УДК 621.312

ФОТОДЕТЕКТОРЫ СРЕДНЕГО ИНФРАКРАСНОГО ДИАПАЗОНА НА ОСНОВЕ ЧЕТЫРЕХКОМПОНЕНТНЫХ InAsSbP НАНОСТРУКТУР

В.М. АРУТЮНЯН, К.М. ГАМБАРЯН, В.Г. АРУТЮНЯН, И.Г. АРУТЮНЯН, М.С. КАЗАРЯН

Ереванский государственный университет, Армения

(Поступила в редакцию 9 декабря 2011 г.)

Методом модифицированной жидкофазной эпитаксии на подложке InAs (100) были выращены четырехкомпонентные InAsSbP квантовые точки (КТ) с поверхностной концентрацией $(3-5)\times10^9$ см⁻². Морфология и распределение плотности КТ исследовались с помощью атомно-силового микроскопа. Обнаружено гауссовское распределение числа КТ от их диаметра. Среднее значение диаметра квантовых точек составляет 23.1 нм с дисперсией 6.9 нм. Изготовлены и исследованы два типа инфракрасных фотодектекторов (ИКФД) на основе InAs(100) с и без InAsSbP КТ на поверхности подложки. Измерены и проанализированы спектры фотоотклика обоих типов ИКФД при комнатной температуре и обнаружено красное смещение для структур с КТ. Исследованы емкостные характеристики ИКФД и изменение их относительного поверхностного сопротивления при облучении непрерывным He-Ne лазером.

1. Введение

Известно, что полупроводниковые фотоприемники (ФП) представляют интерес не только с научной точки зрения, но и имеют важное значение для решения ряда прикладных задач в различных областях. Среди этого класса полупроводниковых приборов фотодиоды (ФД), фототранзисторы (ФТ) и фоторезисторы (ФР) инфракрасного излучения в средней и длинноволновой областях спектра применяются не только для решения ряда физических, инженерно-технических и специальных задач, но также используются в медицине и биологии. В частности, ИК фотоприемники используются для детектирования таких важных промышленных газов как метан, пропан, окись углерода, для определения концентрации глюкозы в крови и т.д.

За последнее десятилетие проведены многочисленные как научные, так и прикладные исследования по созданию ИКФП на основе таких квантоворазмерных структур, как квантовые ямы (КЯ), квантовые проволоки (КП) и квантовые точки (КТ) [1-6] в связи с уникальными физическими свойствами, возникающими при ограничении движения (локализации) носителей заряда. Как показывают исследования, применение квантоворазмерных структур приводит к улучшению параметров традиционных ИКФП и, кроме того, делает возможным

создание принципиально новых типов ФП. В частности, разработаны и исследованы матрицы современных видеопреобразователей на основе InAs/GaSb сверхрешеток [2], микроскопические модели ИКФП на квантовых ямах [3], селективные и широкополосные детекторы на основе соединений III-V для формирования видеоизображений [4], средне- и длинноволновых переносных ИК видеокамер [5] и т.д. Инфракрасные фотодетекторы с квантовыми точками (ИКФПКТ) активно исследуются с целью достижения еще более интересных свойств. Фотодетекторы таких типов исследовались в основном с применением таких полупроводниковых соединений типа III-V [1,6-8] как InGaAs/InP, InGaAs/GaAs, InAsSbP/InAs, InSb/InAs и SiGe/Si. Ожидается, что ИКФПКТ будут иметь стабильные характеристики при высоких температурах [9-11] из-за трехмерного ограничения носителей заряда. В этих работах также показано, что темновой ток ФД и ФР с квантовыми точками намного ниже, чем у ФП на основе квантовых ям. Квантоворазмерные структуры были применены в фотовольтаических преобразователях солнечного излучения [12] и термофотовольтаических ячейках [13]. Длинноволновые ИКФПКЯ используются в спектроскопии [7], а также для детектировании объектов при некоторых химических и биологических экспериментах и т.д.

Среди методов получения квантоворазмерных структур наиболее распространенным является метод Странски-Крастанова, при котором зародышеобразование и самоорганизация структур осуществляются за счет разницы в постоянных решеток подложки и смачивающего слоя (эпитаксиальной пленки). Основным преимуществом данного метода является то, что он позволяет выращивать практически бездислокационные наноструктуры. Среди этого класса материалов бинарные соединения InAs, InP, InSb, а также их узкозонные трех- и четырехкомпонентные твердые растворы представляют наибольший интерес, так как они позволяют перекрывать среднюю (3-5 мкм) инфракрасную область спектра посредством соответствующего подбора состава твердого раствора. Четырехкомпонентные твердые растворы InAsSbP являются уникальными в этом классе. Эти соединения были успешно выращены на подложках InAs(100) методом как жидкофазной (ЖЭ), так и электрожидкостной эпитаксии. Модифицированная разновидность ЖЭ была успешно применена также для выращивания на подложках InAs(100) как сферических, так и эллипсоидальных КТ состава InAsSbP [14-19].

