УДК 538.971

ИССЛЕДОВАНИЕ ПОВЕРХНОСТИ ТЕРМИЧЕСКИ ОБРАБОТАННОГО ГЕКСАБОРИДА ЛАНТАНА

А.С. ИГИТЯН 1 , Е.А. КАФАДАРЯН 1* , Н.Р. АГАМАЛЯН 1 , С.И. ПЕТРОСЯН 1 , Г.Р. БАДАЛЯН 1 , И.А. ГАМБАРЯН 1 , Р.К. ОВСЕПЯН 1 , О.С. СЕМЕРДЖЯН 2

¹Институт физических исследований НАН Армении, Аштарак, Армения ²Ереванский государственный университет, Ереван, Армения

*e-mail: kafad@ipr.sci.am

(Поступила в редакцию 16 января 2014 г.)

Исследована возможность выращивания оксида лантана (La_2O_3) на поверхности гексаборида лантана (LaB_6) с (100)- и (100/110)-ориентацией в условиях термического отжига с целью получения структуры металл-оксид-металл. Электронно-микроскопические изображения, рентгеновские и оптические спектры выявили слой La_2O_3 кубической симметрии. Рассмотрены особенности вольт–амперных и вольт–фарадных характеристик структур $Al/La_2O_3/(100)LaB_6$ и $Al/La_2O_3/(100/110)LaB_6$. Механизм электрической проводимости объяснен на основе тока, ограниченного пространственным зарядом.

1. Введение

 LaB_6 обладает структурой типа CsCl (пространственная группа Pm3m), в которой (100)-ориентированная поверхность LaB_6 состоит из атомов лантана, а (111)-поверхность состоит из бора [1,2]. В работах [1-3] показано, что бор на поверхности (111) взаимодействует с кислородом, образуя В–О связи, тогда как связи La—О образуются на поверхности (100) при взаимодействии лантана с кислородом.

Оксид лантана (La_2O_3) из-за высокой диэлектрической проницаемости и широкой запрещенной зоны [4,5] является перспективным диэлектриком для использования в качестве подзатворного слоя в структурах метал-оксид-полупроводник в динамических энергонезависимых элементах памяти [6,7]. В работе [8] сообщалось об использовании структуры $ZnO:Li/LaB_6$ в качестве сегнетоэлектрического бистабильного элемента памяти. Создание промежуточного слоя La_2O_3 в $ZnO:Li/LaB_6$ может улучшить характеристики (сегнетоэлектрический гистерезис, токи утечки, объем памяти) ZnO:Li, как это показано для $Ba_0.5Sr_{0.5}TiO_3/La_2O_3$ и $PbZr_{0.6}Ti_{0.4}/La_2O_3$ [9,10].

В данной работе главное внимание уделено изучению поверхностного слоя La_2O_3 , образующегося после термической обработки пленки LaB_6 . Измерены проводимость и емкость структур $Al/La_2O_3/(100)LaB_6$ и $Al/La_2O_3/(100/110)LaB_6$ и ток электронной эмиссии из пленок LaB_6 до и после отжига.

2. Методика эксперимента

(100)-ориентированные пленки LaB_6 (далее $(100)LaB_6$) и пленки со смешанной (100)- и (110)-ориентацией (далее $(100/110)LaB_6$) толщиной 280 и 600 нм, соответственно, были напылены на (100)-ориентированные подложки из окиси магния (MgO) при 850° С электронно-лучевым способом [11]. Скорость напыления составляла 3.7 и 6.4 Å/с для $(100)LaB_6$ и $(100/110)LaB_6$, соответственно. Пленки LaB_6 были отожжены в электропечи при температуре 400° С в течение 30 минут в кислородной среде. Далее образцы погружались в дистиллированную воду на 30 минут и повторно отжигались при 650° С в вакууме при давлении 2.7×10^{-2} Тор в течение 30 минут. Скорость нагрева была 0.6° С/с. После отжига температура печи понижалась естественным путем до комнатной в той же среде.

