СИСТЕМАТИЗАЦИЯ ФРАГМЕНТОВ ПРОМЕЖУТОЧНЫХ МАСС

А.С. ДАНАГУЛЯН, Г.О. ОГАНЕСЯН, Т.М. БАХШИЯН

Ереванский государственный университет, Армения

(Поступила в редакцию 19 июля 2010 г.)

Рассмотрена степенная зависимость сечений образования фрагментов промежуточных масс от массовых и порядковых чисел: $\sigma(A_f) \sim A_f^{-\tau}$, $\sigma(Z_f) \sim Z_f^{-\tau}$. Определены значения параметра τ для фрагментов, зарегистрированных методом $\Delta E - E$ и методом наведенной активности. Показано, что при фазовом переходе "жидкость-газ" τ меняется в пределах 2–3. Сделан вывод, что при высоких энергиях пучка параметр τ не зависит от угла регистрации фрагмента. При увеличении энергии величина τ проходит через минимум при $E_{\text{нач}} \sim 6-7$ ГэВ, что является типичным "критическим поведением", предсказываемым моделями.

1. Введение

В последнее двадцатилетие возрос интерес к исследованиям ядерных реакций высоких энергий с образованием фрагментов промежуточных масс $(A = 6 \div 50)$, а также в связи с этим к проблеме распада высоковозбужденных ядерных систем [1-14]. Для регистрации фрагментов были созданы детектирующие системы с 4π -геометрией [5,7,12,13]. Изучению и объяснению механизма образования фрагментов посвящены многочисленные работы [1-4, 9,10,14,15]. Анализ сечений образованных фрагментов показывает степенную зависимость сечения зарядового или массового распределения фрагментов в виде $\sigma(Z) \sim Z_f^{-\tau}$ или $\sigma(A) \sim A_f^{-\tau}$. Степенную зависимость сечений образования фрагментов от Z_f и A_f ряд авторов [1-4, 14,15] объясняет фазовым переходом "жидкость-газ", который происходит при критической температуре горячей ядерной материи, достигаемой при облучении ядра-мишени высокоэнергетичной легкой частицей или ионом.

В работах [1-4] предложен механизм образования фрагментов промежуточных масс вследствие конденсации сильно разогретого нуклонного газа, основанный на теории конденсации вблизи критической точки [11]. Физическим основанием аналогии между ядерным веществом и классической жидкостью является сходство молекулярных и ядерных сил в отношении их зависимости от расстояния. Молекулы, сближаясь, испытывают притяжение, которое затем сменяется отталкиванием (силы Ван-дер-Ваальса). Ядерные силы имеют аналогичный характер (ясно, что масштабы энергии и расстояния иные). В результате "уравнения состояния" получаются весьма схожими. Вместе с этим фазовый переход "жидкость–газ" – специфически ядерный, характеристики которого обусловлены зарядом системы.

Капельная модель Фишера [11], перколяционная модель [3] и статистическая мультифрагментационная модель [14,15] предполагают степенной закон изменения выхода фрагментов от массовых чисел $\sigma(A_f) \sim A_f^{\tau\tau}$ (где $\tau = 2-3$) в критической точке (при критической температуре), где стирается граница жидкость-газ. Здесь $\sigma(A_f)$ или $\sigma(Z_f)$ – полные изобарические или изотопические сечения.

В настоящей работе нами систематизированы значения τ , полученные при подгонке по степенному закону $\sigma(A_f) = aA_f^{-\tau}$ или $\sigma(Z_f) = a'Z_f^{-\tau'}$ значений сечений фрагментов, зарегистрированных методом $\Delta E - E$ [5,6,7], а также радиоактивных фрагментов, полученных методом наведенной активности [16-18].

2. Обсуждение результатов

В табл. 1 и 2 приведены значения τ , полученные нами для функций $\sigma(A_f^{-\tau})$ и $\sigma(Z_f^{-\tau})$, тип взаимодействующей системы, углы регистрации фрагментов (табл.2), энергия первичной частицы, фрагменты, значения сечений которых были использованы при подгонке, и литература, из которой взяты значения сечений.

