были выбраны для фильтров, основанных на модифицированных КГ первого и второго порядков, соответственно. Для *h* было использовано значение 1 мм, а для *w*, *a* и *d* – одинаковое значение 0.1 мм. *S*-параметры фильтров измерялись сетевым векторным анализатором Agilent 8753ES.

Распределения электрического и магнитного полей структуры, основанной на КГ первого порядка, были визуализированы с использованием термоупругой оптической индикаторной микроскопии (ТУОИМ) [15]. Эта техника использует измерения распределения теплового напряжения на поверхности оптического индикатора (ОИ), вызванные электромагнитным нагревом, что является результатом взаимодействия между ОИ и излучаемым от тестируемого устройства электромагнитным или инфракрасным полем. Важно отметить, что для измерений электрических и магнитных полей в ТУОИМ используются разные индикаторы. Для измерения электрического поля индикатор боросиликатного стекла был покрыт тонкой пленкой из полиметилметакрилата с внедренными наночастицами алюминия, тогда как для измерения магнитного поля то же боросиликатное стекло было покрыто пленкой платины толщиной 200 нм.

3. Результаты и их обсуждение

S-параметры фрактальных фильтров на основе модифицированных КГ первого и второго порядков, полученные в результате экспериментов и моделирований, показаны на рис.2а и рис.2b, соответственно. Видно, что результаты экспериментов и моделирования довольно точно соответствуют друг другу. Для фильтра на основе КГ первого порядка эксперимент и моделирование показывают ту же резонансную частоту ~4.01 ГГц. Для первого резонансного пика фильтра на основе КГ второго порядка эксперимент и моделирование также показывают одинаковый резонанс на ~3.09 ГГц, тогда как вторая резонансная частота, полученная с помощью моделирования, на 0.2 ГГц меньше экспериментального резонанса на 6.34 ГГц.

Рис.2. Экспериментальные $S_{11}(1)$, $S_{21}(2)$ и моделированные $S_{11}(3)$, $S_{21}(4)$ параметры рассеяния фильтра на основе модифицированной КГ (а) первого и (b) второго фрактального порядков.

Нагруженная добротность фильтра на основе КГ первого порядка была оценена согласно уравнению

$$Q \approx \frac{f_0}{\mathrm{BW}_{-3\mathrm{dB}}},\tag{2}$$

где f_0 – резонансная частота фильтра, а BW_{-3dB} – ширина резонансной кривой на

уровне –3 dB от минимума. Таким образом, для фильтра на основе КГ первого порядка нагруженная добротность составила ~94.

На рис.За и рис.Зb показаны зависимости параметра S_{11} КГ первого и второго порядков от частоты для разных размеров элементарной ячейки s_1 и s_2 , соответственно. Моделирование проводилось при значениях 1.8, 1.9, 2, 2.1 и 2.2 мм для s_1 и 0.7, 0.8 и 0.9 мм для s_2 . У обоих прототипов резонансные частоты уменьшаются при увеличении размера элементарной ячейки КГ и наоборот. Для понимания этого поведения на вставке рис.За представлена эквивалентная *LC*-схема фильтра, основанного на КГ первого порядка. Конденсаторы C_0 представляют ёмкости между КГ и граничными линиями. Конденсатор C_1 представляет собой емкость между идеальным электрическим проводником на обратной стороне подложки и полосовыми линиями на верхней стороне подложки. Емкость между КГ и проводником на обратной стороне подложки незначительна из-за очень малой ширины КГ по сравнению с шириной полосовых линий. С другой стороны, сопротивлением структуры также можно пренебречь из-за высокой проводимости металла. Напомним, что в качестве металла мы использовали серебро. L_0 представляет индуктивность КГ.

Рис.3. Зависимость параметра S_{11} КГ от частоты для разных размеров элементарной ячейки *s* фильтра на основе (а) первого ($s_1 = 1.8$ (*I*), 1.9 (2), 2 (3), 2.1 (4) и 2.2 (5) мм) и (b) второго ($s_2 = 0.7$ (6), 0.8 (7) и 0.9 (8) мм) фрактальных порядков. Вставка изображает эквивалентную *LC*-схему фильтра на основе КГ первого фрактального порядка.

Резонансная частота схемы определяется уравнением

$$f_0 = \frac{1}{2\pi\sqrt{L_{\rm e}C_{\rm e}}},\tag{3}$$

где L_e и C_e – общая индуктивность и емкость эквивалентной LC-схемы фильтра

на основе КГ первого порядка. При изменении размера элементарной ячейки КГ изменяются емкость C_0 и индуктивность L_0 . Основное значение в структуре имеет емкость между КГ и граничными линиями С₀ и индуктивность КГ L₀. С увеличением размера элементарной ячейки КГ емкости С₀ растут из-за увеличения поверхности «пластин конденсатора» (расстояние между «пластинами» фиксированное), что приводит к уменьшению резонансной частоты согласно уравнению (3). Такое же влияние на резонансную частоту имеет индуктивность L₀, которая увеличивается за счет увеличения длины КГ. Для объяснения этого явления мы выбрали фильтр, основанный на КГ первого порядка из-за простоты конструкции, которая дает возможность легко представить структуру через LCцепь в отличие от фильтра на основе КГ второго порядка, структура которого сложнее, а эквивалентная схема представляет собой линию с многими LCответвлениями. Тем не менее, влияние изменения размера элементарной ячейки фильтра на основе КГ второго порядка такое же, как в случае фильтра на основе КГ первого порядка, что также связано с изменением емкости между граничными линиями и индуктивностью КГ. Таким образом, зависимость резонансной частоты от размеров элементарной ячейки КТ открывает возможность регулировки резонансной частоты полосовых фильтров в соответствующих частотных диапазонах.

