УДК 535

СЕГНЕТОЭЛЕКТРИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР НА ОСНОВЕ ГЕТЕРОСТРУКТУР ZnO:Li∏LiNbO₃ И ZnO:Li∏TGS ДЛЯ ИК ПИРОПРИЕМНИКОВ

Н.Р. АГАМАЛЯН, Т.А. АСЛАНЯН, <u>Э.С. ВАРДАНЯН</u>, Е.А. КАФАДАРЯН, Р.К. ОВСЕПЯН[†], С.И. ПЕТРОСЯН, А.Р. ПОГОСЯН

Институт физических исследований НАН Армении, Аштарак [†]e-mail: ruben@ipr.sci.am

(Поступила в редакцию 5 сентября 2012 г.)

Разработан и изучен высокочувствительный пироэлектрический приемник ИК излучения нового типа на основе гетероструктуры сегнетоэлектрик–полевой транзистор, обладающий намного большей чувствительностью и обнаружительной способностью, чем традиционные пироэлектрические приемники. Изготовлены модельные образцы сегнетоэлектрического полевого транзистора с использованием пленок ZnO:Li в качестве канала полевого транзистора и объемных кристаллов LiNbO₃ или TGS в качестве пироэлектрического чувствительного элемента.

1. Введение

Инфракрасные пироприемники, созданные на основе сегнетоэлектрических структур, имеют полезное сочетание характеристик, которые отсутствуют у их аналогов: регистрация излучения в широком спектральном диапазоне, работа при комнатной температуре и простота изготовления. Особенно перспективным представляется создание преобразователей инфракрасного изображения, работающих в диапазоне от 5 до 50 мкм, и визуализаторов изображения в терагерцовом диапазоне.

Типичная схема традиционного пироприемника – это пластина сегнетоэлектрического кристалла, на грани которого перпендикулярно полярной оси нанесены электроды [1-5]. При изменении температуры кристалла меняется величина спонтанной поляризации, вследствие чего на полярных гранях появляется избыток зарядов, что, в свою очередь, порождает ток в кристалле и во внешней цепи. Знак тока зависит от направления поляризации и температурного градиента. Однако, в отличие от других тепловых приемников, пироэлектрический токовый отклик зависит от скорости изменения температуры, а не от самой температуры. Поэтому максимальный отклик получается при временах импульса, меньших времени термической релаксации элемента [5]. Пленки оксида цинка (ZnO) относятся к широкозонным полупроводникам с электронным типом проводимости [6]. Важным достоинством этих пленок является возможность управления их свойствами, типом и величиной проводимости введением донорной или акцепторной примеси. Так, примесь Ga действует как донор, увеличивая проводимость, в то время как акцепторная примесь Li уменьшает проводимость или меняет тип проводимости с электронного на дырочный. Эти пленки могут использоваться в качестве канала прозрачных полевых транзисторов.

В настоящей работе созданы и исследованы гетероструктуры на основе полупроводниковой пленки и сегнетоэлектрического кристалла: ZnO:Li/LiNbO₃ и ZnO:Li/TGS. В отличие от традиционных пироприемников с металлическими электродами и измерителем тока, в предлагаемой структуре пироэлектрический чувствительный элемент (LiNbO₃ или TGS) не снабжен электродами, а изменение температуры регистрируется внешним электростатическим полем сегнетоэлектрика. Такие структуры имеют высокую пироэлектрическую чувствительность и низкий уровень шума. Отметим, что предварительные результаты данной работы были опубликованы в [7,8].

2. Методика эксперимента

Используемые монокристаллы LiNbO₃ конгруэнтного состава были выращены методом Чохральского, монокристаллы триглицинсульфата (TGS) были выращены из раствора при температуре 50°C. Образцы имели форму параллелепипедов с размерами 2×2×0.7 мм³. Пироэлектрический коэффициент кристаллов LiNbO₃ и TGS измерялся при комнатной температуре. На основе этих измерений определялось направление спонтанной поляризации кристалла.