Система	Энергия, ГэВ	Фрагменты	,	Course	
			$\sigma \left(A_{f}^{- au} ight)$	$\sigma\bigl(Z_{f}^{-\mathfrak{r}}\bigr)$	ССЫЛКИ
$p + {}^{112}Sn$	0.66	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na	$2.28\pm~0.05$		[16]
$p + {}^{118}Sn$	0.66	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na	1.74 ± 0.45		[16]
$p + {}^{124}Sn$	0.66	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na	1.37 ± 0.36		[16]
$p + {}^{112}Sn$	3.65	$ {}^{7}_{4} \text{Be;} \; {}^{22}_{11} \text{Na;} \; {}^{24}_{11} \text{Na;} \; {}^{28}_{12} \text{Mg;} \\ {}^{38}_{17} \text{Cl;} \; {}^{39}_{17} \text{Cl} $	2.32 ± 0.7	2.91± 0.95	[17]
p + ¹¹⁸ Sn	3.65	$ \begin{array}{c} & 7\\ {}_{4} \text{ Be; } \begin{array}{c} 22\\ 11 \text{ Na; } \end{array} \begin{array}{c} 24\\ 11 \text{ Na; } \end{array} \begin{array}{c} 28\\ 12 \text{ Mg; } \end{array} \\ & \begin{array}{c} 38\\ 17 \text{ Cl; } \end{array} \begin{array}{c} 39\\ 17 \text{ Cl} \end{array} $	1.67± 0.2	2.004± 0.27	[17]
$p + {}^{120}Sn$	3.65	$ \begin{array}{c} & 7\\ {}_{4}\text{ Be;} \begin{array}{c} & 22\\ 11\\ 11\\ \end{array} \text{Na;} \begin{array}{c} & 24\\ 11\\ 12\\ \end{array} \text{Na;} \begin{array}{c} & 28\\ 12\\ 12\\ \end{array} \text{Mg;} \\ & \begin{array}{c} & 38\\ 17\\ \end{array} \text{Cl;} \begin{array}{c} & 39\\ 17\\ \end{array} \text{Cl} \end{array} $	1.69± 0.55	2.02 ± 0.73	[17]
$p + {}^{124}Sn$	3.65	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na; ${}^{28}_{12}$ Mg;	1.44 ± 0.56	1.79 ± 0.74	[17]

Табл.1. Значения τ , полученные нами для функций $\sigma(A_f^{-\tau})$ и $\sigma(Z_f^{-\tau})$ (метод наведенной активности).

