УДК 541.14

ИССЛЕДОВАНИЕ НАНОЧАСТИЦ ЦИНКА И ЦИАНИДА ЦИНКА В УГЛЕРОДНЫХ МАТРИЦАХ, ПОЛУЧЕННЫХ ТВЕРДОФАЗНЫМ ПИРОЛИЗОМ ФТАЛОЦИАНИНА ЦИНКА

А.А. МИРЗАХАНЯН^{1*}, А.С. МАНУКЯН¹, А.Т. ГЮЛАСАРЯН¹, А.К. ГИНОЯН¹, М.Х. НУРИДЖАНЯН¹, Ю.И. ЮЗЮК², Е.Ю. КАНЮКОВ³, Э.Г. ШАРОЯН¹

 ¹Институт физических исследований НАН Армении, Аштарак, Армения
²Южный федеральный университет, Ростов-на-Дону, Россия
³ГО Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь

*e-mail: armir3@rambler.ru

(Поступила в редакцию 24 декабря 2015 г.)

Путем твердофазного пиролиза фталоцианина цинка (ZnC₃₂H₁₆N₈) получены наночастицы цинка и цианида цинка в углеродных матрицах с концентрацией цинка 3 ат%. Структура и состав образцов исследованы методами сканирующей электронной микроскопии, рентгеновской дифракции и рамановской спектроскопии. Показано, что при низкой температуре пиролиза (700°C) получаются только наночастицы цинка, в то время как при более высокой температуре пиролиза (900°C) формируется также определенное количество наночастиц цианида цинка Zn(CN)₂. Средний диаметр наночастиц составляет примерно 150 нм, а их распределение по размерам имеет логарифмически-нормальный вид.

1. Введение

В последние годы металлические наночастицы привлекают большой интерес в связи с их возможными применениями в различных областях [1–5]. В частности, они могут быть использованы в спинтронике, биомедицине, магнитных красках, катализе, суперконденсаторах, сенсорах, поглотителях электромагнитной энергии и т.д.

Одним из методов получения наночастиц металлов в углеродных матрицах является твердофазный пиролиз металл-фталоцианинов (MPc = $MC_{32}N_8H_{16}$), поскольку они содержат одновременно металл и углерод (в соотношении 1:32) и могут образовывать различные металл–углеродные структуры с заданными характеристиками (см., например, [6–10]).

В настоящей работе показано, что твердофазный пиролиз фталоцианина цинка является простым и эффективным методом для синтеза наночастиц цинка и цианида цинка в углеродных матрицах. Полученные образцы исследованы с помощью сканирующей электронной микроскопии, рентгеновской дифракции и рамановской спектроскопии. Отметим, что в отличие от других переходных металлов в литературе нет каких-либо данных о наночастицах цианида цинка.

2. Методика эксперимента

В данной работе процесс твердофазного пиролиза фталоцианина цинка аналогичен описанному в работах [6–10]:

$$Zn(C_{32}N_8H_{16}) \xrightarrow{T_{pyr}, t_{pyr}, p} Zn + 32C$$
,

где $T_{\rm pyr}$ – температура пиролиза, $t_{\rm pyr}$ – время пиролиза, $p_{\rm pyr}$ – самогенерированное давление в реакционной ампуле. Пиролиз проводился в замкнутой кварцевой ампуле при начальном давлении ~10⁻⁶ bar. Очевидно, что концентрация цинка в синтезированных образцах составляет 3 ат%.

Морфология, элементный состав и размеры полученных наночастиц были исследованы с помощью сканирующего электронного микроскопа (СЭМ) Vega TS 5130 MM (Tescan) с системой энергодисперсионного рентгеновского микроанализа INCA Energy 300. Структура полученных образцов определялась с помощью рентгеновского дифрактометра ДРОН-3 (излучение CuK_α) и рамановского спектрометра Renishaw с длиной волны возбуждающего излучения аргонового лазера 514.5 нм.

3. Результаты и их обсуждение

Полученные образцы представляют из себя стабильные на воздухе темные порошки, состоящие из углеродной матрицы с включенными в нее наночастицами цинка. Следует отметить, что углеродная матрица является биосовместимой и предотвращает окисление и агрегации металлических наночастиц.

При синтезе образцов были выбраны следующие условия: $T_{pyr} = 700^{\circ}$ С и 900°С, $t_{pyr} = 300$ мин. СЭМ изображения двух синтезированных образцов представлены на рис.1. Видно, что почти сферические наночастицы достаточно однородно диспергированы в углеродной матрице. Отметим, что в образцах есть также определенное количество углеродных микросфер диаметром 2–3 мкм (о них подробнее см. в работах [11,12]).

Результаты энергодисперсионного рентгеновского микроанализа показывают, что состав образцов достаточно однороден и они состоят в основном из атомов углерода и цинка (примерно 3 ат%). В образцах наблюдается также некоторое количество азота, до 10 ат%, которое уменьшается при более высокой температуре пиролиза.

