УДК 535.343

АТОМНЫЕ ПЕРЕХОДЫ D₂ ЛИНИИ ЦЕЗИЯ В СИЛЬНЫХ ПОПЕРЕЧНЫХ МАГНИТНЫХ ПОЛЯХ

А.Д. САРГСЯН^{1*}, Г.Т. АХУМЯН¹, А.О. АМИРЯН^{1,2}, К. ЛЕРУА², А.С. САРКИСЯН¹, Д.Г. САРКИСЯН¹

¹Институт физических исследований НАН Армении, Аштарак, Армения ²Институт Карно Бургундии, Университет Бургундии, Дижон, Франция

*e-mail: sarmeno@mail.ru

(Поступила в редакцию 16 апреля 2015 г.)

Впервые исследованы атомные переходы цезия в сильных поперечных магнитных полях вплоть до 7 кГс с высоким спектральным разрешением. Использован $\lambda/2$ -метод на основе наноячейки с толщиной L в полдлины волны ($L = \lambda/2 = 426$ нм) резонансного с D₂ линией лазерного излучения, который позволяет проследить поведение каждого отдельного атомного перехода. В спектре поглощения при линейно-поляризованном (π) возбуждении и магнитных полях B > 5 кГс остаются всего 16 атомных переходов (при меньших полях имеются 56 переходов), которые имеют почти одинаковые амплитуды. Наблюдается хорошее согласие эксперимента с теорией.

1. Введение

Исследования поведения атомных уровней и переходов во внешних электрических и магнитных полях проводятся достаточно давно, поскольку позволяют лучше понять структуру атомов [1–4]. В последние годы активно изучается поведение атомных переходов (оптический диапазон) щелочных металлов во внешних сильных магнитных полях вплоть до наблюдения режима Пашена-Бака на сверхтонкой (ПБС) структуре [5–8]. Это стало возможным с появлением доступных сильных постоянных магнитов, узкополосных диодных лазеров и новых методик, обеспечивающих субдопплеровское спектральное разрешение [9,10]. Последнее требуется для идентификации отдельных переходов, поскольку спектры поглощения содержат большое число близкорасположенных компонент и необходимо их спектральное разрешение [8–11]. Например, в работе [12] при использовании заполненной Cs ячейки с толщиной в полдлины волны резонансного с D₂ линией лазерного излучения ($\lambda/2$ -метод) показано, что во внешнем магнитном поле происходит гигантское возрастание вероятностей атомных переходов D₂ линии $6S_{1/2}$ ($F_g = 3$) $\rightarrow 6P_{3/2}$ ($F_e = 5$), которые запрещены при нулевом магнитном поле. Применяя $\lambda/2$ -метод, в работе [7] продемонстрировано, что в спектре поглощения паров Cs при круговой поляризации (σ^+ или σ^-) лазерного излучения и при магнитной индукции $B > 5\kappa\Gamma c$ регистрируются 16 атомных переходов, содержащихся в двух раздельных группах по 8 атомных переходов.

Помимо научного интереса, такие исследования имеют и практические применения, такие как: 1) формирование частотного репера на сильно смещенных частотах (до $\pm 20 \,\Gamma\Gamma\mu$) относительно исходных атомных уровней Cs и Rb при нулевом магнитном поле, а также привязка частоты лазера (стабилизация) к таким, сильно смещенным атомным уровням [11]; 2) разработка магнитометра для картографирования сильно неоднородных магнитных полей с субмикронным пространственным разрешением [10]; 3) создание оптического изолятора, работающего на эффекте Фарадея в сильных магнитных полях [13].

2. Конфигурация атомных переходов

В настоящей работе приведены экспериментальные результаты по изучению поведения атомных переходов Cs (D₂ линии) в сильных поперечных магнит-

Рис.1. (а) Диаграмма для переходов 4→3',4',5' и (б) диаграмма для переходов 3→2',3',4'.