		$^{38}_{17}$ Cl; $^{39}_{17}$ Cl			
$p + {}^{112}Sn$	8.1	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na; ${}^{28}_{12}$ Mg	1.96 ± 0.65	2.44 ± 0.88	[16]
$p + {}^{118}Sn$	8.1	$ \begin{array}{c} & 7\\ {}_{4}\text{Be;} \begin{array}{c} & 22\\ & 11\\ & 11\\ \end{array} \text{Na;} \begin{array}{c} & 24\\ & 11\\ & 12\\ \end{array} \text{Na;} \begin{array}{c} & 28\\ & 12\\ \end{array} \text{Mg;} \\ & \begin{array}{c} & 38\\ & 16\\ \end{array} \text{S;} \begin{array}{c} & 38\\ & 17\\ \end{array} \text{Cl;} \begin{array}{c} & 39\\ & 17\\ \end{array} \text{Cl} \end{array} $	2 ± 0.5	2.4± 0.59	[16]
$p + {}^{120}Sn$	8.1	$ {}^{7}_{4} \text{Be;} {}^{22}_{11} \text{Na;} {}^{24}_{11} \text{Na;} {}^{28}_{12} \text{Mg;} \\ {}^{38}_{16} \text{S;} {}^{38}_{17} \text{Cl;} {}^{39}_{17} \text{Cl} $	1.65 ± 0.38	1.99± 0.48	[16]
$p + {}^{124}Sn$	8.1	$ {}^{7}_{4} \text{Be;} {}^{22}_{11} \text{Na;} {}^{24}_{11} \text{Na;} {}^{28}_{12} \text{Mg;} \\ {}^{38}_{16} \text{S;} {}^{38}_{17} \text{Cl;} {}^{39}_{17} \text{Cl} $	1.64 ± 0.57	1.98± 0.75	[16]
$d + {}^{120}Sn$	7.3	$ \begin{array}{c} & 7\\ {}_{4}\text{Be;} \begin{array}{c} & 22\\ & 11\\ & 11\\ \end{array} \text{Na;} \begin{array}{c} & 24\\ & 11\\ & 12\\ \end{array} \text{Na;} \begin{array}{c} & 28\\ & 12\\ \end{array} \text{Mg;} \\ & \begin{array}{c} & 38\\ & 16\\ \end{array} \text{S;} \begin{array}{c} & 38\\ & 17\\ \end{array} \text{Cl;} \begin{array}{c} & 39\\ & 17\\ \end{array} \text{Cl} \end{array} $	2.27± 0.44	2.71± 0.6	[17]
$d + {}^{124}Sn$	7.3	$ \begin{array}{c} & 7\\ {}_{4}\text{Be;} \begin{array}{c} & 22\\ & 11\\ & 11\\ \end{array} \text{Na;} \begin{array}{c} & 24\\ & 11\\ & 12\\ \end{array} \text{Na;} \begin{array}{c} & 28\\ & 12\\ \end{array} \text{Mg;} \\ & \begin{array}{c} & 38\\ & 16\\ \end{array} \text{S;} \begin{array}{c} & 38\\ & 17\\ \end{array} \text{Cl;} \begin{array}{c} & 39\\ & 17\\ \end{array} \text{Cl} \end{array} $	2.15± 0.53	2.63± 0.66	[17]
$^{12}C + ^{112}Sn$	26.4	$ \begin{array}{c} & 7\\ {}_{4}\text{Be;} \begin{array}{c} & 22\\ & 11\\ & 11\\ \end{array} \text{Na;} \begin{array}{c} & 24\\ & 11\\ & 12\\ \end{array} \text{Na;} \begin{array}{c} & 28\\ & 12\\ \end{array} \text{Mg;} \\ & \begin{array}{c} & 38\\ & 16\\ \end{array} \text{S;} \begin{array}{c} & 38\\ & 17\\ \end{array} \text{Cl;} \begin{array}{c} & 39\\ & 17\\ \end{array} \text{Cl} \end{array} $	2.54± 1.07	3.2± 1.42	не опублико вано
$^{12}C + ^{118}Sn$	26.4	$ \begin{array}{c} & 7\\ {}_{4}\text{Be;} \begin{array}{c} & 22\\ & 11\\ & 11\\ \end{array} \text{Na;} \begin{array}{c} & 24\\ & 11\\ & 12\\ \end{array} \text{Na;} \begin{array}{c} & 28\\ & 12\\ \end{array} \text{Mg;} \\ & \begin{array}{c} & 38\\ & 16\\ \end{array} \text{S;} \begin{array}{c} & 38\\ & 17\\ \end{array} \text{Cl;} \begin{array}{c} & 39\\ & 17\\ \end{array} \text{Cl} \end{array} $	2.1± 0.41	2.52± 0.54	не опублико вано
$^{12}C + ^{120}Sn$	26.4	$ {}^{7}_{4} \text{Be;} {}^{22}_{11} \text{Na;} {}^{24}_{11} \text{Na;} {}^{28}_{12} \text{Mg;} \\ {}^{38}_{16} \text{S;} {}^{38}_{17} \text{Cl;} {}^{39}_{17} \text{Cl} $	2.41 ± 0.51	2.95± 0.64	не опублико вано
$^{12}C + ^{124}Sn$	26.4	$ \begin{array}{c} {}^{7}_{4} \mathrm{Be;} {}^{22}_{11} \mathrm{Na;} {}^{24}_{11} \mathrm{Na;} {}^{28}_{12} \mathrm{Mg;} \\ {}^{38}_{16} \mathrm{S;} {}^{38}_{17} \mathrm{Cl;} {}^{39}_{17} \mathrm{Cl} \end{array} $	2.25 ± 0.49	2.75± 0.61	не опублико вано
$^{12}C + Ag$	25.2	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na; ${}^{28}_{12}$ Mg	2.54 ± 0.77	3.17± 1.08	[18]
p + Ag	300	${}^{7}_{4}$ Be; ${}^{22}_{11}$ Na; ${}^{24}_{11}$ Na; ${}^{28}_{12}$ Mg	2.07 ± 0.71	2.52 ± 0.98	[18]