В данной работе представлены результаты наших исследований по созданию ИКФП для ФР в средней инфракрасной области спектра на основе монокристаллов *n*-InAs(100) с и без четырехкомпонентными InAsSbP KT, выращенными методом ЖЭ на поверхности подложки. Исследованы морфология и распределение КТ, а также оптоэлектронные свойства фотодетекторов.

2. Методика эксперимента

Квантовые точки InAsSbP были выращены методом ступенчатоохлаждаемой ЖЭ из тонкой (~150 мкм) In-As-Sb-P четырехкомпонентной жид-

кой фазы при начальной температуре эпитаксии $t = 550^{\circ}$ C. Состав жидкой фазы был выбран таким образом, чтобы обеспечить разницу постоянных решеток смачиваемого слоя и подложки InAs ~2%. Для инициации процесса зародышеобразования КТ начальная температура эпитаксии понижалась на 0.5°С. Весь процесс роста проводился в атмосфере водорода, очищенного через палладиевые фильтры. Нелегированные подложки n-InAs, использованные в данной работе, имели диаметр 11 мм, ориентацию (100) и фоновую концентрацию примесей 2×10^{16} см⁻³ с подвижностью электронов 45000 см² В⁻¹ c^{-1} при T = 78 K. Технологический процесс выращивания InAsSbP KT более подробно описан в работе [16]. Омические контакты к выращенным структурам, удовлетворяющие стандартным требованиям к ФР, формировались путем термического испарения Сг/Аи сэндвича в вакууме. Морфология и распределение КТ исследовались атомно-силовым микроскопом (ACM) AFM-Asylum Research MFP-3D. Емкостно-частотные характеристики (С-F) при комнатной температуре исследовались прецизионным LCR-метром QuadTech 1920. Изменение удельного поверхностного сопротивления ИК ФР измерялось под излучением непрерывного Не-Ne лазера на длине волны 3.39 мкм. Для исследования оптической фоточувствительности созданных структур был также использован инфракрасный спектрометр ИКС-21.

3. Результаты и обсуждение

На рис.1 приведены ACM-изображения четырехкомпонентных InAsSbP KT, выращенных на подложке InAs(100) методом ЖЭ. Статистическая обработка данных ACM измерений показала, что средняя плотность KT равна $(3-5)\times10^9$ см⁻² с довольно однородным их распределением практически по всей поверхности подложки. Высота и диаметр KT находятся в диапазоне от 0.4 до 20 нм и от 10 нм до 40 нм, соответственно. В отличие от распределения Лифшица–Слезова, которая была экспериментально получена в работе [16] при исследовании распределения числа и поверхностной плотности InAsSbP KT в зависимости от их диаметра, распределение KT, представленных в данной работе, наилучшим образом подчиняется гауссовскому распределению, как это представлено на рис.2. Статистические расчеты проводились на поверхности $S = 2.5 \times 10^{-7}$ см². Аналитический вид аппроксимации экспериментальных данных гауссианом представлен в выражении

$$N = 56.17 \times \exp\left\{-0.5\left[\left(D - 23.12\right)/6.9\right]^2\right\}.$$

Здесь N – число квантовых точек, а D – их диаметр. Как видно из (1) и рис.2, средний диаметр КТ равен 23.1 нм, с шириной на полувысоте 17 нм и дисперсией 6.9 нм.

Созданные и исследованные в данной работе два типа ИК ФР схематически представлены на рис.3. Первый ФР изготовлен на основе промышленного объемного монокристалла *n*-InAs(100). Второй из них отличается тем, что на

активной поверхности ФР находятся КТ InAsSbP четырехкомпонентного состава. Активные поверхности обоих ФР были выбраны одинаковыми и были равны 10^{-2} см². Оптоэлектронные свойства исследовались при комнатной температуре с использованием стандартного ИК источника в форме глобара с NaCl призмой для расщепления лучей. Спектры относительной фоточувствительности обоих ФР при напряжении смещения 2 мВ приведены на рис.4.

Рис.1. ACM-изображения четырехкомпонентных InAsSbP KT, выращенных на подложке InAs(100) методом ЖЭ: (а) – планарный вид, (б) – боковой вид.

Рис.2. Зависимость числа квантовых точек InAsSbP от их диаметра.

Как видно из рис.4, для первого ФР на основе *n*-InAs наблюдается только один характерный пик на длине волны $\lambda = 3.48$ мкм, который точно соответствует длине волны межзонного перехода для нелегированного InAs ($E_g = 356$ мэВ). Из рис.4 также видно, что для ФР с КТ наблюдаются красное смещение

до 3.9 мкм и дополнительные пики на спектре фоточувствительности. На наш взгляд, как красное смещение, так и характерные пики являются следствием поглощения на КТ.