ных полях в случае π -поляризованного возбуждающего излучения с использованием обеспечивающего высокое спектральное разрешение $\lambda/2$ -метода. Для определения величин магнитных полей, которые могут считаться сильными или слабыми, вводится характерная величина магнитного поля $B_0 = A_{hfs}/\mu_B$, где A_{hfs} – коэффициент связи сверхтонкой структуры для уровня $6S_{1/2}$ и μ_B – магнетон Бора [14]. Величина B_0 составляет ~1.7 кГс. Известно, что в слабых магнитных полях, когда $B \ll B_0$, расщепление атомных уровней описывается полным моментом атома $\mathbf{F} = \mathbf{J} + \mathbf{I}$ и его проекцией m_F , где $\mathbf{J} = \mathbf{L} + \mathbf{S}$ – полный угловой момента электрона, а \mathbf{I} – магнитный момент ядра (для цезия I = 7/2).

Полное число атомных переходов в случае π -поляризованного излучения с учетом правил отбора для переходов между нижними F_g и верхними F_e уровнями ($F_e - F_g = \Delta F = 0, \pm 1, \Delta m_F = 0$) показано на диаграмме, приведенной на рис.1. Для удобства диаграммы для переходов $4 \rightarrow 3', 4', 5'$ (рис.1а) и переходов $3 \rightarrow 2', 3', 4'$ (рис.1б) приведены раздельно. Штрихами отмечены верхние уровни. Здесь также добавлены атомные переходы, которые запрещены при нулевом магнитном поле и для которых $\Delta F = \pm 2$. В сильных магнитных полях происходит возрастание вероятности этих переходов: пять переходов $4 \rightarrow 2'$ на рис.1а под номерами 6, 10, 14, 18 и 22 и семь переходов $3 \rightarrow 5'$ на рис.16 под номерами 3, 7, 11, 15, 19, 23 и 26, отмеченные пунктирными линиями.

Рис.2. Диаграмма атомных переходов для D_2 линии атомов Cs в случае, когда реализуется режим ПБС. Правила отбора для атомных переходов между нижними и верхними уровнями для π -поляризованного возбуждения следующие: $\Delta m_J = 0$ и $\Delta m_I = 0$, поэтому в спектре остаются 16 переходов, отмеченные цифрами 1–16.

Во внешнем магнитном поле в спектре поглощения также могут регистрироваться переходы F_g , $m_F = 0 \rightarrow F_e$, $m_F = 0$. В случае, когда $\Delta F = 0$, один такой переход 4, $m_F = 0 \rightarrow 4'$, $m_F = 0$ показан на рис.1а под номером 16 и один такой переход 3, $m_F = 0 \rightarrow 3'$, $m_F = 0$ показан на рис.16 под номером 13. Эти переходы запрещены при B = 0, поэтому они отмечены пунктирными линиями. Полное число атомных переходов составляет 56, из которых 26 переходов с нижнего уровня $F_g = 3$ и 30 переходов с нижнего уровня $F_g = 4$. В сильных магнитных полях (режим ПБС), когда $B >> B_0$, начинает происходить разрыв связи между **J** и **I**, и расщепление атомных уровней описывается проекциями m_J и m_I . Диаграмма переходов в случае π -поляризованного излучения для D₂ линии атомов Cs (с учетом новых правил отбора для π_J и m_J и m_I) приведена на рис.2. В режиме ПБС происходит существенное уменьшение числа атомных переходов: из 56 атомных переходов, показанных на рис.1, в сильных магнитных полях остаются 16 переходов. Такое существенное уменьшение числа атомных переходов характерно для режима ПБС в щелочных металлах [15,16].

Другие проявления режима ПБС следующие: а) внутри каждой группы вероятности переходов (или интенсивности линий в спектрах поглощения)

Рис.3. Схема экспериментальной установки. ECDL – диодный лазер; FI – фарадеевский изолятор; PBS – поляризационная призма, *l* – основная Cs наноячейка внутри печки; PM – постоянные магниты, закрепленные на магнитопроводе (показаны на вставке внизу); *2* – дополнительная наноячейка с Cs для формирования репера; L – линзы, *3* – фотоприемники; *4* – четырехлучевой цифровой осциллограф Tektronix TDS2014B.