Табл.2. Значения τ , полученные нами для функций $\sigma(A_f^{-\tau})$ и $\sigma(Z_f^{-\tau})$ (метод $\Delta E - E$).

Система	Угол	Энергия, ГэВ	Фрагменты	1	C.	
				$\sigma\!\left(A_{\!_f}^{\!_{- au}} ight)$	$\sigma(Z_f^{- au})$	Ссылки
p + Au	88°	2.55	${}^{10}_{5} \text{B}; {}^{12}_{6} \text{C}; {}^{14}_{7} \text{N}; {}^{16}_{8} \text{O};$ ${}^{19}_{9} \text{F}; {}^{20}_{10} \text{Ne}; {}^{23}_{11} \text{Na}; {}^{24}_{12} \text{Mg}$	2.07± 0.19	2.14± 0.2	[5]
p + Au	88°	3.36	${}^{10}_{5}$ B; ${}^{12}_{6}$ C; ${}^{14}_{7}$ N; ${}^{16}_{8}$ O;	2.07± 0.21	2.16± 0.23	[5]

			$^{19}_{9}$ F; $^{20}_{10}$ Ne; $^{23}_{11}$ Na; $^{24}_{12}$ Mg			
p + Au	88°	4.18	${}^{10}_{5} \text{B}; {}^{12}_{6} \text{C}; {}^{14}_{7} \text{N}; {}^{16}_{8} \text{O};$ ${}^{19}_{9} \text{F}; {}^{20}_{10} \text{Ne}; {}^{23}_{11} \text{Na}; {}^{24}_{12} \text{Mg}$	2.1± 0.19	2.16± 0.22	[5]
p + Au	88°	5.02	${}^{10}_{5} \text{B}; {}^{12}_{6} \text{C}; {}^{14}_{7} \text{N}; {}^{16}_{8} \text{O};$ ${}^{19}_{9} \text{F}; {}^{20}_{10} \text{Ne}; {}^{23}_{11} \text{Na}; {}^{24}_{12} \text{Mg}$	1.82 ± 0.2	1.91 ± 0.2	[5]
p + Au	88°	5.85	${}^{10}_{5} \text{B}; {}^{12}_{6} \text{C}; {}^{14}_{7} \text{N}; {}^{16}_{8} \text{O};$ ${}^{19}_{9} \text{F}; {}^{20}_{10} \text{Ne}; {}^{23}_{11} \text{Na}; {}^{24}_{12} \text{Mg}$	1.95± 0.14	2.01± 0.17	[5]
p + Au	88°	7.51	${}^{10}_{5} \text{B}; {}^{12}_{6} \text{C}; {}^{14}_{7} \text{N}; {}^{16}_{8} \text{O};$ ${}^{19}_{9} \text{F}; {}^{20}_{10} \text{Ne}; {}^{23}_{11} \text{Na}; {}^{24}_{12} \text{Mg}$	1.85± 0.16	1.93± 0.18	[5]
e + Au	90°	1.5	${}^{8}_{4} \text{Be;} {}^{10}_{5} \text{B;} {}^{12}_{6} \text{C;} {}^{14}_{7} \text{N;}$ ${}^{16}_{8} \text{O;} {}^{19}_{9} \text{F;} {}^{20}_{10} \text{Ne}$	2.64± 0.34	2.64± 0.35	[6,7]
e + Au	90°	2	${}^{8}_{4} \text{Be;} {}^{10}_{5} \text{B;} {}^{12}_{6} \text{C;} {}^{14}_{7} \text{N;}$ ${}^{16}_{8} \text{O;} {}^{19}_{9} \text{F;} {}^{20}_{10} \text{Ne}$	2.7 ± 0.41	2.78± 0.45	[6,7]
e + Au	90°	3	${}^{8}_{4}\text{Be;} {}^{10}_{5}\text{B;} {}^{12}_{6}\text{C;} {}^{14}_{7}\text{N;}$ ${}^{16}_{8}\text{O;} {}^{19}_{9}\text{F;} {}^{20}_{10}\text{Ne}$	2.72± 0.39	2.74 ± 0.4	[6,7]
e + Au	90°	4.5	${}^{8}_{4} \operatorname{Be}; {}^{10}_{5} \operatorname{B}; {}^{12}_{6} \operatorname{C}; {}^{14}_{7} \operatorname{N};$ ${}^{16}_{8} \operatorname{O}; {}^{19}_{9} \operatorname{F}; {}^{20}_{10} \operatorname{Ne}$	2.29 ± 0.33	2.34± 0.35	[6,7]

