УДК 539.13

ИЗВЛЕЧЕНИЕ АСИММЕТРИИ В ЭКСПЕРИМЕНТЕ ПО ИЗМЕРЕНИЮ ЭЛЕКТРИЧЕСКОГО ФОРМ-ФАКТОРА НЕЙТРОНА ПРИ БОЛЬШИХ ПЕРЕДАННЫХ ИМПУЛЬСАХ

С.Л. АБРАМЯН

Ереванский физический институт им. А.И. Алиханяна, Армения

(Поступила в редакцию 3 августа 2010 г.)

Измерение электрического форм-фактора нейтрона G_E^n было проведено в лаборатории им. Томаса Джефферсона (США) при значениях переданного импульса $Q^2 = 1.3, 1.7, 2.5$ и 3.5 (ГэВ/с)². В эксперименте был использован метод двойной поляризации, в котором измеряется асимметрия квазиупругого рассеяния в полуинклюзивной реакции ³ Не($\vec{e}, e'n$) *pp*. Полученная асимметрия непосредственно связана с отношением электрического и магнитного форм-факторов нейтрона, что позволяет, используя известные значения магнитного форм-фактора, получить значения электрического форм-фактора. В данной работе представлена методика извлечения асимметрии из полученных экспериментальных данных.

1. Введение

Знание электрического форм-фактора нейтрона, G_E^n , играет важную роль в понимании структуры нуклона. Помимо этого, G_E^n является составной частью в анализе процессов электромагнитного взаимодействия с ядром. Электрический форм-фактор нейтрона имеет связь с зарядовым распределением валентных и морских кварков в нейтроне [1]. Значение электрического формфактора нейтрона в предшествующих экспериментах было измерено до значений переданного импульса ~1.6 (ГэВ/с)² [2-4]. Таким образом, проведенное нами измерение позволяет увеличить диапазон по переданному импульсу более чем в два раза.

Измерение электрического форм-фактора нейтрона в эксперименте поперечной основано на измерении асимметрии A_{r} в процессе полуэксклюзивного, квазиупругого рассеяния поляризованного пучка на поляризованной мишени ${}^{3}\overrightarrow{\text{He}}(\vec{e},e'n)$ [5]. В эксперименте была использована поляризованная мишень ³Не и поляризованный электронный пучок CEBAF. Электроны регистрировались в спектрометре BigBite, а нейтроны отдачи – в наборе сцинтилляционных счетчиков нейтронного детектора BigHAND. Данный эксперимент был проведен в лаборатории им. Томаса Джефферсона (США) в период с февраля по май 2006 г.

2. Метод двойной поляризации

Описание метода двойной поляризации основано на работах [6,7]. В приближении Борна сечение упругого рассеяния электрон-нуклон может быть представлено в виде суммы двух членов: Σ , соответствующего упругому рассеянию без поляризации, и Δ , принимающего ненулевое значение только при наличии продольной поляризации у налетающего электрона ($h = \pm 1$):

$$\sigma_{\rm h} = \Sigma + h\Delta. \tag{1}$$

Асимметрия А_N определяется как

$$A_{N} = \left(\sigma_{+} - \sigma_{-}\right) / \left(\sigma_{+} + \sigma_{-}\right) = \Delta / \Sigma.$$
⁽²⁾

Неполяризованная часть Σ для упругого рассеяния электрона на свободном покоящемся нуклоне в приближении Борна дается выражением

$$\Sigma = \sigma_M \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right), \tag{3}$$

где σ_{M} – сечение Мотта, описывающее рассеяние на точечной мишени:

$$\sigma_{M} = 4\alpha^{2}(\hbar c)^{2} \frac{E_{f}^{2}}{Q^{4}} \cos^{2}\left(\frac{\theta}{2}\right) \frac{E_{f}}{E_{i}}.$$
(4)

В уравнениях (3) и (4) E_i и E_f – начальная и конечная энергии электрона, m_N – масса нуклона, Q^2 – квадрат переданного 4-импульса, а G_E и G_M – электрический и магнитный форм-факторы нуклона, соответственно.

Рис.1. Кинематика квазиупругого рассеяния.