асимптотически стремятся к одной и той же величине; б) к одной и той же величине асимптотически стремятся и частотные наклоны в единицах МГц/Гс для атомных переходов, находящихся в той же группе; в) при $B >> B_0$ частотные сдвиги (энергии) зеемановских подуровней уровней $6S_{1/2}$ и $6P_{3/2}$ D₂ линии атомов Cs становятся линейными по B и описываются формулой [14]

$$E_{|Jm_J lm_I\rangle} = A_{\rm hfs} m_J m_I + B_{\rm hfs} \frac{3(m_J m_I)^2 + 1.5m_J m_I - I(I+1)J(J+1)}{2J(2J-1)I(2I-1)} + \mu_B(g_J m_J + g_I m_I)B_z,$$
(1)

где A_{hfs} и B_{hfs} – константы сверхтонкого расщепления уровня, g_J и g_I – факторы Ланде для полного момента электрона **J** и магнитного момента ядра **I**, которые приведены в [14].

3. Экспериментальные результаты

На рис.3 приведена экспериментальная схема. Для регистрации спектра поглощения используется наноячейка (НЯ) заполненная Cs с толщиной в направлении лазерного излучения равной полдлины волны ($L = \lambda/2 = 426$ нм) резонансного с D₂ линией лазерного излучения. НЯ использовалась для реализации λ/2метода, который обеспечивает существенное сужение линий поглощения, что особенно важно при наличии большого числа близкорасположенных атомных переходов. НЯ помещалась в печку, в которой имелись отверстия для прохождения лазерного излучения, и нагревалась до 110°С, что обеспечивало плотность атомов $N \sim 10^{13}$ см⁻³ (детали конструкции НЯ приведены в работе [17]). Использовалось излучение перестраиваемого узкополосного диодного лазера с внешним резонатором (extended cavity diode laser – ECDL) с длиной волны 852 нм и спектральной шириной ~1 МГц. НЯ с $L = \lambda/2$ помещалась между сильными постоянными магнитами, которые фиксировались на металлическом магнитопроводе для формирования магнитного поля $B \sim 6 \, \mathrm{k\Gamma c}$ (см. нижную вставку на рис.3). На магнитопроводе помещалась катушка с обмоткой, через которую пропускался постоянный ток и которая позволяла варьировать величину B в интервале 4–7 кГс. Излучение фокусировалось линзой (фокусное расстояние F = 20 см) в НЯ с размером пучка в перетяжке ~0.4 мм и далее коллимировалось с помощью второй линзы. Взаимное расположение магнитной индукции В, напряженности лазерного поля E и направление лазерного излучения k ($k = 2\pi/\lambda$) приведено на верхней вставке рис.3. Для формирования частотного репера при B = 0 (от него измеряются частотные сдвиги) часть лазерного излучения направлялась на узел, состоящий из дополнительной НЯ с $L = \lambda/2$, спектр поглощения которой служил частотным репером [12].

Полный спектр атомных переходов $6S_{1/2} \rightarrow 6P_{3/2}$ при $B \approx 5650$ Гс, полученный $\lambda/2$ -методом, при π -поляризованном возбуждении приведен рис.4. Нижний спектр – частотный репер при B = 0. Проверка линейности сканирования частоты лазера проводилась по реперному спектру. Прямоугольниками отмечены номера переходов, которые при B = 0 являются запрещенными, однако с увеличением B их вероятности быстро растут. Абсолютная величина поглощения при использовании $\lambda/2$ -метода составляет 1–2%, поэтому величина поглощения может быть записана как $A = \sigma NL$, где $\sigma \sim d^2$ и d – дипольный момент переходов в спектрах поглощения пропорциональны вероятностям атомных переходов. Линии поглощения в спектре (рис.4) могут быть аппроксимированы функциями «псевдо-Войгта» (программа Origin). Как видно из рис.4, $\lambda/2$ -метод позволяет зарегистрировать поведение всех шестнадцати атомных переходов. Если использовать заполненную Cs обычную ячейку с длиной L = 0.1-1 см (в этом случае допплеровская ширина каждого перехода больше 400 МГц), то атомные переходы будут сильно перекрываться [6,13].