На рис.1,2 представлены зависимости сечений от A_f или Z_f фрагментов. На рис.1 приведены данные для радиоактивных ядер, полученные ранее нашей группой [16,17] методом наведенной активности, а на рис.2 – данные по реакциям р+Au и e+Au, полученные прямой регистрацией фрагментов $\Delta E - E$ методом в работах [5,6]. Как видно из таблиц и рисунков, значения τ меняются в пределах от 2 до 3. В экспериментах с использованием метода наведенной активности измеряются только радиоактивные изотопы, вклады сечений образования которых невелики в полных сечениях. Тем не менее, для радиоактивных фрагментов наблюдается степенная зависимость со значением параметра τ , близким к полученному в работах [5,6] с прямой регистрацией фрагментов по методике $\Delta E - E$ под действием протонов с энергией в области 2.7–7.5 ГэВ и электронов с энергией $E_e = 1.5 - 4.5$ ГэВ.

Из табл.1 видно, что при $E_p = 0.66$ ГэВ значения τ , в пределах ошибок, совпадают со значениями при $E_p = 3.65$ ГэВ и $E_p = 8.1$ ГэВ для ядер мишеней обогащенных изотопов олова. При энергии 0.66 ГэВ энергия возбуждения $E^* \approx 100$ МэВ [19] после прохождения каскада для мишени ¹⁰⁰Ru (значение $A_t = 100$ близко к рассмотренным нами $112 \le A_t \le 124$). При такой энергии системы ядерной материи процесс фазового перехода не происходит (при

фазовом переходе, по оценкам В.А. Карнаухова [13], $E^* > 400$ мэВ). В работе [3] приведены значения τ для реакции ${}^{12}C+Ag$ и ${}^{12}C+Au$ при начальных энергиях 0.18 и 0.36 ГэВ, которые также находятся в пределах 2–3, несмотря на малые значения налетающей энергии. Таким образом, степенная зависимость с показателем

 $\tau = 2-3$ не является достаточным признаком фазового перехода, как утверждают некоторые авторы [1-3,9,10].

Рис.1. (а) Зависимость сечений взаимодействия от массового числа мишени для реакции $d+^{120}$ Sn; (б) зависимость сечений взаимодействия от зарядового числа мишени для реакции $p+^{118}$ Sn.

Хотя ошибки значений τ большие, можно заметить определенную зависимость значения τ от нуклонного состава ядра-мишени для протон и дейтрон ядерных реакций (см. табл. 1). Это можно объяснить следующим образом. Большинство из регистрируемых фрагментов в рассматриваемой массовой области являются нейтроноизбыточными (²⁴Na, ²⁸Mg, ³⁸Cl, ³⁹Cl) и их сечения увеличиваются с ростом числа нейтронов в мишени.