Рис.3. Схематический вид ИК фотодетекторов: (a) – без, (б) – с квантовыми точками.

Рис.4. Спектры относительного фотоотклика фотодетекторов при комнатной температуре: 1 – PD, 2 – QDIP.

Нами проведены также исследования емкостно-частотных (C-F) характеристик фотодетекторов, результаты которых для ФР с КТ при разных значениях приложенного напряжения приведены на рис.5. Как видно из рисунка, наблюдается слабая зависимость емкости от приложенного напряжения. Она остается практически постоянной в зависимости от частоты вплоть до 10⁵ Гц с последующим резким спадом.

Известно, что одним из основных параметров фоторезисторов является изменение их поверхностного сопротивления при освещении. Зависимость относительного изменения поверхностного сопротивления ИК ФР с КТ от плотности мощности непрерывного He-Ne лазера на длине волны $\lambda = 3.39$ мкм

приведена на рис.6. Как видно из рисунка, наблюдается максимальный спад значения поверхностного сопротивления до ~20%, что является довольно хорошим результатом, в особенности для узкозонных и низкоомных структур. Очевидно, что этот спад будет значительно больше при воздействии на ФР излучением более длинных волн в связи с тем, что, как видно из рис.4, сигнал фоточувствительности намного выше вплоть до $\lambda = 3.6$ мкм.

Рис.5. Емкостно-частотные характеристики ИК фотодетектора с квантовыми точками при комнатной температуре и разных напряжениях смещения: **+** 0.1 V, **◆** 0.2V, **★** 0.3V, **▼** 0.4V, **♦** 0.5V.

Рис.6. Зависимость относительного изменения сопротивления фотодетектора с квантовыми точками от плотности мощности Не-Ne лазера на длине волны $\lambda = 3.39$ мкм.

4. Заключение

Таким образом, на подложках *n*-InAs модифицированным методом ЖЭ выращены однородно распределенные практически по всей поверхности подложки КТ четырехкомпонентного InAsSbP состава. Статистическая обработка АСМ измерений выявила гауссовское распределение числа КТ от их диаметра. Изготовлены и исследованы два типа ИК фотодетекторов в форме фоторезисторов с и без InAsSbP КТ на n-InAs(100) подложке. Измерены и проанализированы спектры фотоотклика обоих ФР при комнатной температуре и обнаружено красное смещение для структур с КТ. Исследованы емкостные изменение характеристики фоторезисторов И ИХ относительного поверхностного сопротивления при облучении непрерывным He-Ne лазером. Обнаружено, что для ФР с КТ емкость остается практически постоянной вплоть до $\sim 10^5$ Гц, а также выявлено уменьшение поверхностного сопротивления до 20% при облучении Не-Ne лазером на длине волны 3.39 мкм. Наши исследования открывают новые дополнительные возможности изготовления наноструктурных ИКФП нового поколения и могут быть использованы при решении ряда прикладных задач в средней ИК области.

Данная работа была выполнена в рамках финансовой поддержки Армянского Национального Фонда по Науке и Образованию (ANSEF), базирующегося в Нью Йорке, США, а также гранта Госкомитета РА по науке #11А-2j062 по программе содействия молодым ученым.

ЛИТЕРАТУРА

- 1. A.Rogalski. Acta Phys. Pol. A, 116, 389 (2009).
- R.Rehm, M.Walther, J.Schmitz, F.Rutz, J.Fleißner, R.Scheibner, J.Ziegler. Infrared Phys. Techn., 52, 344 (2009).
- 3. V.D.Jovanovic, P.Harrison, Z.Ikonic, D.Indjin. Infrared Phys. Techn., 47, 3 (2005).
- 4. S.V.Bandara, S.D.Gunapala, J.K.Liu, S.B.Rafol, C.J.Hill, D.Z.Ting, J.M.Mumolo, T.Q.Trinh. Infrared Phys. Techn., 47, 15 (2005).
- S.D.Gunapala, S.V.Bandara, J.K.Liu, C.J.Hill, S.B.Rafol, J.M.Mumolo, J.T.Trinh, M.Z.Tidrow, P.D.LeVan. Infrared Phys. Techn., 47, 67 (2005).
- 6. L.Becker. Proc. SPIE, 6127, 61270 S1-15 (2006).
- 7. P.Bhattacharya, X.H.Su, S.Chakraborti, G.Ariyawansa, A.G.U.Perera. Appl. Phys. Lett., 86, 191106 (2005).
- 8. K.M.Gambaryan, V.M.Aroutiounian, V.G.Harutyunyan. Infrared Phys. Techn., 54, 114 (2011).
- 9. K.Nishi, H.Saito, S.Sugou, J.S.Lee. Appl. Phys. Lett., 74, 1111 (1999).
- 10. D.Haft, R.J.Warburton, K.Karrai, S.Huant, G.Medeiros-Ribeiro, J.M.Garcia, W. Schoenfeld, P.M.Petroff. Appl. Phys. Lett., 78, 2946 (2001).
- 11. H.X.Li, J.Wu, Z.G.Wang, D.R.Theda. Appl. Phys. Lett., 75, 1173 (1999).
- 12. V.M.Aroutiounian, S.G.Petrosian, A.Khachatryan, K.Touryan. J. Appl. Phys., 89, 2268 (2001).
- K.M.Gambaryan, V.M.Aroutiounian, T.Boeck, M.Schulze. Phys. Stat. Sol. C, 6, 1456 (2009).
- 14. M.A.Afrailov. Infrared Phys. Techn., 53, 29 (2010).
- 15. K.M.Gambaryan, V.M.Aroutiounian, T.Boeck, M.Schulze, P.G.Soukiassian. J. Phys. D: Appl. Phys. (FTC), 41, 162004 (2008).