Поляризованная часть упругого рассеяния электрон–нуклон Δ дается выражением

$$\Delta = -2\sigma_{M}\sqrt{\frac{\tau}{1+\tau}}\tan\left(\frac{\theta}{2}\right)\left[\sqrt{\tau\left(1+(1+\tau)\tan^{2}\left(\frac{\theta}{2}\right)\right)}\cos\theta^{*}G_{M}^{2} + \sin\theta^{*}\cos\phi^{*}G_{M}G_{E}\right], \quad (5)$$

где θ^{*} и φ^{*} – полярный и азимутальный углы поляризации мишени относительно осей переданного импульса в лабораторной системе (рис.1).

3. Эксперимент по измерению форм-фактора нейтрона

Схематическое изображение детекторной системы и мишени в эксперименте представлено на рис.2. Пучок поляризованных электронов рассеивался на поляризованной мишени ³ Не. В двухплечевой системе детекторов регистрировались рассеянные электроны и адроны отдачи.

Рис.2. Схема эксперимента по измерению форм-фактора нейтрона.

Для регистрации электронов был использован спектрометр BigBite [8], имеющий большой угловой и импульсный аксептанс. Спектрометр состоит из дипольного магнита (максимальное магнитное поле 1.2 Т) и системы детекторов. Последняя включает 15 плоскостей многопроволочных дрейфовых камер MWDC, слой триггерных пластиковых сцинтилляторов и двухслойный электромагнитный калориметр, состоящий из 243 блоков свинцового стекла. Средний телесный угол захвата спектрометра составляет 76 мср. Дрейфовые камеры дают возможность достичь импульсного разрешения $\delta p/p$ порядка 1– 1.5%. Координатное разрешение на мишени вдоль пучка составляет $\sigma = 6$ мм, а угловое разрешение в обеих плоскостях рассеяния $\sigma = 1-1.5$ мрад [9].

Для регистрации адронов отдачи был использован нейтронный детектор BigHand. Нейтронный детектор состоит из семи плоскостей пластиковых сцинтилляционных счетчиков, перед которыми находятся две плоскости ветодетекторов, защищенные 5 см свинцовой и 1.3 см железной пластинами. Дополнительная защита, состоящая из 2.5 см свинцового и 1.3 см железного слоев, разделяющая вето-детекторы и первую плоскость нейтронных блоков, позволила урезать фон низкоэнергетичных частиц [10].

Поляризация пучка измерялась в двух поляриметрах, использующих комптоновское и рассеяние Меллера. Мишень имела протяженность 40 см. Поляризация мишени проводилась методом обмена спина между оптически поляризованной смесью Rb – K и газом ³He. Была достигнута поляризация порядка 50%.

4. Анализ данных и извлечение асимметрии

Анализ данных эксперимента включает в себя извлечение измеренной асимметрии – A_{meas} , учет вклада неупругих событий и вклада протонных событий в асимметрию квазиупругих нейтральных событий, выделенных на первом этапе анализа, получение электрического форм-фактора нейтрона. Работа посвящена первой части анализа – извлечению измеренной асимметрии. Процесс извлечения асимметрии можно разбить на 3 этапа: выделение квазиупругих событий, определение заряда адрона отдачи и расчет экспериментальной асимметрии.

Выделение квазиупругих событий проводилось по корреляционным спектрам двух компонентов недостающего импульса p_{miss} и p_{miss}^{\perp} с инвариантной массой W и по недостающей массе m_{miss} [7]. Недостающий импульс определяется как разница между 3-вектором переданного импульса и вектором импульса зарегистрированного нейтрона (рис.3):

$$\mathbf{p}_{\mathrm{miss}} = \mathbf{q} - \mathbf{p}_{\mathrm{n}},\tag{6}$$

где \mathbf{q} – переданный 3-импульс, а \mathbf{p}_n – импульс нейтрона отдачи.

Рис.3. Импульсная диаграмма процесса квазиупругого рассеяния.