В работе [8] при малых энергиях налетающих частиц ³He+Ag и ³He+Au (E < 1 ГэВ) параметр степенной зависимости τ зависит от угла регистрации фрагмента (значение τ больше при $\theta = 40^\circ - 60^\circ$, чем при $\theta = 140^\circ$). Однако эта

зависимость исчезает при $E_{_{^{3}\text{He}}} > 1.8$ ГэВ. В других работах [2,20-23] значение т изотропно в пределах 20%. Наши расчеты для электронных пучков с энергиями $E_e = 1.5; 2; 3; 4.5$ ГэВ [6] для продуктов, зарегистрированных под углами $\theta = 50^{\circ}, 90^{\circ}, 120^{\circ}$ также показали независимость значения т от угла регистрации в пределах экспериментальных ошибок.

Рис.2. (а) Зависимость сечений взаимодействия от массового числа мишени для реакции p+Au; (б) Зависимость сечений взаимодействия от массового числа мишени для реакции e+Au.

Рис.3. Зависимость τ от энергии начальной частицы: $\blacksquare - p + {}^{112}Sn$, $\blacklozenge - e+Au$, $\bigstar - p+Au$, ● - p+U, $\blacktriangle - p+Ag$, $\blacktriangleleft - {}^{12}C+Ag$, $\blacktriangleright - {}^{12}C+Sn$.

Во многих работах рассматривается зависимость параметра τ от энергии начальной частицы или от температуры фрагментирующей системы [3,5,9,10,13,24]. На рис.3 приведены значения τ в зависимости от энергии начальной частицы для фрагментов, зарегистрированных разными методами: наведенной активности [16-18] и прямым методом $\Delta E - E$ [5,6]. Значения τ взяты из таблиц 1,2 (p+Sn; p+Au; e+Au; C+Sn; C+Ag) и из работы [3]. Из рисунка видно, что при энергии 6-7 ГэВ наблюдается минимум. Прохождение функции $\tau(E_{\text{нач}})$ начальной частицы через минимальное значение может свидетельствовать о достижении условий фазового перехода [24]. Такая зависимость не противоречит предсказаниям статистической модели мультифрагментации [14,15].

3. Заключение

Таким образом, при проведении систематизации сечений фрагментов промежуточной массы, образованных в результате р, d, C индуцированных реакций при различных налетающих энергиях, выявлены следующие закономерности:

1. Наблюдается степенная зависимость сечений образования фрагментов от массовых и зарядовых чисел фрагментов.

2. При фазовом переходе "жидкость-газ" значения т меняются от 2 до 3.

3. В зависимости от энергии налетающей частицы значение τ проходит через минимум при $E_{_{\rm HAV}} \sim 6-7$ ГэВ.

4. При высоких энергиях налетающих частиц ($E > 2 \ \Gamma$ эВ) значения τ не зависят от угла регистрации фрагмента.

ЛИТЕРАТУРА

- 1. J.E.Fonn et al. Phys. Rev. Lett., 49, 1321 (1982).
- 2. C.B.Chitwood et al. Phys. Lett., 289, 1313 (1983).
- 3. A.D.Panagiotou, M.W.Carton, H.Toko, et al. Phys. Rev. Lett., 52, 496 (1984).
- 4. A.Gaidas et al. Phys. Rev. Lett., 42, 820 (1979).
- 5. В.В.Авдейчиков, А.И.Богданов, и др. Ядерная физика, 48, 1736 (1988).
- 6. G.E.Markaryan, A.M.Aivazyan, A.V.Badalyan. J. Phys. Nucl. Part., 25, L101, (1999).
- 7. **G.E.Markaryan.** Fizika B (Zagreb), **16**, 49 (2007).
- 8. S.J.Yenello, K.Kwiatkowsko, E.C.Pollaco, et al. Phys. Rev. C, 48, 1092 (1993).
- 9. J.B.Elliott, L.G.Moretto, L.Phair, et al. Phys. Rev. Lett., 85, 1194 (2000).
- 10. J.B.Elliott, L.G.Moretto, L.Phair, et al. Phys. Rev. Lett., 88, 042701-1 (2002).
- 11. M.E.Fisher. Physics (N.Y), 3, 255 (1967).
- 12. В.А.Карнаухов и др. Ядерная физика, 62, 272 (1999).
- 13. В.А.Карнаухов. ЭЧАЯ, 37/2, 313 2006.
- 14. A.S.Botvina et al. Nucl. Phys A, 584, 737 (1995).
- 15. J.P.Bandorf, A.S.Botvina, et al. Phys. Rep., 257, 133 (1995).
- 16. А.С.Данагулян, И.Адам, А.Р.Балабекян и др. Ядерная физика, 63, 204 (2000).
- 17. А.Р.Балабекян, А.С.Данагулян, Дж.Дрноян и др. Ядерная физика, 69, 1520 (2006).