- 16. K.M.Gambaryan. Nanoscale Res. Lett., 5, 587 (2010).
- K.M.Gambaryan, V.M.Aroutiounian, V.G.Harutyunyan, O.Marquardt, E.P.O'Reilly. Proc. Villa Conference on Energy, Materials and Nanotechnology (VCEMN-2011), April 21-2 5, 2011, Las Vegas, Nevada, USA, p.260.
- 18. K.D.Moiseev, Ya.A.Parkhomenko, A.V.Ankudinov, E.V.Gushchina, M.P.Mikhailova, A.N.Titkov, Yu.P.Yakovlev. Tech. Phys. Lett., 33, 295 (2007).
- 19. A.Krier, Z.Labadi, A.Hammiche. J. Phys. D: Appl. Phys., 32, 2587 (1999).

InAsSbP ՔԱՌԱԲԱՂԱԴՐԻՉ ՆԱՆՈԿԱՌՈՒՑՎԱԾՔՆԵՐԻ ՀԻՄԱՆ ՎՐԱ ՄԻՋԻՆ ԻՆՖՐԱԿԱՐՄԻՐ ՏԻՐՈՒՅԹԻ ՖՈՏՈԸՆԴՈՒՆԻՉՆԵՐ

Վ.Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Կ.Մ. ՂԱՄԲԱՐՅԱՆ, Վ.Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ի.Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Մ.Ս. ՂԱԶԱՐՅԱՆ

Հեղուկային էպիտաքսիայի կատարելագործված եղանակով InAs(100) տակդիրի վրա աձեցված են InAsSbP քառաբաղադրիչ քվանտային կետեր (ՔԿ)։ Ատոմաուժային մանրադիտակով ուսումնասիրված են ՔԿ-երի մորֆոլոգիան և խտություն բաշխումը։ Դիտված է նանոկառուցվածքների Գաուսյան բաշխվածություն։ ՔԿ-երը ունեն 23.1 նմ միջին տրամագիծ և բաշխվածության 6.9 նմ դիսպերսիա։ Պատրաստված և ուսումնասիրված են InAs(100) տակդիրի հիման վրա ստեղծված առանց ՔԿ-երի և InAsSbP ՔԿ-երով միջին ինֆրակարմիր տիրույթի երկու ֆոտոընդունիչներ։ Սենյակային ջերմաստիձանում չափված են ֆոտոընդունիչների ֆոտոարձագանքի սպեկտրները և դիտված է ՔԿ-երի վրա հիմնված ֆոտոընդունիչի ֆոտոարձագանքի սպեկտրի "կարմիր" շեղում։ He-Ne լազերի ձառագայթման տակ ուսումնասիրված են ունակա-հաձախային բնութագրերը և դիմադրության հարաբերական փոփոխությունները։

MID-INFRARED PHOTODETECTORS BASED ON QUATERNARY InAsSbP NANOSTRUCTURES

V.M. AROUTIOUNIAN, K.M. GAMBARYAN, V.G. HARUTYUNYAN, I.G. HARUTYUNYAN, M.S. KAZARYAN

Quaternary InAsSbP quantum dots (QDs) have been grown on InAs (100) substrate by a modified version of liquid-phase epitaxy. The morphology and distribution density of QDs were investigated by an atomic force microscope. A Gaussian distribution for the diameters of nanostructures was found. The QDs average diameter is equal to 23.1 nm with the dispersion of 6.9 nm. Two types of mid-infrared photodetectors made of InAs (100) substrate with and without InAsSbP QDs are prepared and investigated. Room-temperature measurements of the photoresponse spectra were performed. A red shift of the photoresponse spectrum for the QDs based structure was revealed. The capacitance–frequency characteristics and the resistance relative variation under irradiation of a He-Ne laser were investigated.