Laser frequency detuning, MHz

Рис.4. D₂ линия атомов Cs. Полный спектр поглощения полученный $\lambda/2$ -методом при $B \approx 5650$ Гс и мощности лазера 10 мкВт. Спектр содержит 16 атомных переходов для $6S_{1/2} \rightarrow 6P_{3/2}$. Нижняя кривая – исходный спектр поглощения атомов при B = 0 (реперный спектр) для определения частотных сдвигов от перехода $4 \rightarrow 5'$ атомов Cs.

На рис.5 приведен полный спектр атомных переходов $6S_{1/2} \rightarrow 6P_{3/2}$ при $B \approx 6.8 \text{ кГс}$, полученный $\lambda/2$ -методом при π -поляризованном возбуждении. Нижний спектр – частотный репер при B = 0. Как видно, все 16 атомных переходов спектрально хорошо разрешены. Прямоугольниками отмечены номера переходов

Рис.5. Полный спектр поглощения D₂ линия атомов Cs, полученный $\lambda/2$ -методом при $B \approx 6.8$ кГс и мощности лазера 6 мкВт. Спектр содержит 16 атомных переходов для $6S_{1/2} \rightarrow 6P_{3/2}$. Нижняя кривая – исходный спектр поглощения атомов при B = 0 (реперный спектр) для определения частотных сдвигов от перехода $4 \rightarrow 5'$ атомов Cs.

 $F_{g}, m_{F} = 0 \rightarrow F_{e}, m_{F} = 0, (F_{g} = F_{e}),$ которые при B = 0 являются запрещенными, однако с увеличением B их вероятности быстро растут.

Для количественного определения частот и вероятностей атомных переходов D₂ линии атомов Cs нами применена известная модель, использующая матрицу гамильтониана в магнитном поле с учетом всех переходов внутри сверхтонкой структуры атома [1,2,18,19]. На рис.6 приведены частоты компонент 1–16 при изменении магнитного поля вплоть до 10 кГс. Как видно, при B > 8.5 кГс переходы перегруппировываются, образуя две большие группы. В первой группе переходы 1–8, а во второй группе переходы 9–16, при этом частотное разделение этих двух груп возрастает с увеличением магнитного поля. На рис.6 приведена группа из семи атомных переходов, заключенная в овал в верхней части рисунка. Эти семь переходов расположены на высокочастотном крыле спектра, отмечены как атомные переходы 1'–7' и приведены на рис.7. Заметим, что их вероятности с увеличением магнитного поля *B* стремятся к нулю (см.ниже). Для этих переходов нижние и верхние значения *F*, m_F приведены в прямоугольнике в левом верхнем углу рис.6.

На рис.6 приведена также группа из семи атомных переходов, заключенная в овал в нижней части рисунка. Эти семь переходов расположены на низкочастоном крыле спектра, отмечены как 1"-7" и приведены на рис.8. Вероятности этих переходов с увеличением магнитного поля *В* также стремятся

Рис.6. Расщепление и частотные сдвиги атомных переходов D_2 линии от магнитного поля *B*. При $B >> B_0$ атомные переходы перегруппировываются в две новые группы: переходы 1–8 и переходы 9–16. Приведены заключенные в овалы 2 группы по семь переходов, вероятности которых при $B >> B_0$ стремятся к нулю.

Laser frequency detuning, MHz

Рис.7. Фрагмент высокочастотного крыла спектра переходов $6S_{1/2} \rightarrow 6P_{3/2}$, содержащий атомные переходы 1–6 и 1'–7' при $B \approx 5$ кГс. Нижняя кривая – атомные переходы $F_g = 3 \rightarrow F_e = 2,3,4$ при B = 0, полученные в ячейке с L = 3 см.

к нулю. Для этих переходов нижние и верхние значения F, m_F приведены в прямоугольнике в правом нижнем углу рис.6. То обстоятельство, что вероятности переходов 1'-7' и 1"-7" должны стремиться к нулю при $B >> B_0$ (см. рис.9), следует также из диаграммы для атомных переходов D₂ линии атомов Cs в случае, когда реализуется режим ПБС. Из диаграммы видно, что в сильных магнитных

Laser frequency detuning, MHz

Рис.8. Фрагмент низкочастотного крыла спектра переходов $6S_{1/2} \rightarrow 6P_{3/2}$, содержащий атомные переходы 8, 10–16, и 1"–7" при $B \approx 5$ кГс. Нижняя кривая – атомные переходы $F_g = 4 \rightarrow F_e = 3,4,5$ при B = 0, полученные в ячейке с L = 3 см.