ZnO:Li были Пленки получены методом электронно-лучевого напыления в вакууме [9] с использованием в качестве подложек пластин из лития или сапфира с кристаллографической осью ниобата [001], перпендикулярной к поверхности подложки. Мишени для напыления изготовлялись твердофазным синтезом с добавлением в ZnO в качестве примеси Li₂CO₃. Концентрация лития в мишени составляла 8 ат%. Структура тонкопленочного полевого транзистора была получена с использованием маскитрафарета. Тонкие пленки металлического алюминия служили стоком и истоком. Для исключения десорбции-адсорбции кислорода и деградации ZnO:Li покрывалась слоем MgF₂ [10]. Пленки поверхности пленка металлического алюминия и фторида магния наносились методом термического напыления.

Чувствительность и эквивалентная шумовая мощность (NEP) измерялись с использованием модулированного на частоте 177 Гц ИК излучения на длинах волн $\lambda = 0.98$ мкм (полупроводниковый лазер) или $\lambda = 10$ мкм (с помощью имитатора черного тела с эффективной температурой 300°С и резонансного фильтра). Шумы измерялись в диапазоне 10 Гц–200 кГц методом прямой аналоговой фильтрации с использованием селективного усилителя ($\Delta f = 4$ Гц) или использовались выборки из N = 5000 независимых наблюдений, преобразованных в числовую форму (16-разрядный АЦП), и цифровые методы спектрального анализа.

Частотная характеристика пироэлектрического отклика структуры измерялась с использованием излучения ИК светодиода на длине волны $\lambda = 0.94$ мкм. Переменное напряжение от свип-генератора (50 Гц–1 МГц) подавалось на светодиод, регистрация тока осуществлялась с помощью синхронно-фазового усилителя, настроенного на частоту и фазу генератора. Электрический сигнал от пироприемника усиливался предусилителем с входным импедансом 100 МОм/1.5 пФ и полосой усиления 10 Гц. Калибровка системы по интенсивности осуществлялась Ge фотодиодом. Регистрация электрического сигнала осуществлялась с использованием устройства Data Acquisition Board фирмы "National Instruments" и цифрового осциллографа.

3. Результаты и их обсуждение

3.1. Параметры пленок, кристаллов и тонкопленочных полевых транзисторов

Пленки ZnO:Li, полученные методом электронно-лучевого напыления и обладающие дефицитом кислорода, дополнительно отжигались на воздухе для уменьшения кислородных вакансий и, как следствие, уменьшения донорных центров. При этом проводимость пленок уменьшалась до 0.5×10^{-3} ($Om \cdot cm$)⁻¹. В результате отжига были получены компенсированные полупроводники, содержащие как донорные, так и акцепторные центры с холловской подвижностью $\mu_{Hall} = 80 \text{ см}^2 \text{B}^{-1} \text{c}^{-1}$ и эффективной полевой подвижностью $\mu_{FE} = 15 \text{ см}^2 \text{B}^{-1} \text{c}^{-1}$. Пленки ZnO:Li с такими характеристиками позволили создать тонкопленочные полевые транзисторы с крутизной S = 1 - 10 мA/B и коэффициентом шума $K = 3 - 10 \text{ нB} \cdot \Gamma \text{q}^{-1/2}$ в рабочей точке. Сегнетоэлектрические измерения показали, что для объемных кристаллов пироэлектрический коэффициент при комнатной температуре равен 36 нКл/см²К для TGS и 10 нКл/см²К для LiNbO₃.