Состав и структурные характеристики пленок гексаборида лантана были изучены методами рентгеновской дифрактометрии (РД) с излучением CuK_{α} (дифрактометр ДРОН-1) и отражательной спектроскопии в видимом, ближнем (300–2500 нм) и дальнем (200–4000 см $^{-1}$) инфракрасном (ИК) диапазонах (спектрофотометры СФ-8, Specord M-80). Поверхностная структура пленки изучалась сканирующим электронным микроскопом (СЭМ) Vega TS-5130MM с использованием системы INCA Energy 300 для элементного анализа.

Вольт—фарадные (C–V) и вольт—амперные (I–V) характеристики отожженных пленок LaB₆ были измерены на частоте 1 кГц при напряжениях от -10 В до +10 В при помощи цифрового LCR-измерителя E7-8. Верхний A1 электрод площадью 3.4×10^{-3} см² был нанесен термическим напылением. Толщина пленки измерялась с помощью СЭМ, оптической интерференции и профилометра Ambios XP-1. Электронная эмиссия из пленок LaB₆ до и после отжига была измерена с помощью диодной схемы.

3. Результаты и обсуждение

3.1. Структурные характеристики

На рис.1 показаны рентгеновские спектры структур (100)LaB₆/MgO и (100/110)LaB₆/MgO после отжига при 400°C в кислороде, погружения в дистиллированную воду и последующего отжига в вакууме. Согласно рентгеновским идентификационным картам (JCPDS, карта 34-0427), дифракционные пики при $2\theta = 21.354^{\circ}$ (100) и 43.517° (200) относятся к (100)-ориентированным пленкам LaB₆, а пик (110) при $2\theta = 30.47^{\circ}$ принадлежит пленке (100/110)LaB₆. На рентгеновских спектрах пленок LaB₆, отожженных при 400°C в кислороде, отсутствуют рефлексы какого-либо окисла или новообразованного соединения. После погружения в дистиллированную воду и последующего отжига в вакууме при 650°C пики на спектре образца (100/110)LaB₆ (рис.1а) соответствуют отражениям (332), (222) и (622) кубического оксида лантана (La₂O₃), тогда как рентгеновский спектр (100)LaB₆ указывает на преимущественную (400)-ориентацию

кубического La_2O_3 (рис.1b). Пики идентифицированы согласно статьям [1-3,12] и JCPDS картам 04-0856, 54-0213, 83-2034. Рефлексы, соответствующие оксиду бора, гидроксиду лантана, бората лантана или карбоната лантана, не зарегистрированы.

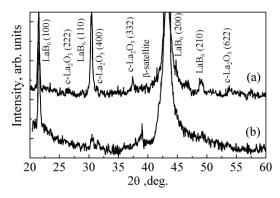


Рис.1. Рентгеновские спектры пленок (а) (100/110)LaB₆ и (b) (100)LaB₆ после отжига в вакууме при 650°C.

СЭМ изображения (100)- и (100/110)-ориентированных пленок LaB₆, отожженных при 400° С в кислороде (рис.2а,b), выявили гранулированную поверхностную структуру, хотя соответствующие рентгеновские спектры не зарегистрировали присутствие оксидного слоя. Элементный анализ пленок LaB₆ показал, что соотношение атомных концентраций B/La в самой пленке и O/La на поверхности пленки, соответственно, равно 6 и ~2.7. Последующая обработка измеренных атомных концентраций программой StrataGem показала, что окисленные пленки LaB₆ включают гидроксид лантана, La(OH)₃, вследствие поглощения влаги, а толщина пленок (100)LaB₆ и (100/110)LaB₆ уменьшилась, соответственно, до 250 и 590 нм. Наличия оксида бора в обеих структурах не выявлено.