Недостающая масса *m*_{miss} представляет собой массу незарегистрированной части в реакции, квадрат которой определяется выражением

$$m_{\rm miss}^2 = (p_{\rm He} + q - p_{\rm n})^2.$$
 (7)

Расчет инвариантной массы проводился в предположении о свободной покоящейся мишени по следующей формуле:

$$W = \sqrt{m^2 + 2m(E_i - E_f) - Q^2},$$
 (8)

где m – масса нейтрона, E_i – энергия начального электрона, E_f – энергия рассеянного электрона.

На рис.4 и 5 представлены корреляционные спектры, посредством которых проводился отбор квазиупругих событий. Прямоугольниками показана

зона квазиупругих событий. Как видно из рисунков, при малом значении переданного импульса квазиупругий пик ярко выделен и отделение от неупругого фона не представляет проблем. При больших значениях переданного импульса квазиупругие события не имеют ярко выраженной границы. Оценка вклада неупругих событий, проникающих в выделенную зону, в асимметрию учитывается посредством проведенного Монте-Карло моделирования (этот анализ выходит за рамки данной работы).

Рис.4. Корреляционный спектр между переменными p_{miss} и *W*: а) для значения переданного импульса 3.5 (ГэВ/*c*)² и б) для значения переданного импульса 1.7 (ГэВ/*c*)².

Рис.5. Корреляционный спектр между переменными p_{miss}^{\perp} и *W*: а) для значения квадрата переданного импульса 3.5 (ГэВ/*c*)² и б) для значения квадрата переданного импульса 1.7 (ГэВ/*c*)².

В дополнение к условиям отбора квазиупругих событий по переменным, было применено ограничение по недостающей массе. Окончательные условия отбора для трех кинематических точек приведены в табл.1.

Регистрация адрона и идентификация заряда зарегистрированного адрона происходят в нейтронном детекторе. Адроны регистрируются в основном массиве нейтронного детектора. Заряженной считается частица, при прохождении которой произошло срабатывание в одном из вето-слоев. Причем срабатывание в вето должно коррелировать по времени и в пространстве со срабатыванием в основном массиве сцинтилляторов нейтронного счетчика.

$Q^2 = 1.7 \left(\Gamma \mathfrak{9} \mathrm{B} / c \right)^2$	$Q^2 = 2.5 \left(\Gamma \mathfrak{p} \mathbf{B}/c\right)^2$	$Q^2 = 3.5 (\Gamma \Im B/c)^2$
0.7 < W < 1.15	0.7 < W < 1.15	0.7 < W < 1.15
$p_{\mathrm{miss}}^{\perp} < 0.15$	$p_{\mathrm{miss}}^{\perp} < 0.15$	$p_{\mathrm{miss}}^{\perp} < 0.15$
$-0.25 < p_{\rm miss} < 0.25$	$-0.25 < p_{\rm miss} < 0.25$	$-0.4 < p_{\rm miss} < 0.4$
$m_{\rm miss} < 2.0$	$m_{\rm miss} < 2.0$	$m_{\rm miss} < 2.0$

Табл.1. Условия выделения квазиупругих событий. Единицы имерения – ГэВ.

На разницу по координате *х* между срабатыванием в вето и срабатыванием в основном массиве накладывалось следующее условие:

$$\Delta x = |x_{\text{main}} - x_{\text{veto}} - x_0| < 0.35, \tag{9}$$

где x_{main} и x_{veto} – вертикальные координаты срабатывания в основном массиве и в вето-слое, соответственно, а x_0 – вертикальная координата центра первой плоскости нейтронного детектора в лаб-системе.

Отбор по времени проводился при помощи величины Δt , которая определяется следующим выражением:

$$\Delta t = t_{\text{veto}} - t_{\text{main}} + c \left| y_{\text{main}} - y_0 \right| + t_0, \tag{12}$$

где t_{main} и t_{veto} – времена срабатывания в основном массиве и в вето-слое, соответственно, y_{main} и y_0 – горизонтальная координата срабатывания в основном массиве и горизонтальная координата центра первой плоскости, соответственно, а t_0 – время пролета частицы от мишени до нейтронного детектора. Для заряженной частицы значение величины Δt должно быть в пределах 10 нс.