Рис.4. Экспериментальные и моделированные результаты для визуализации ближних электромагнитных полей фильтра на основе КГ первого порядка. Распределение электрического и магнитного полей согласно (a, c) эксперименту и (b, d) моделированию.

Моделированные и экспериментальные результаты распределения электромагнитного поля КГ первого порядка приведены на рис.4. В случае визуализации распределения магнитного поля фильтр был покрыт тонкой диэлектрической пленкой толщиной ~60 мкм, чтобы избежать контактов между структурой металла и слоем поглотителя магнитного поля индикатора. Нужно отметить, что диэлектрическая пленка не вызывает каких-либо изменений резонансной частоты фильтра. Поскольку в случае магнитного поля ТУОИМ дает результат для продольной (in-plane) компоненты, в качестве результата моделирования было выбрано распределение $H_{in-plane}$, определяемое уравнением

$$H_{\text{in-plane}} = \sqrt{\left|H_x\right|^2 + \left|H_y\right|^2}.$$
(4)

Видно, что сильное электрическое поле сконцентрировано между граничными линиями и КГ (рис.4a, b), тогда как сильное магнитное поле сконцентрировано вдоль нижней и верхней сторон КГ (рис.4c, d). Из-за того, что в ТУОИМ поля визуализируются через соответствующие распределения температуры, визуализированные электрические и магнитные поля распределяются не только вдоль КГ, но также и вблизи структуры (рис.4a, c).

4. Заключение

Предложен новый вид компактных полосовых фильтров на основе модифицированных кривых Гильберта первого и второго фрактальных порядков с экспериментальным и численным анализом. Фильтр, основанный на кривой Гильберта первого порядка, имеет резонанс на ~4.01 ГГц, а фильтр на основе кривой Гильберта второго порядка имеет резонансы на ~3.09 и ~6.34 ГГц. Зависимость резонансных частот от размера элементарной ячейки КГ открывает возможность корректировки рабочих частот фильтров. Распределения электрической и продольной составляющей магнитного поля структуры были визуализировали с использованием термоупругой оптической индикаторной микроскопии.

Прототипы были подготовлены и экспериментальные результаты были получены в Microwave Photonics Laboratory, Sogang University (Seoul, Republic of Korea). Авторы благодарят В. Мхитаряна за модифицирование кривых Гильберта, А. Макаряна и Ш. Аракеляна за ценные обсуждения.

ЛИТЕРАТУРА

- 1. P. Jarry, J.N. Beneat. Wiley Encyclopedia of Electrical and Electronics Engineering, Hoboken, John Wiley&Sons, 2012, pp. 1–18.
- 2. P. Jarry, J.N. Beneat. Microwave Amplifier and Active Circuit Design Using the Real Frequency Technique., Hoboken, John Wiley&Sons, 2016.

- J. Anguera, C. Puente, C. Borja, J. Soler. Encycl. RF Microw. Eng., Hoboken, John Wiley&Sons, 2005.
- K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan. Hilbert Curve Fractal Antennas with Reconfigurable Characteristics, IEEE MTT-S International Microwave Sympsoium Digest, 2001, pp. 381–384.
- 5. J. Li, T. Jiang, C. Cheng, C. Wang. IEEE Trans. Dielectr. Electr. Insul., 20, 2017 (2013).
- J. Anguera, C. Puente, E. Martínez, E. Rozan. Microw. Opt. Technol. Lett., 36, 102 (2003).
- 7. W.-L. Chen, G.-M. Wang. IEEE Microw. Wirel. Components Lett., 19, 74 (2009).
- M. Barra, C. Collado, J. Mateu, J.M. O'Callaghan. IEEE Trans. Appiled Supercond., 15, 3841 (2005).
- S. Kirihara, M.W. Takeda, K. Sakoda, K. Honda, Y. Miyamoto. J. Eur. Ceram. Soc., 26, 1861 (2006).
- S. Dhar, K. Patra, R. Ghatak, B. Gupta, D.R. Poddar. IEEE Trans. Antennas Propag., 63, 1521 (2015).
- 11. C.-S. Ye, Y.-K. Su, M.-H. Weng, H.-W. Wu. Microw. Opt. Technol. Lett., 51, 1358 (2009).
- S.De Zuani, T. Reindl, M. Rommel, B. Gompf, A. Berrier, M. Dressel. ACS Photonics, 2, 1719 (2015).
- 13. D. Hilbert. Math. Ann., 38, 459 (1891).
- 14. K. Ho-Le. Comput. Des., 20, 27 (1988).
- 15. H. Lee, S. Arakelyan, B. Friedman, K. Lee. Sci. Rep., 6, 39696 (2016).

MICROWAVE FRACTAL BANDPASS FILTERS BASED ON MODIFIED HILBERT CURVES OF THE FIRST AND SECOND ORDERS

H. PARSAMYAN, A. BABAJANYAN, K. LEE

The microwave fractal bandpass filters based on modified Hilbert shaped curves of the first and second fractal orders are experimentally and numerically analyzed. As a substrate Al₂O₃ ceramic covered by the thin silver layer with thickness of 50 μ m was used. The laser patterning technique was used to design the structures of filters. The filter based on the Hilbert curve of the first order has resonance at ~4.01 GHz, while the filter based on the second order Hilbert curve has resonances at ~3.09 and ~6.34 GHz. The estimated loaded *Q*-factor of the filter based on the first order Hilbert curve was ~94. The electromagnetic field distribution of the filter was visualized by using the thermoelastic optical indicator microscopy.