УДК 621.372

ВЛИЯНИЕ ВОДОРОДНОЙ И КИСЛОРОДНОЙ ПАССИВАЦИИ НА БИОЧУВСТВИТЕЛЬНОСТЬ ПОРИСТОГО КРЕМНИЯ

Г.А. МЕЛИКДЖАНЯН

Ереванский государственный университет, Армения

(Поступила в редакцию 27 марта 2012 г.)

Исследовано влияние кислородной и водородной пассиваций пористого кремния на его электрические свойства. В случае с кислородной пассивацией был использован раствор HCl:HF:EtOH, а водородной — H_2O_2 :HF:EtOH. Изучены зависимости вольт-амперных характеристик и сопротивлений образцов от воздействия глюкозы и PHK бактерии E. coli (кишечная палочка).

1. Введение

Пористый кремний (ПК) является перспективным материалом для исследования чувствительности биологических материалов, потому что он биосовместим с биологическими веществами, механически прочен и удобен для использования. Высокое отношение развитой площади поверхности к объему материала (~1000 м²/см³) [1] делает его хорошим кандидатом на безметковую (непосредственную) чувствительность к биомолекулам. Кроме того, ПК имеет преимущество перед обычными планарными структурами благодаря его развитой поверхности, что позволяет получать большую чувствительность с помощью малых по размерам устройств [2]. Нужно отметить, что процесс создания ПК совместим с современными полупроводниковыми технологиями [3].

Главная функция биосенсора — преобразование биологического сигнала в электрический сигнал. Электрические характеристики ПК очень чувствительны к его поверхностным свойствам и составу [4-6] и к присутствию или отсутствию биомолекул на поверхности [7]. Следовательно, интегрирование ПК приведет к увеличению чувствительности. Поры ПК действуют как натуральные мембраны для маленьких биологических частиц [8]. Управляя размерами пор от нескольких нанометров до нескольких микрометров, можно поместить молекулы мишени разных размеров [1]. Другим преимуществом ПК является то, что при некоторых применениях не требуется дополнительной функционализации поверхности для последующего создания ковалентных связей с биомолекулами [9].

Авторы работ [7,9,10] исследовали ПК как биосенсор глюкозы, при этом концентрация глюкозы была до 1 мг/л. В нашей работе использовалась концентрация 1 г/л – средняя концентрация глюкозы в крови.

Целью настоящей работы было исследование влияние водородной и кислородной пассивации ПК без его функционализации на чувствительность к глюкозе и РНК бактерии E. coli.

2. Методика эксперимента

Образцы пористого кремния были получены нами на подложках из монокристаллического кремния p-типа ($\rho = 168$ Ом электрохимического травления. Методика получения образцов приведена в [11]. Электрохимическое анодирование проводилось при гальваностатическом режиме в следующих растворах: для обычных образцов – в растворе HF(50%):EtOH(96%) в соотношении 1:2 по объему, для образцов с водородной пассивацией – в растворе $H_2O_2(30\%)$: HF(50%):EtOH(96%) в соотношении 5:1:1 по объему, для образцов с кислородной пассивацией - в растворе HCl(40%):HF(50%):EtOH(96%) в соотношении 1:1:5 по объему. Режимы травления во всех трех случаях одинаковы для сравнения чувствительностей: ток анодирования 10 мА/см², а время анодирования 2 мин. Для измерения вольт-амперных характеристик, на поверхности полученных образцов методом ионно-плазменного распыления были осаждены гребенчатые контакты из золота.

Для определения влияния глюкозы на ПК, образцы окунались в раствор глюкозы 1 г/л в течение пяти минут, после чего для снятия неадсорбированного слоя они помещались в воду и выдерживались в течение трех минут, а в случае с РНК бактерии Е. coli на образцы ПК накапывался раствор $0.1 \mathrm{BPSE} \ A = 7.2 \mathrm{PHK}$ бактерии Е. coli (где A – оптическая проницаемость раствора, а $1 \mathrm{BPSE} = 6 \mathrm{mMNa_2 HPO_4} + 2 \mathrm{mMNaH_2 PO_4} + 185 \mathrm{mMNaCl} + 1 \mathrm{mMEDTA}$), выдерживались в воздухе в течение пяти минут для просушивания, после чего окунались в воду и выдерживались в течение трех минут. До измерений образцы просушивались на воздухе. Были сняты СЭМ изображения образцов после воздействия РНК бактерии Е. coli, а также их вольт-амперные характеристики и значения сопротивления до и после воздействии глюкозы и РНК бактерии Е. coli. Измерения вольт-амперных проводились на основе платы NI PCI 6221 с помощью программного обеспечения LabVIEW.