СЭМ изображения структур, полученных после погружения в дистиллированную воду и повторного отжига (650° C, 30 минут), представлены на рис.2c,d. Рис.2c демонстрирует островковую структуру La₂O₃ на поверхности (100)LaB₆, тогда как поверхность La₂O₃/(100/110)LaB₆ является целостной, с равномерным распределением гранул (рис.2d). По-видимому, структура La₂O₃ зависит как от скорости образования центров роста, так и от ориентации подложки. Толщина оксидного слоя увеличилась до 60 и 100 нм, и, соответственно, толщина пленок (100) LaB₆ и (100/110) LaB₆ уменьшилась до 220 и 500 нм. По результатам СЭМ, РД и спектроскопическим данным оксид бора не присутствует в исследуемых образцах. Мы предполагаем, что отжиг пленок LaB₆ в кислороде при 400° C создает структуру La(OH)₃/La₂B₁₂O₂₁/LaB₆ [3]. La₂B₁₂O₂₁ представляет собой аморфный переходный слой, который переходит в гидроскид лантана La(OH)₃ и борную кислоту H₃BO₃ после гидратации (2La₂B₁₂O₂₁ + 42H₂O = 4La(OH)₃ + 24H₃BO₃). H₃BO₃ растворяется в воде из-за его высокой

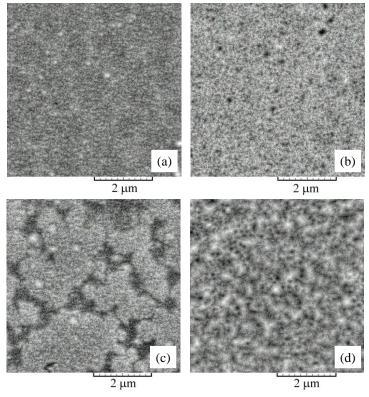


Рис.2. СЭМ изображения поверхностей пленок (a) $(100)\text{LaB}_6$ и (b) $(100/110)\text{LaB}_6$ после отжига в кислороде при 400°C в течение 30 мин, (c) и (d) — после отжига при 650°C в вакууме в течение 30 мин, соответственно.

растворимости, а $La(OH)_3$ после отжига при $650^{\circ}C$ в вакууме переходит в La_2O_3 $(4La(OH)_3 = 2La_2O_3 + 6H_2O^{\uparrow})$.

Влияние отжига на ИК спектры отражения пленок (100)LaB₆ и (100/110)LaB₆ показано на рис.3а,b. Кислородный отжиг LaB₆ при 400°C почти не изменил спектры отражения образцов. Полоса вблизи 3800 см⁻¹ соответствует колебаниям гидроксильных групп (О–Н). Пики, соответствующие колебаниям La–O в области 200–500 см⁻¹, не выявлены, потому что фононная структура прозрачной оксидной пленки экранируется отражением от нижнего металлического слоя LaB₆. Ступень на частоте 660 см⁻¹, обнаруженная во всех спектрах пленок LaB₆, является результатом решеточных колебаний бора [1,2,12]. Величина отражения отожженных пленок LaB₆ уменьшается с увеличением волнового числа из-за формирования поверхностного оксидного слоя, который заметно влияет на величину отражения в видимом и ближнем ИК диапазонах. На спектрах отражения пленок LaB₆ до отжига (рис.4, кривые *1*,2) наблюдается резкий плазменный край с минимумом вблизи 600 нм, что определяет гладкую малодефектную поверхность пленок LaB₆ [11]. Крутой наклон кривой *3*, полученной после отжига (100)LaB₆ при 650°C, означает гладкую поверхность раз-

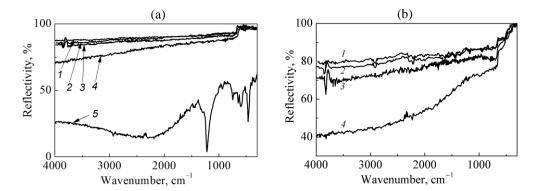


Рис.3. ИК спектры отражения пленок (a) (100)LaB₆ и (b) (100/110)LaB₆: (*I*) до отжига, (2) после отжига при 400° С в кислороде, (*3*) после погружения в воду на 30 мин, (*4*) после отжига при 650° С в вакууме в течение 30 мин, (*5*) после отжига при 650° С в течение 30 мин на воздухе.