Рис.9. Расчетные величины частотных сдвигов переходов 1-16 в зависимости от магнитного поля *В*. При *В* >> B_0 переходы перегруппировываются в две группы: 1-8 и 9-16. Сплошные линии – расчетные кривые, черными квадратами показаны экспериментальные данные (ошибка 2%).

полях в спектре поглощения $6S_{1/2} \rightarrow 6P_{3/2}$ остаются только переходы 1–16.

На рис.9 сплошными линиями приведены расчетные величины частотных сдвигов переходов 1–16 в зависимости от магнитного поля *B* в интервале 4–7 кГс. При $B \gg B_0$ переходы перегруппировываются и образуют две группы, в каждой

из которых находится восемь атомных переходов. Черными квадратами показаны экспериментальные результаты, размер квадратов соответствует ошибке эксперимента, которая составляет ~2%). Измерение смещения частот выполняется от перехода Cs, 4→5' (отмечен на рис.4,5).

Расчетные значения интенсивностей переходов в зависимости от магнитного поля *B* приведены на рис.10. При магнитных полях B > 5 кГс интенсивности переходов 1–16 стремятся к той же асимптотической величине. Следовательно, режим ПБС, когда происходит выравнивание интенсивностей переходов в группе, достигается при больших магнитных полях, что хорошо согласуется с экспериментальными спектрами (рис.4,5). Отметим, что вероятности переходов 1'–7' и 1"–7" при B > 5 кГс стремятся к нулю.

Рис.10. Расчетные значения вероятностей (интенсивностей) переходов D₂ линии атомов Cs, при π -поляризованном возбуждении в зависимости от магнитного поля *B*. При $B >> B_0$ вероятности всех шестнадцати (1–16) переходов стремятся к той же асимптотической величине.

4. Обсуждение результатов

Частотные наклоны атомных переходов при полях $B >> B_0$ для двух групп, содержащих переходы 1–8 и 9–16 (рис.6), можно легко получить из формулы (1): $s \approx [g_J (P_{3/2}) m_J - g_J (S_{1/2}) m_J] \mu_B/B$, где $g_J (P_{3/2}) \approx 1.334$, $g_J (S_{1/2}) \approx 2.002$, $\mu_B \approx 1.399$ МГц/Гс (член $g_I m_I$ – мал, поэтому опущен). Для группы, содержащей переходы 1–8, величина $s \approx 0.47$ МГц/Гс, а для группы, содержащей переходы 9–16, величина $s \approx -0.47$ МГц/Гс.

Интересно провести сравнение результатов исследования поведения переходов D_2 линии атомов Cs в сильных поперечных (в случае π -поляризованного излучения) и продольных (в случае σ^+ -поляризованного излучения [7]) магнитных полях с использованием $\lambda/2$ -метода. На рис.11 приведен полный спектр

Рис.11. Полный спектр поглощения атомных переходов D₂ линии атомов Cs при σ^+ возбуждении, B = 6.8 кГс. Спектр содержит 16 компонент – атомные переходы $6S_{1/2} \rightarrow 6P_{3/2}$. Кривая в нижнем углу – реперный спектр.

атомных переходов 6S_{1/2} \rightarrow 6P_{3/2} (переходы 1–16) при *B* = 6.8 кГс, полученный λ /2методом, при σ^+ возбуждении [7]. Как видно из рисунка, в случае σ^+ возбуждения переходы 1–8 и 9–16 имеют разные амплитуды, однако в своих группах (1–8) и (9–16) амплитуды равны. Это сильно отличается от случая π -поляризованного возбуждения (сравните с рис.5). Это первое и важное отличие.