3.2. Принцип работы ИК пироэлектрического детектора на основе сегнетоэлектрического полевого транзистора

В состоянии термодинамического равновесия сегнетоэлектрический кристалл не обладает внешним электростатическим полем из-за экранирования спонтанной поляризации P_s, что обусловлено свободными носителями заряда. Изменение температуры при поглощении ИК излучения приводит к изменению P_s. Если кристалл снабжен электродами, то изменение P_s приводит к протеканию электрического тока во внешней цепи. Длительность протекания тока обусловлена временем термической релаксации. Именно этот ток регистрируется в традиционных пироприемниках. Если кристалл не имеет электродов, то изменение Ps приводит к появлению внешнего электростатического поля. Это означает, что кристалл переходит в электретное состояние [11]. При этом напряженность внешнего электростатического поля можно измерить с помощью тонкопленочного полевого транзистора. Электретное состояние является квазистабильным, и со временем напряженность электростатического спадает поля из-за

внутреннего экранирования спонтанной поляризации. По порядку величины время экранирования электретного состояния совпадает со временем максвелловской релаксации в кристалле $\tau_{\rm M} = \epsilon \epsilon_0 / \sigma$, где ϵ – диэлектрическая проницаемость кристалла (для LiNbO₃ ϵ = 40, для TGS ϵ = 30). В наших экспериментах были использованы кристаллы с проводимостью $\sigma = 10^{-16}$ (Ом см)⁻¹ для LiNbO₃ и $\sigma = 10^{-10}$ (Ом см)⁻¹ для TGS. Поэтому время максвелловской релаксации для используемых кристаллов составляло $\tau_{\rm M} \ge 10^3 - 10^4$ с для LiNbO₃ и $\tau_{\rm M} \ge 10^{-2} - 10^{-3}$ для TGS.

В предлагаемой схеме напряженность внешнего электростатического поля измеряется с помощью тонкопленочного полевого транзистора, при этом отсутствует внешняя нагрузка, то есть кристалл находится в разомкнутом состоянии, что увеличивает чувствительность приемника.

3.3. Структура пироэлектрического ИК детектора на основе сегнетоэлектрического полевого транзистора

На рис.1 представлены два варианта структуры сегнетоэлектрического полевого транзистора. На рис.1а он изготовлен на кристалле LiNbO₃, который одновременно является чувствительным элементом и подложкой. На рис.1b представлена структурная схема, где полевой транзистор изготовлен на кристалле сапфира, а пироэлектрический кристалл LiNbO₃ или TGS расположен над гетероструктурой полевого транзистора.

В качестве канала полевого транзистора в обеих схемах использовалась пленка ZnO:Li, а пленка MgF₂ выполняла роль изолятора-затвора. С тыльной стороны подложки наносилась пленка металлического алюминия, используемая в качестве затвора. В качестве омических контактов истока и стока использовался металлический алюминий. При проведении измерений полевые транзисторы включались по схеме дифференциального усилителя с общим истоком.

Рис.1. Структурная схема пироэлектрического детектора ИК излучения. а) Полевой транзистор изготовлен на объемном кристалле LiNbO₃, который одновременно выполняет роль чувствительного элемента и подложки. b) Пироэлектрический кристалл LiNbO₃ или TGS расположен над гетероструктурой полевого транзистора, а в качестве подложки используется монокристаллический сапфир.

На рис.2а приведена зависимость напряжения сток-исток $U_{\rm DS}$, т.е. сигнала пироэлектрического отклика структуры сегнетоэлектрик-полевой транзистор от времени для модулированного ИК излучения, представленного на рис.2с. Для сравнения на рис.2b показан пироэлектрический отклик (пироток $J_{\rm pc}$) традиционного пироприемника (кристалла с электродами). На основе этих измерений определена чувствительность пироприемника по напряжению $R_{\rm V}$ согласно выражению $R_{\rm V} = U_{\rm DS}/W$, где W – мощность излучения, $U_{\rm DS}$ – изменение напряжения сток-исток. Созданные на основе кристаллов LiNbO₃ и TGS сегнетоэлектрические полевые транзисторы обладали чувствительностью $R_{\rm V}$, равной 1–100 В/Вт и 100–1000 В/Вт, соответственно.