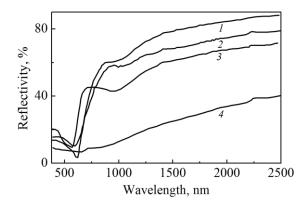


Рис.4. Спектры отражения пленок (1) (100)LaB₆ и (2) (100/110)LaB₆ в видимом и ближнем ИК диапазонах длин волн; (3) и (4) после отжига при 650° С в вакууме, соответственно.

дела структуры $La_2O_3/(100)LaB_6$. Пологий наклон плазменного края и низкое отражение проявляются в спектрах $La_2O_3/(100/110)LaB_6$ (кривая 4), что является результатом интенсивного рассеяния свободных носителей заряда на дефектах как в слое La_2O_3 , так и на границе $La_2O_3/(100/110)LaB_6$.

Следует отметить, что данные РД, СЭМ и ИК спектров пленок LaB₆, отожженных при 650° С в вакууме, качественно отличаются от результатов отжига на воздухе. В последнем случае, согласно рентгеновскому спектру, не представленному здесь, пленка превращается в La₂(CO₃)₃(H₂O)₈. ИК спектр La₂(CO₃)₃(H₂O)₈, полученный после отжига LaB₆ при 650° С на воздухе в течение 30 мин, представлен на рис.3а (кривая 5).

3.2. Электрические измерения

Электрические характеристики метал—оксид—метал (МОМ) конденсаторов с пленкой La_2O_3 толщиной 60 и 100 нм, где Al используется в качестве верхнего электрода, а LaB_6 – в качестве нижнего электрода, измерялись на частоте 1 кГц при напряжениях от -10 В до +10 В. На рис.5a,6 изображены вольт—амперные (I–V) характеристики структур Al/ La_2O_3 /(100/110) LaB_6 и Al/ La_2O_3 /(100) LaB_6 . Кривые I–V измерялись при увеличении напряжения от нуля до максимального значения и при понижении напряжения до нуля, V > 0 для Al+, V < 0 для Al—. На рис.5a,6 кружки соответствуют повышению напряжения, а квадраты — понижению. Кривые I–V для Al/ La_2O_3 /(100) LaB_6 и Al/ La_2O_3 /(100/110) LaB_6 являются экспоненциальными и асимметричными по полярности, указывая на то, что механизм, ответственный за проводимость, в обоих образцах один и тот же и зависит от величины энергетического барьера на контактах Al/ La_2O_3 и La_2O_3 / LaB_6 .

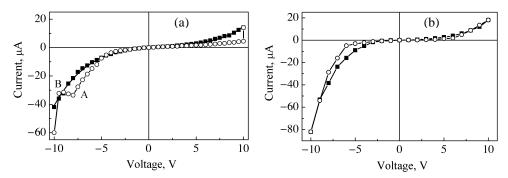


Рис.5. Вольт–амперные характеристики образцов (a) $Al/La_2O_3/(100)LaB_6$ и (b) $Al/La_2O_3/(100/110)LaB_6$. Кружки соответствуют повышению напряжения, заполненные квадраты – понижению.

Как видно из рис.5, ток утечки I при V < 0 намного больше, чем при V > 0. Максимальный ток утечки для структуры $Al/La_2O_3/(100/110)LaB_6$ был -82 мкA (-0.24 A/cm^2), а при напряженности электрического поля -1 MB/см он уменьшился до -10.3 мкA (-0.03 A/cm^2) для $Al/La_2O_3/(100)LaB_6$. Максимальный ток утечки -55 мкA (-0.12 A/cm^2) для $Al/La_2O_3/(100)LaB_6$ был получен при напряженности электрического поля -1.82 MB/см. Резкое увеличение тока при малых изменениях напряжения может быть следствием пробоя. Пробой пленок $La_2O_3/(100)LaB_6$ возникает при V > -8 B (точки "A" и "B" на рис.5а). После пробоя кривые I-V воспроизводятся при повторных измерениях, т.е. имеет место недеструктивный пробой [13]. Мотт и Гарни [14] первыми показали, что большие токи могут проходить через тонкую диэлектрическую пленку, если током управляет пространственный заряд, а не инжекция заряда в зону проводимости. Они показали, что если контакт металл—диэлектрик омический, то ток

