УДК 538.221

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ НАНОЧАСТИЦ НИКЕЛЯ В РАЗЛИЧНЫХ УГЛЕРОДНЫХ МАТРИЦАХ

А.С. МАНУКЯН, А.А. МИРЗАХАНЯН, Г.Р. БАДАЛЯН, Г.О. ШИРИНЯН, Э.Г. ШАРОЯН

Институт физических исследований НАН Армении, Аштарак

(Поступила в редакцию 15 января 2010 г.)

Методами твердофазного пиролиза и химического газофазного осаждения фталоцианина никеля получены ферромагнитные наночастицы никеля в различных углеродных матрицах. Элементный состав, структура, морфология и образцов методами сканирующей магнитные свойства исследованы рентгеновского электронной микроскопии, энергодисперсионного микроанализа, рентгеновской дифракции и ферромагнитного резонанса. Показано, что размеры наночастиц можно менять от ~10 нм до ~500 нм в зависимости от температуры и времени пиролиза. Использованные методы позволяют синтезировать металлические наночастицы в различных углеродных матрицах – в пластинках аморфного углерода, в графитовых нанокапсулах и в углеродных нанотрубках.

1. Введение

В последнее время магнитные наночастицы вызывают значительный интерес как с научной точки зрения, так и в связи с возможными практическими применениями (см., например, [1] и приведенные там ссылки). В частности, такие материалы могут быть использованы в системах магнитной записи информации, в биомедицине и биологии, в сенсорах, магнитных красках, в качестве катализаторов и т.д.

Одним из эффективных методов изготовления металлических наночастиц является пиролиз (термическое разложение) металлоорганических прекурсоров – химическое газофазное осаждение (CVD) и твердофазный пиролиз (SPP). Последний метод отличается сравнительной простотой и экономичностью, в частности, в нем не требуется прокачки газовых компонент.

Среди наиболее подходящих материалов для пиролиза выделяются металлофталоцианины (MPc = $MC_{32}N_8H_{16}$), где в центре органической молекулы могут находиться ионы таких ферромагнитных металлов, как Fe, Co, Ni. Преимуществом металлофталоцианина является то, что этот прекурсор одновременно содержит атомы как металла, так и углерода, которые после пиролиза могут образовывать различные нанокомпозитные системы металлуглерод с контролируемыми свойствами. Ранее пиролиз MPc был использован в ряде работ (см., в частности, [2-24]), однако в большинстве из них применялся метод CVD, а металлические наночастицы служили лишь катализаторами для получения углеродных нанотрубок.

В настоящей работе показано, что твердофазный пиролиз фталоцианина никеля является простым и эффективным методом получения наночастиц никеля с заданными размерами в различных углеродных матрицах. Следует отметить, что углеродное окружение, препятствуя процессам окисления и агрегации наночастиц, является устойчивым на воздухе и биосовместимым, что существенно для многих применений.

2. Методика эксперимента

Для синтеза наночастиц никеля мы использовали предварительно очищенный двойной возгонкой поликристаллический порошок фталоцианина никеля. Процесс пиролиза в данном случае можно представить в виде следующей реакции:

$$Ni(C_{32}N_8H_{16}) \xrightarrow{T_{pyr}, t_{pyr}, p} Ni + 32C,$$

где $T_{\rm pyr}$ – температура пиролиза (600–1100°С), $t_{\rm pyr}$ – время пиролиза (15–450 мин), p – давление в реакционной ампуле. Пиролиз проводился либо в замкнутой ампуле из кварцевого стекла (с начальным давлением $p = 10^{-6}$ бар), либо в условиях постоянного вакуума.

Элементный состав, структура, морфология и размеры полученных образцов исследовались с помощью сканирующей электронной микроскопии (СЭМ), энергодисперсионного рентгеновского микроанализа и рентгеновской дифрактометрии (РД). Магнитные свойства наночастиц никеля изучались с помощью ЭПР спектрометра Х-диапазона в интервале температур 77–300 К.