Рис.2. Кинетика пироэлектрического отклика для модулированного ИК излучения в случае кристалла TGS: а) гетероструктура сегнетоэлектрик–полевой транзистор, кинетика напряжения сток–исток $U_{\rm DS}$, b) классический пироприемник, кинетика тока по внешней цепи $J_{\rm pe}$, и с) входной модулированный оптический сигнал.

Для традиционных пироприемников с металлическими электродами и измерителем тока чувствительность по току R_p определялась согласно выражению $R_p = J_{pe}/W$, где W – мощность излучения, вызывающая пироэлектрический ток J_{pe} . Созданные для сравнительных измерений пироприемники имели чувствительность $R_p = 1-10$ нА/Вт.

На рис.3а,b представлена спектральная плотность шума $S_v(f)$ для сегнетоэлектрического полевого транзистора без пироэлектрического элемента и для гетероструктуры сегнетоэлектрик–полевой транзистор, соответственно. Как видно из рис.3, основным источником шума в этой структуре является сегнетоэлектрический кристалл. На рис.3b показана частота модуляции ИК излучения, при которой структура имеет наивысшую обнаружительную способность. Мо-

дельные образцы пироприемника на основе сегнетоэлектрического полевого транзистора с использованием TGS имели спектральную плотность шума $S_v (177 \Gamma \mu) = (1-10) \times 10^{-11} \text{ B}^2 \Gamma \mu^{-1}.$

Величина эквивалентной шумовой мощности P_{NEP} рассчитывалась из выражения $P_{\text{NEP}} = \left[S_V(f)\right]^{1/2} / R_V$ [12]. Для лучших образцов сегнетоэлектрического полевого транзистора эта величина составила $P_{\text{NEP}} = 1 \times 10^{-9}$ Вт/Гц^{1/2}. Обнаружительная способность D^* рассчитывалась по формуле $D^* = A^{1/2} / P_{\text{NEP}}$, где A – площадь детектора, равная 0.1 см². Созданные на основе кристаллов TGS сегнетоэлектрические полевые транзисторы в ИК диапазоне обладали обнаружительной способностью $D^* = 1 \times 10^9$ см Гц^{1/2} / Вт.

Рис.3. Спектральная плотность шума $S_V(f)$ для a) сегнетоэлектрического полевого транзистора без пироэлектрического элемента и b) для гетероструктуры сегнетоэлектрик–полевой транзистор.

Зависимость переменной составляющей пиротока от циклической частоты амплитудной модуляции $\omega = 2\pi f$ для ИК излучения описывается выражени- $R_{\rm v}(\omega) = U_0 / \left[1 + (\omega \tau)^2 \right]^{1/2}$, где τ – постоянная времени детектора. Для ем традиционных пироприемников, соединенных с нагрузкой, состоящей из параллельной *R*-*C* цепи, высокочастотный спад чувствительности определяется электрической постоянной времени цепи приемник-нагрузка и термической релаксацией активного элемента пироприемника. Ширину полосы частот пироприемника можно увеличить, уменьшая сопротивление нагрузки и увеличивая теплопередачу от активного элемента к тепловому резервуару, что приводит к соответствующему уменьшению чувствительности по напряжению.

На рис.4а приведены амплитудно-частотные зависимости токовой чувствительности традиционного пироэлектрического приемника от циклической частоты модуляции ИК излучения и чувствительности по напряжению для структуры сегнетоэлектрик-полевой транзистор. Аппроксимацией полученных экспериментальных зависимостей были определены постоянные времени т для этих структур в области высоких частот. Видно, что постоянная времени структуры сегнетоэлектрик-полевой транзистор намного меньше, чем постоянная времени традиционного пироприемника.

Рис.4. Нормированная амплитудно-частотная характеристика пироэлектрического отклика структуры сегнетоэлектрик–полевой транзистор (1) и традиционного пироприемника (2): а) область высоких частот и (b) область низких частот.