3. Чувствительность ПК к глюкозе

Авторы при исследовании сенсоров на кремнии p-типа наблюдали уменьшение проводимости [7,10,12]. Известно, что вода уменьшает сопротивление ПК [10,13]. В водном растворе глюкоза находится в виде кристаллогидратов $C_6H_{12}O_6\times H_2O$. Исходя из этого, мы предполагаем, что возможны два типа влияния глюкозы на ПК — взаимодействие глюкозы [10] и кристаллогидратов глюкозы. Предполагается, что после того как образцы просушивают, на поверхности образцов могут остаться как молекулы глюкозы, так и кристаллогидраты. Причиной тому может являться поверхностное состояние пористого кремния и окружающая среда. Если предположить, что молекулы глюкозы увеличивают

сопротивление [10], а кристаллогидраты ее уменьшают, то общее сопротивление может увеличиваться или уменьшаться.

В табл.1 приведены величины сопротивлений образцов до и после помещения в раствор глюкозы.

На рис.1 показаны вольт-амперные характеристики образцов ПК после помещения их в раствор глюкозы.

Табл.1. Величины сопротивлений образцов ПК до и после глюкозы.

Образец	Сопротивление до глюкозы	Сопротивление после глюкозы
Непассивированный	79000 Ом	24800 Ом
Водородная пассивация	14620 Ом	3880 Ом
Кислородная пассивация	3610 Ом	695 Ом

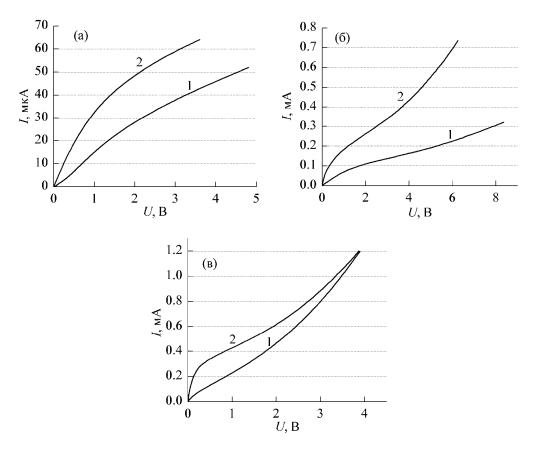


Рис.1. Вольт-амперные характеристики образцов ПК (1) до и (2) после воздействий глюкозы для (а) обычных образцов, (б) для образцов ПК с водородной пассивацией, (в) для образцов ПК с кислородной пассивацией.

Из табл.1 следует, что сопротивление обычного образца после глюкозы уменьшается примерно в 3.2 раза, в случае водородной пассивации — в 3.8 раза, а в случае кислородной пассивации — в 5.2 раз. Самая большая чувствительность наблюдается при кислородной пассивации. Из рис.1в следует, что максимальная чувствительность (определение которой дано в [12]) наблюдается, когда напряжение равно 0.4 В, и с увеличением напряжения чувствительность падает. При водородной пассивации (рис.1б) чувствительность увеличивается с увеличением напряжения. Вероятно, это связано с нелинейным изменением концентрации носителей заряда с увеличением напряжения.

4. Чувствительность ПК к РНК бактерии Е. coli

На рис.2 показано СЭМ изображение РНК бактерии E. coli на ПК, где видны комплексы РНК.

В табл.2 приведены величины сопротивлений, а на рис.3 представлены вольт-амперные характеристики образцов до и после воздействия РНК бактерии E. coli.

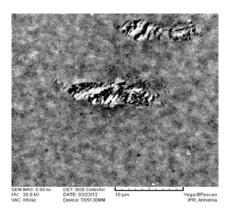


Рис.2. СЭМ изображение РНК бактерии Е. coli на ПК.

Табл.2. Величины сопротивлений образцов до и после РНК бактерии E. coli.

Образец	Сопротивление до РНК	Сопротивление после РНК
Непассивированный	24300 Ом	35150 Ом
Водородная пассивация	3060 Ом	1200 Ом
Кислородная пассивация	28450 Ом	12980 Ом

Результаты измерения вольт-амперных характеристик показывают, что при обычном образце ПК сопротивление увеличивается с увеличением напряжения. При водородной пассивации дело обстоит иначе. До 2 В сопротивление больше, чем до РНК. После 2 В сопротивление образца уменьшается и становится меньше, чем до его помещения в РНК, но чувствительность (соотношение

сопротивлений образцов до и после воздействии РНК бактерии Е. coli) увеличивается за счет увеличения соотношения сопротивлений. Это может происходить из-за изменения носителей заряда от отрицательного значения к положительному. При кислородной пассивации сопротивление меньше, чем до воздействия РНК бактерии Е. coli, но чувствительность с увеличением напряжения увеличивается.