через МОМ структуру может быть током, ограниченным пространственным зарядом и изменяющимся по закону $J \propto V^2/d^3$, где J – плотность тока, V – приложенное напряжение и d – толщина диэлектрика. Ламперт и Марк [15] привели эту зависимость к следующему виду:

$$J = \frac{9}{8} \varepsilon \mu \theta \frac{V^2}{d^3} \,, \tag{1}$$

где μ — дрейфовая подвижность свободных носителей заряда, θ — соотношение свободных зарядов и зарядов в ловушках. Реальные диэлектрики, особенно такие, как La₂O₃, сформированные путем отжига LaB₆, имеют много ловушек из-за структурных дефектов и нестехиометричности. Для идеального диэлектрика без ловушек $\theta = 1$, а для диэлектрика с ловушками $\theta < 1$. Значения μ для диэлектриков определить нелегко. Из литературных данных эти значения находятся в области 10^{-4} – 10^{-1} см²/Bc [15]. При $\mu = 10^{-1}$ см²/Bc, $\theta = 1$, V = 2.5 B, d = 160 нм и $\varepsilon = 11~(2.84 \times 10^{-12}~\Phi/\text{см})$ уравнение (1) дает $J \approx 10^4~\text{A/cm}^2$, что гораздо больше измеренных токов ($\sim 10^{-3} \text{ A/cm}^2$ при 2.5 B) и соответствует случаю $\theta < 1$ [16]. Если предположить, что $I \propto V^n$ (модифицированный закон Чайлда), то loglog зависимость I от V дает экспоненту n [16]. При слабых электрических полях (< |2.5| B) I–V зависимость на рис.5а имеет омическое поведение с наклоном $n \sim$ 1. При V > |2.5| В имеем n = 2.7 и 2.6 соответственно для положительных и отрицательных напряжений. Такое поведение наблюдалось также для структуры $Al/La_2O_3/(100/110)LaB_6$, для которой показатель n равен 2.9 для V>0 и n=12.7 для эквивалентных отрицательных напряжений. Согласно Ламперту [16], случай n > 2 означает, что в запрещенной зоне La₂O₃ имеются глубокие уровни электронных ловушек. Наблюдаемое I-V поведение пленок La_2O_3 соответствует проводимости, обусловленной током, ограниченным пространственным зарядом [17]. При положительном напряжении (Al+) электроны инжектируются из нижнего электрода LaB_6 в La_2O_3 и захватываются ловушками, что приводит к маленьким токам утечки. Ток начинает увеличиваться с напряжением из-за высвобождения носителей заряда из ловушек.

Изменение емкости конденсаторов $Al/La_2O_3/(100)LaB_6$ и $Al/La_2O_3/(100/110)LaB_6$ с изменением напряжения представлено на рис.6. Емкость не изменяется при V>0, она незначительно понижается с увеличением напряжения, когда минус приложен на Al электрод. Такое понижение может быть связано как с подвижными, так и с локальными зарядами, захваченными ловушками. Скачок при V=0 возникает в результате асимметричности MOM структуры из-за разной величины потенциального барьера на контактах. Когда два металла с работами выхода Φ_1 и Φ_2 контактируют с диэлектриком для создания MOM структуры, барьер для электронной инжекции из первого металла в диэлектрик равен $\Delta_A = \Phi_1 - \chi$, а барьер для второго перехода металл—диэлектрик есть $\Delta_B = \Phi_2 - \chi$ (χ — сродство к электрону диэлектрика). Параметры, соответствующие асимметричной структуре $Al/La_2O_3/LaB_6$ следующие: $\Phi_1 \approx 2.6$ эВ для LaB_6 , $\Phi_2 \approx 4.2$ эВ для Al, $E_g \approx 5$ эВ [4], $\chi \approx 1.7$ эВ [7], $\Delta_A \approx 0.9$ эВ для $\Delta_B \approx 2.5$ эВ.