Для традиционных пироприемников, соединенных с нагрузкой, низкочастотный спад чувствительности определяется временем термической релаксации, а для сегнетоэлектрического полевого транзистора – временем экранирования электретного состояния сегнетоэлектрика. А так как последнее намного больше времени термической релаксации, то структура сегнетоэлектрик– полевой транзистор в области инфранизких частот модуляции ИК излучения имеет намного большую чувствительность.

4. Заключение

Разработан пироэлектрический приемник ИК излучения нового типа, основанный на гетероструктуре сегнетоэлектрик-полевой транзистор. Изготовлена модель неохлаждаемого сегнетоэлектрического полевого транзистора с использованием пленок ZnO:Li в качестве канала полевого транзистора и объемных кристаллов LiNbO₃ или TGS в качестве пироэлектрического чувствительного элемента. Лучшие образцы пироприемников нового типа, созданные на основе кристаллов TGS, имели чувствительность $R_V = 10-100$ В/Вт и обнаружительную способность $D^* = 1 \times 10^9$ смГц^{1/2}/Вт, что намного превышает чувствительность и обнаружительную способность традиционных приемников при использовании тех же пироэлектрических кристаллов.

Работа выполнена в рамках государственного финансирования Республики Армения и грантов ANSEF №2951 и №2177.

ЛИТЕРАТУРА

- 1. **Л.С.Кременчугский, О.В.Ройцина.** Пироэлектрические приемные устройства. Киев, Наукова думка, 1982.
- 2. А.Ван дер Зил. Шумы при измерениях. М., Мир, 1979.
- 3. B.Kazan. Advances in image pickup and display. New York, Academic Press, 1985.
- K.Kwan-Chi. Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes. San Diego, Academic Press, 2004.
- 5. М.Лайнс, А.Гласс. Сегнетоэлектрики и родственные им материалы. М., Мир, 1981.
- N.R.Aghamalyan, E.A.Kafadaryan, R.K.Hovsepyan. Trends in Semiconductor Science, New York, Nova Science Publishers, 2005, pp.81-110.
- 7. A.R.Poghosyan, N.R.Aghamalyan, R.Guo, R.K.Hovsepyan, E.S.Vardanyan. SPIE, 7781, 43 (2010).
- 8. **Н.Р.Агамалян, Э.С.Варданян, Р.К.Овсепян, С.И.Петросян, А.Р.Погосян.** Вестник РАУ, Физ.-мат. и естеств. науки, **1**, 41 (2010).
- 9. **Н.Р.Агамалян, Р.К.Овсепян, С.И.Петросян.** Изв. НАН Армении, Физика, **45**, 407 (2010).
- 10. **Н.Р.Агамалян, Р.К.Овсепян.** Изв. НАН Армении, Физика, **43**, 143 (2008).
- 11. Ю.С.Кузьминов. Электрооптический и нелинейно-оптический кристалл ниобата лития. М., Наука, 1987.
- 12. М.Букингем. Шумы в электронных приборах и системах. М., Мир, 1986.

FERROELECTRIC FIELD-EFFECT TRANSISTOR BASED ON ZnO:Li∏LiNbO₃ AND ZnO:Li∏TGS HETEROSTRUCTURES FOR IR PYRODETECTORS

N.R. AGHAMALYAN, T.A. ASLANYAN, E.S. VARDANYAN, E.A. KAFADARYAN, R.K. HOVSEPYAN, S.I. PETROSYAN, A.R. POGHOSYAN

A new type of pyroelectric IR photodetector based on ferroelectric field-effect transistor heterostructures with higher sensitivity and detectability than traditional pyroelectric photodetectors has been developed and studied. The model samples of ferroelectric field-effect transistor were prepared using ZnO:Li films as a transistor channel and LiNbO₃ or TGS crystals as a pyroelectric sensitive element.