Описанные процедуры отбора квазиупругих событий и идентификации заряда позволяют определить величины N_+ и N_- – число нейтральных квазиупругих событий со спиральностью начального электрона +1 и -1, соответственно [9].

Величина измеренной асимметрии A_{meas} выражается следующим образом:

$$A_{\rm meas} = \frac{1}{P_e P_{\rm He}} \left(\frac{N_+ - N_-}{N_+ + N_-} \right), \tag{13}$$

где P_e и P_{He} – уровни поляризации пучка налетающих электронов и мишени ³He, соответственно.

В табл.2 представлены значения величин измеренной асимметрии для трех значений квадрата переданного импульса со своими статистическими

ошибками. Систематические ошибки при подсчете измеренной асимметрии незначительны и начинают давать существенный вклад в полную ошибку только при подсчете дальнейших поправок, необходимых для получения формфактора нейтрона.

Табл.2. Значения измеренной асимметрии.

Q^2 , $(\Gamma \mathfrak{I} B/c)^2$	1.7	2.5	3.5
A _{meas}	-0.132	-0.130	- 0.095
δA_{meas} (%)	4.6	10.4	13.4

5. Заключение

Предложенная методика анализа данных в эксперименте по измерению форм-фактора нейтрона позволяет достаточно хорошо выделить квазиупругие события, а также определить заряд зарегистрированного адрона отдачи. Описанная методика позволила получить с достаточной точностью значения измеренной асимметрии нейтронных событий для трех значений переданного импульса $Q^2 = 1.7$, 2.5 и 3.5 (GeV/c)². Полученные значения асимметрии были использованы для вычисления значений электрического форм-фактора нейтрона [9].

ЛИТЕРАТУРА

- 1. J.J.Kelly. arXiv:nucl-ph/0111251.
- 2. B.Plaster et al. Phys. Rev. C, 73, 025205 (2006).
- 3. **R.Madey et al.** Phys. Rev. Lett., **91**, 122002 (2003).
- 4. G.Warren et al. Phys. Rev. Lett., 92, 042301 (2004).
- 5. G.Gates, N.Liyanage, K.McCormick, B.Reitz, B.Wojtsekhowski. Measurement of the Neutron Electric Form Factor G_{En} at high Q^2 , PAC 21 proposal, 2001.
- 6. T.W.Donnelly, A.S.Raskin. Ann. Phys. (N.Y.), 169, 247 (1986).
- 7. A.S.Raskin, T.W.Donnelly. Ann. Phys. (N.Y.), 191, 78 (1989).
- D.J.J. de Lange et al. Nucl. Instrum. Methods Phys. Res., Sect. A, 412, 254 (1998); 406, 182 (1998).
- 9. S.Riordan, S.Abrahamyan, B.Craver, A.Kelleher, A.Kolarkar, J.Miller, G.D.Cates, N.Liyanage, B.Wojtsekhowski et al. Measurements of the Electric Form Factor of the Neutron up to $Q^2 = 3.4 \text{ GeV}^2$ Using the Reaction ${}^{3}\overline{\text{He}}(\vec{e}, e'n)pp$, arXiv:1008.1738.
- 10. А.С.Шагинян. Изв. НАН Армении, Физика, 43, 364 (2008).

ASSYMETRY EXATRACTION IN EXPERIMENT FOR MEASUREMENT OF NEUTRON ELECTRIC FORM-FACTOR AT HIGH MOMENTUM TRANSFER

S.L. ABRAHAMYAN

Measurement of electric form-factor G_E^n at momentum transfer $Q^2 = 1.3$, 1.7, 2.4 and 3.5 $(\text{GeV}/c)^2$ has been performed in JLab. The experiment was based on double polarization method by measuring the asymmetry of quasielastic scattering in semi-inclusive reaction ${}^3\overrightarrow{\text{He}}(\vec{e},e'n)pp$. That

asymmetry is connected with the ratio of neutron electric and magnetic form-factors. Knowledge of the magnetic form-factor together with the measured asymmetry allows us to extract the value of neutron electric form-factor. We describe the methods used to extract the asymmetry from obtained experimental data.