Рис.1. СЭМ изображения образцов, синтезированных при следующих условиях: (a) T_{pyr} = 700°С, t_{pyr} = 300 мин; (b) T_{pyr} = 900°С, t_{pyr} = 300 мин.

Распределения по размерам наночастиц для двух образцов, определенные из СЭМ изображения, показаны на рис.2. Для каждого образца были использованы данные для 150–200 наночастиц. Оба распределения имеют логарифмически-нормальный вид, что характерно для процесса коалесценции [2]. Как видно из рисунка, средний диаметр наночастиц (*d*_m) слабо зависит от температуры пиролиза и изменяется в пределах 140–160 нм.

Рис.2. Распределение по размерам наночастиц для образцов, полученных при следующих условиях: (а) $T_{pyr} = 700$ °C, $t_{pyr} = 300$ мин; (b) $T_{pyr} = 900$ °C, $t_{pyr} = 300$ мин.

Существенную информацию о структуре образцов дают спектры рентгеновской дифракции (рис.3). Как видно, есть значительная разница между спектрами образцов, синтезированных при различных температурах пиролиза. Сравнение с табличными данными из работы [13] показывает, что широкий пик около 25° соответствует частично графитированным углеродным микросферам ($d_{002} \approx 0.345$ нм) [11,12], в то время как 4 более узких пика на рис.3а, относятся к нанокристаллам цинка с гексагональной симметрией. В дополнение к этим пикам на рис.3b, видны 3 новых узких пика с меньшей интенсивностью, которые соответствуют нанокристаллитам цианида цинка с кубической симметрией [13]. В случае получения наночастиц цианида цинка реакцию пиролиза можно представить с помощью следующей формулы:

Рис.3. Спектры рентгеновской дифракции образцов с наночастицамы цинка и цианида цинка, синтезированных при (а) 700°С, 300 мин и (b) 900°С, 300 мин.

На наш взгляд, причиной появления наночастиц Zn(CN)₂ при высокой температуре пиролиза является сильное взаимодействие кластеров цинка с атомами углерода и азота. Кроме того, относительно низкие температуры плавления Zn (420°C) и Zn(CN)₂ (800°C) также способствуют усилению этого взаимодействия.

Интересные особенности наблюдаются в рамановских спектрах исследованных образцов (рис.4). Видны 2 узких пика примерно на 1350 см⁻¹ и 1590 см⁻¹, которые относятся соответственно к D- и G-полосам частично графитированных углеродных микросфер [12]. Весьма широкий максимум в области 1000– 3500 см⁻¹ на рис.4а может быть обусловлен люминесценцией из-за рекомбинационных процессов в sp² кластерах углеродной матрицы [14–17].

Рис.4. Рамановские спектры образцов полученных при (а) 700°С, 300 мин и (b) 900°С, 300 мин.

4. Заключение

Нами показано, что твердофазный пиролиз фталоцианина цинка является простым, одностадийным и эффективным методом получения наночастиц цинка

и цианида цинка в углеродных матрицах. Очевидно, что соотношение концентраций цинка и цианида цинка можно контролировать путем изменения условий пиролиза (в частности, сильное влияние имеет температура пиролиза). Известно также, что средние размеры наночастиц сильно зависят от времени пиролиза [8].

Авторы выражают благодарность В.М. Мыхитаряну за полезные обсуждения экспериментальных результатов.

Исследование выполнено при поддержке ГКН МОН РА в рамках армянобелорусского совместного научного проекта № 13РБ-050.