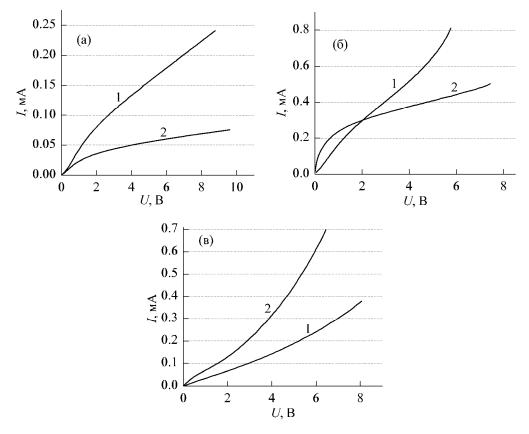


Рис.3. Вольт-амперные характеристики образцов (1) до и (2) после воздействий РНК бактерии Е. coli для (а) обычных образцов, (б) для образцов ПК с водородной пассивацией, (в) для образцов ПК с кислородной пассивацией.

5. Заключение

Таким образом, показано, что пассивация образцов ПК в некоторых случаях увеличивает чувствительность ПК к глюкозе, особенно при водородной пассивации, и к РНК бактерии Е. coli (при напряжении до 2 В). При кислородной пассивации чувствительность ПК к глюкозе также увеличивается до 2 В, а к РНК бактерии Е. coli она увеличивается во всем промежутке напряжений.

Автор выражает благодарность Х.С. Мартиросяну, проф. Е. Дальян за предоставление раствора РНК бактерии Е. coli и академику В.М. Арутюняну за полезные обсуждения.

ЛИТЕРАТУРА

- V.Lehmann. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, Weinheim, Wiley-VCH, 2002.
- 2. F.P.Mathew, E.C.Alocilja. Biosensors and Bioelectronics, 20, 1656 (2005).
- 3. J.E.Lugo, M.Ocampo, A.G.Kirk, D.V.Plant, P.M.Fauchet. Journal of New Materials for Electrochemical Systems, 10, 113 (2007).
- 4. C.Cadet, D.Deresmes, D.Villaume, D.Stievenard. Appl. Phys. Lett., 64, 2827 (1994).
- 5. V.Lehmann, F.Hofmann, F.Möller, U.Gruning. Thin Solid Films, 255, 20 (1995).
- 6. L.A.Balagurov, D.G.Yarkin, E.A.Petrova. Mater. Sci. Eng. B, 69-70, 127 (2000).
- 7. J.López-García, R.J.Martín-Palma, M.Manso, J.M.Martínez-Duart. Sens. Actuat. B, 126, 82 (2007).
- 8. Y.Vashpanov, J.Y.Son, K.D.Kwack. Sensors, 8, 6225(2008).
- 9. G.Recio-Sánchez, V.Torres-Costa, M.Manso, et al. Materials, 3, 755 (2010).
- 10. A.S.Hovhannisyan, V.M.Aroutiounian, Kh.S.Martirosyan, V.E.Galstyan. Armenian Journal of Physics, 1, 34 (2008).
- 11. Г.А.Меликджанян, Х.С. Мартиросян. Изв. НАН Армении, Физика, 47, 201 (2012).
- 12. Г.А.Меликджанян, Х.С. Мартиросян. Изв. НАН Армении, Физика, 47, 294 (2012).
- 13. J.J.Mares, J.Kristofik, E.Hulicius. Thin Solid Films, 255, 272 (1995).

ԾԱԿՈՏԿԵՆ ՍԻԼԻՑԻՈՒՄԻ ՋՐԱԾՆԱՅԻՆ ԵՎ ԹԹՎԱԾՆԱՅԻՆ ՊԱՍԻՎԱՑՄԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՆՐԱ ԲՒՈՉԳԱՅՈՒՆՈՒԹՅԱՆ ՎՐԱ

Գ.Ա. ՄԵԼԻՔՋԱՆՑԱՆ

Հետազոտված են ծակոտկեն սիլիցիումի ջրածնային և թթվածնային պասիվացման ազդեցությունը նրա էլեկտրական հատկությունների վրա։ Թթվածնային պասիվացման դեպքում օգտագործվել է HCl:HF:EtOH լուծույթը, ջրածնայինի դեպքում $\rm H_2O_2$:HF:EtOH լուծույթը։ Ցույց են տրված նմուշների վոլտ-ամպերային և դիմադրության կախվածությունները գլյուկո-գայից և E. coli բակտերիայի $\rm \Omega$ -ից։

INFLUENCE OF HYDROGEN AND OXYGEN PASSIVATION OF POROUS SILICON ON ITS BIOSENSITIVITY

G.A. MELIKJANYAN

Influence of oxygen and hydrogen passivation of porous silicon on its electrical properties is investigated. In the case of oxygen passivation there was used HCl:HF:EtOH solution and for hydrogen passivation – H₂O₂:HF:EtOH. The dependences of current-voltage characteristics and resistance values of samples on interaction of glucose and RNA of E. coli bacterium were studied.