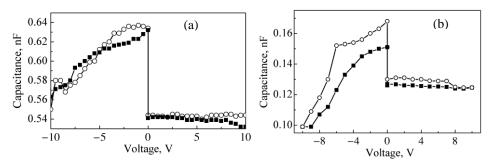


Рис.6. Вольт-фарадные характеристики структур (a) Al/La2O3/(100)LaB6 и (b) Al/La2O3/(100/110)LaB6. Пустые кружки соответствуют повышению напряжения, заполненные квадраты – понижению.

Диэлектрическая проницаемость La_2O_3 рассчитана по следующей формуле:

$$C_{ox} = \frac{\varepsilon \varepsilon_0 A}{d_{ox}},\tag{2}$$

где ε — диэлектрическая проницаемость оксида, $\varepsilon_{\rm o}$ — диэлектрическая проницаемость вакуума (8.85×10⁻³ Ф/мкм), $d_{\rm ox}$ — толщина оксидного слоя, A — площадь верхнего электрода. Для структур La₂O₃/(100/110)LaB₆ и La₂O₃/(100)LaB₆ диэлектрические проницаемости соответственно равны 4 и 11.

На рис.7 представлена схема для измерения плотности тока электронной эмиссии, где медная пластинка использована в качестве анода, изолированного от пленки (100) LaB_6 тефлоновой прокладкой толщиной 0.13 мм. Вакуум в камере достигал 5×10^{-3} Тор. Ток измерялся с помощью микроамперметра постоянного тока M-2000, напряжение подавалось от высоковольтного источника постоянного напряжения ΠB -2-2. Диаметр "сечения" тока эмиссии составлял 8 мм.

Зависимости плотности тока эмиссии от напряженности поля U для

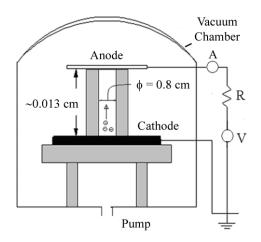


Рис.7. Схема для измерения тока эмиссии.

пленки (100)LaB₆ до и после отжига представлены на рис.8. Пороговая напряженность до отжига составляет ~65 кВ/см. С увеличением напряженности до 130 кВ/см ток эмиссии возрастает до 1.2 мкА/см². Кривая I имеет линейный участок (для U > 90 кВ/см), соответствующий зависимости Фаулера-Нордгейма [18]:

$$J \sim U^2 \exp(-b/U)$$
,

где b — константа, не зависящая от U. На вставке рис.8 в координатах Фаулера—Нордгейма приведена вольт-амперная зависимость для пленки (100)LaB₆ до отжига. После отжига ток эмиссии заметно понизился и составил \sim 0.05 мкA/см² при пороговой напряженности \sim 100 кB/см, что сравнимо с точностью измерения микроамперметра. Образование на поверхности (100)LaB₆ оксидного слоя на 2 порядка понижает величину эмиссионного тока, что обусловлено большей работой выхода электрона из оксида лантана ($\Phi_{\text{La}_2\text{O}_3} \approx 3.3 \text{ эB}$) по сравнению с LaB₆.

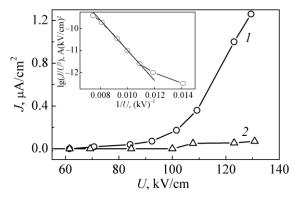


Рис.8. Зависимость плотности тока электронной эмиссии от напряженности поля для $LaB_6(100)$ (I) до и (2) после отжига. Вставка – вольт–амперная зависимость электронной эмиссии из $LaB_6(100)$ до отжига в координатах Фаулера–Нордгейма.

4. Заключение

Путем термического отжига (100)- и смешанно (100/110)-ориентированных пленок LaB_6 получен поверхностный слой оксида лантана кубической симметрии. Из зависимостей тока утечки от напряжения показано, что лучшие электрические характеристики получены для пленок LaB_6 с ориентацией (100). Диэлектрическая проницаемость пленки La_2O_3 , полученной на $100(LaB_6)$, равна 11, что существенно превышает $\varepsilon = 4$ в случае $La_2O_3/(100/110)LaB_6$. Ток, ограниченный пространственным зарядом, является основным механизмом, отвечающим за проводимость в структурах $Al/La_2O_3/LaB_6$, а ток полевой эмиссии электронов из LaB_6 обусловен эффектом Фаулера—Нордгейма, который существенно понижается в случае La_2O_3/LaB_6 .