ЛИТЕРАТУРА

- 1. M. Inagaki. New Carbons. Control of Structure and Functions. Amsterdam, 2000.
- 2. **А.И. Гусев.** Наноматериалы, наноструктуры, нанотехнологии. Москва, Физматлит, 2009.
- 3. E. Roduner. Nanoscopic Materials: Size-Dependent Phenomena. Cambridge, UK, RSC Publishing, 2009.
- 4. Magnetic Nanoparticles, S. Gubin, ed., Weinhem, 2009.
- 5. K.C. Hwang. J. Phys. D: Appl. Phys., 43, 374001 (2010).
- 6. **А.С. Манукян, А.А. Мирзаханян, Г.Р. Бадалян, Г.О. Ширинян, Э.Г.Шароян.** Изв. НАН Армении, Физика, **45**, 202 (2010).
- 7. А.С. Манукян, А.А. Мирзаханян, Т.К. Хачатрян, Г.Р. Бадалян, К.Г. Абдулвахидов, Л.А. Бугаев, Э.Г. Шароян. Изв. НАН Армении, Физика, 47, 442 (2012).
- A.S. Manukyan, A.A. Mirzakhanyan, G.R. Badalyan, G.H. Shirinyan, A.G. Fedorenko, N.V. Lianguzov, Yu.I. Yuzyuk, L.A. Bugaev, E.G. Sharoyan. J. Nanopart. Res., 14, 982 (2012).
- 9. A.S. Manukyan, A.A. Mirzakhanyan, T.K. Khachatyran, R.D. Khachaturyan, G.R. Badalyan, E.G. Sharoyan. Armenian J. Physics, 6, 61 (2013).
- 10. A. Manukyan, A. Mirzakhanyan, L. Sajti, R. Khachaturyan, E. Kaniukov, L. Lobanovsky, E. Sharoyan. NANO, 10, 1550089 (2015).
- 11. А.С. Манукян, А.А. Мирзаханян, Т.К. Хачатрян, Г.Р. Бадалян, Г.М. Арзуманян, Э.Г. Шароян. Изв. НАН Армении, Физика, **48**, 63 (2013).
- 12. А.С. Манукян, А.А. Мирзаханян, Р.Д. Хачатурян, А.Т. Гюласарян, А.Н. Кочарян, Ю.И. Юзюк, Э.Г. Шароян. Изв. НАН Армении, Физика, 50, 258 (2015).
- 13. **Л.И. Миркин.** Справочник по рентгеноструктурному анализу поликристаллов. Москва, ГИФМЛ, 1961.
- 14. A.C. Ferrari, J. Robertson. Phys. Rev. B, 61, 14095 (2000).
- 15. A.C. Ferrari, J. Robertson. Phyl. Trans. Roy. Soc. (London) A, 362, 2477 (2004).
- 16. L.G. Cancado, K. Takai, T. Enoki, et al. Appl. Phys. Lett., 88, 163103 (2006).
- 17. L.G. Cancado, K. Takai, T. Enoki, et al. Carbon, 46, 272 (2008).

8ኮՆԿԻ \$SULበ8ኮԱՆԻՆԻ ՊԻՆԴ-\$UՁU8ԻՆ ՊԻՐՈԼԻՉԻ ՄԻՋՈ8ՈՎ ՍՏԱՑՎԱԾ ԱԾԽԱԾՆԱՑԻՆ ՄԱՏՐԻՑՆԵՐՈՒՄ 8ԻՆԿԻ ԵՎ 8ԻՆԿԻ 8ԻԱՆԻԴԻ ՆԱՆՈՄԱՍՆԻԿՆԵՐԻ ՀԵՏԱՁՈՏՈՒԹՅՈՒՆԸ

Ա.Ա. ՄԻՐՉԱԽԱՆՅԱՆ, Ա.Ս. ՄԱՆՈԻԿՅԱՆ, Հ.Տ. ԳՅՈՒԼԱՍԱՐՅԱՆ, Ա.Կ. ԳԻՆՈՅԱՆ, Մ.Խ. ՆՈՒՐԻՋԱՆՅԱՆ, ՅՈւ. Ի. ՅՈՒՉՅՈՒԿ, Ե.ՅՈւ. ԿԱՆՅՈՒԿՈՎ, Է.Գ. ՇԱՌՈՅԱՆ

Oqտագործելով ցինկի ֆտալոցիանինի (ZnC32H16N8) պինդ ֆազային պիրոլիզը ստացված են ցինկի և ցինկի ցիանիդի նանոմասնիկներ ածխածնային մատրիցներում 3 ատ% ցինկի կոնցենտրացիայով։ Նմուշների կառուցվածքը և բաղադրությունը հետազոտված են էլեկտրոնային տեսածրող մանրադիտակով, ռենտգենյան դիֆրակցիայի և ռամանյան սպեկտրաչափության մեթոդներով։ ծույց է տրված, որ պիրոլիզի ցածր ջերմաստիձանի դեպքում (700°C) ձևավորվում են միայն ցինկի նանոմասնիկներ, իսկ ավելի բարձր ջերմաստիձանում (900°C) սինթեզվում են նաև որոշակի քանակությամբ ցինկի ցիանիդի նանոբյուրեղներ։ Նանոմասնիկների միջին տրամագիծը մոտավորապես 150 նմ է, իսկ դրանց չափսերի բաշխումը ունի լոգ-նորմալ տեսք։

CHARACTERIZATION OF ZINC AND ZINC CYANIDE NANOPARTICLES IN CARBON MATRICES PREPARED BY SOLID-PHASE PYROLYSIS OF ZINC-PHTHALOCYANINE

A.A. MIRZAKHANYAN, A.S. MANUKYAN, H.T. GYULASARYAN, A.K. GINOYAN, M.KH. NURIJANYAN, YU.I. YUZYUK, E.YU. KANIUKOV, E.G. SHAROYAN

Using solid-phase pyrolysis of Zn-phthalocyanine (ZnC₃₂H₁₆N₈), we have prepared zinc and zinc cyanide nanoparticles in carbon matrices with a zinc concentration of 3 at%. The structure and composition of samples were investigated by the methods of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. It is shown that at low pyrolysis temperature (700°C) only the Zn nanoparticles are formed, whereas at higher temperature (900°C) a certain amount of Zn(CN)₂ nanoparticles are also synthesized. The mean diameter of nanoparticles is about 150 nm, and their size distribution has a log-normal shape.