- 18. N.T.Porile, G.D.Cole, C.R.Rudy. Phys. Rev. C, 19, 2288 (1979).
- 19. В.С.Барашенков, В.Д.Тонеев. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. М., Атомиздат, 1972.
- 20. G.D.Westfall et al. Phys. Rev. C, 17, 1368 (1978).
- 21. A.M.Poskanzer, G.W.Butler, E.K.Hyde. Phys. Rev. C, 3, 882 (1974).
- 22. N.T.Porile et al. Phys. Rev. C, 39, 1914 (1989).
- 23. S.J.Yenello et al. Phys. Lett. B, 246, 26 (1990).
- 24. A.D.Panagiotou, M.W.Curtin, D.K.Scott. Phys. Rev. C, 31, 55 (1985).

ՄԻՋԱՆԿՅԱԼ ԶԱՆԳՎԱԾԱՅԻՆ ԹՎՈՎ ՖՐԱԳՄԵՆՏՆԵՐԻ ՀԱՄԱԿԱՐԳՈՒՄԸ

Ա.Ս. ԴԱՆԱԳՈՒԼՅԱՆ, Գ.Հ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Տ.Մ. ԲԱԽՇԻՅԱՆ

Քննարկված է ֆրագմենտների առաջացման կտրվածքների աստիձանական կախվածությունը ֆրագմենտի զանգվածային թվից և կարգաթվից՝ $\sigma(A_f) \sim A_f^{-\tau}$, $\sigma(Z_f) \sim Z_f^{-\tau}$: Որոշված են ներմուծված ակտիվության և $\Delta E - E$ մեթոդներով գրանցված ֆրագմենտների համար պարամետրի արժեքները։ Յույց է տրված, որ "հեղուկ–գազ" փուլային անցման դեպքում τ -ն փոխվում է 2–3 տիրույթում։ Եզրակացվել է, որ փնջի բարձր էներգիաների դեպքում τ -ն չունի անկյունային կախվածություն ֆրագմենտի գրանցման ուղղության նկատմամբ։ Սկզբնական փնջի էներգիայի մեծացման դեպքում τ -ն ունի մինիմում ($E_{init} \sim 6-7$ ԳէՎ), որը հանդիսանում է "կրիտիկական վարքագիծ", ինչպես կանխատեսվում է մոդելներով։

SYSTEMATIZATION OF INTERMEDIATE-MASS FRAGMENTS

A.S. DANAGULYAN, G.H. HOVHANESYAN, T.M. BAKHSHIYAN

The power law dependence of cross-sections of intermediate-mass fragments $\sigma(A_f) \sim A_f^{\tau}$ or $\sigma(Z_f) \sim Z_f^{\tau}$ is considered. The values of parameter τ for fragments measured by $\Delta E - E$ and induced activity methods are determined. It is shown that τ changes in the range from 2 to 3 at "liquid–gas" phase transition. It is concluded that the parameter τ is independent of the registration angle. The value of τ goes through the minimum at $E_{init} \sim 6-7$ GeV which is typical for the "critical behavior" predicted by the models.