ЛИТЕРАТУРА

- 1. T. Yorisaki, A. Tillekaratne, Y. Ren, Y. Moriya, C. Oshima, S. Otani, M. Trenary. Surf. Sci., 606, 247 (2012).
- 2. M. Trenary. Sci. Technol. Adv. Mater., 13, 023002 (2012).
- 3. Chung-Han Wen, Tsung-Ming Wu, Wen-Cheng J. Wei. J. Europ. Ceramic Soc., 24, 3235 (2004).
- X. Zhang, H. Tu, H. Zhao, M. Yang, X. Wang, Y. Xiong, Zh. Yang, J. Du, W. Wang,
 D. Chen. Appl. Phys. Lett., 99, 132902 (2011).
- M. Di, E. Bersch, R.D. Clark, S. Consiglio, G.J. Leusink, A.C. Diebold. J. Appl. Phys., 108, 114107 (2010).
- 6. Yi Zhao. Materials, 5, 1413 (2012).
- 7. V. Capodieci, F. Wiest, T. Sulima, J. Schulze, I. Eisele. Microelectronics Reliability, 45, 937 (2005).
- 8. Н.Р. Агамалян, Т.А. Асланян, Э.С. Варданян, Е.А. Кафадарян, Р.К. Овсепян, С.И. Петросян, А.Р. Погосян. Изв. НАН Армении, Физика, 48, 193 (2013).
- 9. Y. Fan, S. Yu, R. Sun, L. Li, R. Du, Y. Yin. Appl. Surf. Sci., 255, 8319 (2009).
- 10. Trevor Pi-Chun Juan, Cheng Li Lin, Wen-Chieh Shih, Chin-Chieh Yang, Joseph Ya-Min Lee, Der-Chi Shye, Jong-Hong Lu. J. Appl. Phys., **105**, 061625 (2009).
- 11. E.A. Kafadaryan, S.I. Petrosyan, G.R. Badalyan, S.R. Harutynyan, A.S. Kuzanyan. Thin Solid Films, 416, 218 (2002).
- 12. D. Tsoutsou, G. Scarel, A. Debernardi, S.C. Capelli, S.N. Volkos, L. Lamagna, S. Schamm, P.E. Coulon, M. Fanciulli. Microelectronic Engineering, 85, 2411 (2008).
- 13. **T.W. Hickmott.** J. Appl. Phys., **33**, 2669 (1962).
- N.F. Mott, R.W. Gurney. Electronic Processes in Ionic Crystals, 2nd ed. Oxford University Press, London, 1948.
- 15. M.A. Lampert, P. Mark. Current Injection in Solids. New York, Academic Press, 1970.
- 16. **M.A. Lampert.** Phys. Rev., **103**, 1648 (1956).
- 17. Y. Kim, Shun-ichiro Ohmi, K.Tsutsui, H. Iwai. Solid-State Electronics, 49, 825 (2005).
- 18. J.Q. Xu, Y.M. Zhao, Q.Y. Zhang. J. Appl. Phys., 104, 124306 (2008).

STUDY OF THE THERMALLY PROCESSED LANTHANUM HEXABORIDE SURFACE

A.S. IGITYAN, Y.A. KAFADARYAN, N.R. AGHAMALYAN, S.I. PETROSYAN, G.R. BADALYAN, I.A. GAMBARYAN, R.K. HOVSEPYAN, H.S. SEMERJIAN

Opportunity of growing a lanthanum oxide (La_2O_3) on the surface of lanthanum hexaboride (LaB_6) with (100)- and (100/110)- orientation by thermal annealing process to produce a metal-oxide-metal structure has been studied. Electron microscopic images, X-ray and optical spectra revealed La_2O_3 layer of cubic symmetry. The features of the current–voltage and capacitance–voltage characteristics of the $Al/La_2O_3/(100)LaB_6$ and $Al/La_2O_3/(100/110)LaB_6$ structures were analyzed. The electrical conductance mechanism is explained on the basis of space-charge limited current.