Второе отличие было показано в работе [12], что во внешнем магнитном поле в интервале 0.5–4 кГс при σ^+ возбуждении происходит гигантское возрастание вероятности семи атомных переходов $6S_{1/2}(F_g = 3) \rightarrow 6P_{3/2}(F_e = 5)$ D₂ линии атомов Cs, которые расположены на высокочастотном крыле спектра. Однако, в случае π -поляризованного возбуждения вероятности этих переходов быстро стремятся к нулю уже при полях $B \sim 300$ Гс, а семь переходов 1'–7', которые расположены на высокочастотном крыле спектра (рис.7), являются разрешенными (для них нижние и верхние *F*, *m*_F приведены в прямоугольнике в левом верхнем углу рис.6).

Третье, в случае π -поляризованного возбуждения имеются запрещенные (при B = 0) переходы F_g , $m_F = 0 \rightarrow F_e$, $m_F = 0$ (когда $F_g = F_e$), вероятности которых быстро растут с увеличением магнитного поля (номера переходов отмечены прямоугольниками на рис.4,5). Такие переходы отсутствуют при σ^+ -поляризованном возбуждении.

Последнее, частотный интервал между переходами под номерами 1 и 16 при $B = 7 \ \kappa\Gamma c$ в случае π -поляризованного возбуждения составляет 14 760 МГц, а для σ^+ возбуждения эта величина почти на 1 ГГц больше. В качестве практического применения полученных результатов отметим следующее. В работе [16] приведено простое устройство на основе заполненной Cs микроячейки и двух сильных постоянных магнитов, между которыми помещается микроячейка. Все устройство, закрепленное на одном держателе, является удобным перестраиваемым частотным репером, поскольку содержит в спектре пропускания узкие спектральные линии, сильно смещенные по частоте. Аналогичное устройство может быть создано на основе микроячейки, заполненной Cs (линии D_1 и D_2) и для случая π -поляризованного возбуждения.

5. Заключение

Впервые приводятся результаты экспериментального исследования поведения атомных переходов Cs в сильных поперечных магнитных полях вплоть до 7 кГс с высоким спектральным разрешением. Использованный метод на основе НЯ с толщиной в полдлины волны $L = \lambda/2 = 426$ нм резонансного с D₂ линией лазерного излучения ($\lambda/2$ -метод) позволил проследить поведение атомных переходов 1–16, а также слабых атомных переходов 1'–7' и 1"–7".

Важно отметить, что аналогичные исследования поведения атомных переходов в сильных магнитных полях с высоким спектральным разрешением можно реализовать с помощью достаточно сложной и дорогостоящей техники с использованием атомных пучков [20,21]. Приведены различия поведения атомных переходов D_2 линии атомов Cs в сильных поперечных (в случае π -поляризованного возбуждения) и продольных (в случае σ^+ -поляризованного возбуждения) магнитных полях.

Работа выполнена в рамках International Associated Laboratory IRMAS (CNRS-France & SCS-Armenia). Авторы благодарят за финансовую поддержку ГКН МОН РА (проект № SCS 13-1С029) и ANSEF (грант Орt 3700)

ЛИТЕРАТУРА

- 1. P. Tremblay, A. Michaud, M. Levesque, et al. Phys. Rev. A, 42, 2766 (1990).
- 2. Е.Б. Александров, Г.И. Хвостенко, М.П. Чайка Интерференция атомных состояний. Москва, Наука, 1991.
- 3. А.Д. Саргсян, А.С. Саркисян, А.В. Папоян, Д.Г. Саркисян. Известия НАН Армении, Физика, 44, 195 (2009).
- 4. А. Саргсян, Г. Ахумян, Д. Саркисян. Известия НАН Армении, Физика, 47, 98 (2012).
- 5. A. Sargsyan, G. Hakhumyan, C. Leroy, et al. Opt. Lett., 37, 1379 (2012).
- 6. L. Weller, K.S. Kleinbach, M.A. Zentile, et al. Opt. Lett. 37, 3405 (2012).
- 7. А. Саргсян, Г. Ахумян, Р. Мирзоян, Д. Саркисян. Письма в ЖЭТФ, 98, 499 (2013).
- 8. А.Д. Саргсян, Р.К. Мирзоян, А.С. Саркисян, А.О. Амирян, Д.Г. Саркисян. Известия НАН Армении, Физика, 49, 31 (2013).
- 9. А.Д. Саргсян, Д.Г. Саркисян, Е. Пашаян-Леруа, К. Леруа, П. Морошкин, А. Вейс. Известия НАН Армении, Физика, 43, 11 (2008).

- 10. A. Sargsyan, G. Hakhumyan, A. Papoyan, et al. Appl. Phys. Lett., 93, 021119 (2008).
- 11. A. Sargsyan, A. Tonoyan, R. Mirzoyan, et al. Opt. Lett., 39, 2270 (2014).
- 12. A. Sargsyan, A. Tonoyan, G. Hakhumyan, et al. Las. Phys. Lett., 11, 055701 (2014).
- M.A. Zentile, R. Andrews, L. Weller, et al. J. Phys. B: At. Mol. Opt. Phys., 47, 075005 (2014).
- 14. D.A. Steck. Alkali D line data, available from: steck.us/alkalidata/ [cited March 7, 2011].
- 15. А. Саргсян, Г. Ахумян, А. Папоян, Д. Саркисян. Письма в ЖЭТФ, 101, 330 (2015).
- 16. А. Саргсян, Б. Глушко, Д. Саркисян. ЖЭТФ, 147, 668 (2015).
- 17. J. Keaveney, A. Sargsyan, U. Krohn, et al. Phys. Rev. Lett., 108,173601 (2012).
- 18. G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, et al. Opt. Commun., 284, 4007 (2011).
- 19. A. Sargsyan, A. Tonoyan, G. Hakhumyan, et al. Optics Commun., 334, 208 (2015).
- 20. C. Umfer, L. Windholz, M. Musso. Z. Phys. D, 25, 23 (1992).
- 21. S. Werbowy, J. Kwela, N. Anjum, et al. Phys. Rev. A, 90, 032515 (2014).

Cs-Ի D2 ԳԾԻ ԱՏՈՄԱԿԱՆ ԱՆՑՈՒՄՆԵՐԸ ՈՒԺԵՂ ԼԱՅՆԱԿԱՆ ՄԱԳՆԻՍԱԿԱՆ ԴԱՇՏԵՐՈՒՄ

Ա.Դ. ՍԱՐԳՍՅԱՆ, Հ.Թ. ՀԱԽՈՒՄՅԱՆ, Ա.Հ. ԱՄԻՐՅԱՆ, Կ. ԼԵՌՈՒԱ, Հ.Ս. ՍԱՐԿԻՍՅԱՆ, Դ.Հ. ՍԱՐԳՍՅԱՆ

Տարածական բարձր լուծողունակությամբ փորձնականորեն հետազոտված են Ցեզիումի ատոմական անցումները ուժեղ՝ ընդհուպ մինչև 7 կԳս մագնիսական դաշտերում։ Օգտագործված է կես-ալիքի երկարությամբ նանոբջջի $L = \lambda/2 = 426$ նմ վրա հիմնված մեթոդ, որը հնարավորություն է տալիս հետևել յուրաքանչյուր ատոմական անցման վարքը։Հազերային ձառագայթը գտնվում է D₂ գծի հետ ռեզոնանսի մեջ։ Գծային բևեռացված լազերային ձառագայթման կլանման սպեկտրում և արտաքին՝ B > 5 կԳս մագնիսական դաշտերում մնում են միայն 16 ատոմական անցումներ (փոքր դաշտերում անցումների թիվը 56 է)։ Փորձնական արդյունքներն ու տեսական հաշվարկները գտվում են լավ համապատասխանության մեջ։

ATOMIC TRANSITIONS OF Cs D₂ LINE IN STRONG TRANSVERSE MAGNETIC FIELDS A.D. SARGSYAN, G.T. HAKHUMYAN, A.H. AMIRYAN, C. LEROY, H.S. SARKISYAN, D.H. SARKISYAN

Atomic transitions of D₂ line of the Cs atoms in the strong transverse magnetic fields up to 7 kG with high spectral resolution were studied for the first time. The method based on the nanocell with half-wavelength thickness ($\lambda/2$ method) which allows to study the individual atomic transitions is used. When the laser radiation has linear π polarization and magnetic fields of B > 5 kG only 16 atomic transitions (at lower fields there are 56 transitions), which have nearly the same amplitudes, remain in absorption spectrum. Experiment is in a good agreement with the theory.