3. Результаты и обсуждение

Полученные образцы представляли собой устойчивые на воздухе порошки, состоящие из углеродной матрицы с внедренными в нее наночастицами никеля. На рис.1 представлены СЭМ-изображения образцов, синтезированных при различных условиях пиролиза. Видно, что форма наночастиц никеля близка к сферической, а их размеры сильно зависят от температуры и времени пиролиза. Существенно, что при низких Т_{руг} средний размер наночастиц никеля $d_{\rm av}$ значительно возрастает при увеличении времени пиролиза, меняясь от 20–30 нм до 250–300 нм, в то время как при высоких $T_{\rm pvr}$ >1000°С d_{av} не превышает 100-150 нм. Этот необычный результат может быть объяснен формированием сферических графитированных оболочек (толщиной до 100 нм) вокруг наночастиц никеля, которые препятствуют коалесценции металлических частиц при их диффузии в углеродной матрице. На рис.1с виден и другой примечательный факт: толщина графитированных оболочек (капсул) практически одинакова для всех наночастиц данного образца. Возникновение подобных капсул обусловлено каталитическами свойствами никеля: взаимодействуя с аморфным углеродом при высоких температурах, наночастицы никеля формируют вокруг себя графитированные области. Из рис.1с видно, что при высоких температурах объем графитированных капсул может достигать 40% от общего объема углеродной матрицы, что потверждается и данными по рентгеновской дифракции. Отметим, что аналогичное каталитическое взаимодействие наночастиц никеля с аморфным углеродом наблюдалось в работах [25,26].

(a)

(b)

Рис.1. СЭМ-изображения наночастиц никеля в различных углеродных матрицах: а) $T_{\rm pyr} = 700^{\circ}$ С, $t_{\rm pyr} = 30$ мин, $p \approx 10$ бар; b) $T_{\rm pyr} = 700^{\circ}$ С, $t_{\rm pyr} = 300$ мин, $p \approx 10$ бар; c) $T_{\rm pyr} = 1100^{\circ}$ С, $t_{\rm pyr} = 300$ мин, $p \approx 14$ бар; d) $T_{\rm pyr} = 1100^{\circ}$ С, $t_{\rm pyr} = 450$ мин, p = 0.

Существенно, что структура углеродной матрицы также сильно зависит от условий пиролиза, в частности, от его температуры. При пиролизе в замкнутой ампуле при сравнительно низких T_{руг} ~ 700-800⁰C основная часть углерода находится в аморфном состоянии. Это находится в согласии с тем фактом, что при концентрации дефектов или примесей (в нашем случае это атомы никеля) более 1% структура углерода становится разупорядоченной [27]. В то же время при более высоких Труг, благодаря каталитическим свойствам никеля, часть углерода превращается в графитированные капсулы (с внешним диаметром 200-700 нм), окружающие наночастицы никеля. Отметим, что при определенных условиях пиролиза возможно также получение многослойных углеродных нанотрубок с наночастицами никеля (рис.1d). Оптимальными условиями для этого являются относительно высокая температура пиролиза (T_{руг} > 900°С) и высокий вакуум в реакционной ампуле в течение всего процесса: в этом случае суммарный объем нанотрубок достигает 30-40% от общего объема образца. Средний диаметр получаемых нанотрубок можно менять от 30 нм до 200 нм в зависимости от условий пиролиза.

Рис.2. Рентгеновские спектры наночастиц никеля в углеродных матрицах. Образцы синтезированы при следующих условиях: 1) $T_{\rm pyr} = 700^{\circ}$ С, $p \approx 10$ бар; 2) $T_{\rm pyr} = 900^{\circ}$ С, $p \approx 12$ бар; 3) $T_{\rm pyr} = 1100^{\circ}$ С, $p \approx 14$ бар (всюду $t_{\rm pyr} = 300$ мин). Излучение СиК_{α}.

Приведенные результаты подтверждаются данными энергодисперсионного рентгеновского микроанализа и рентгеновской дифракции. Состав полученных образцов достаточно однороден, и они в основном содержат атомы углерода и никеля (~3 ат%). При низких температурах пиролиза в них есть также определенное количество атомов азота (~10 ат%), которое практически исчезает при $T_{\rm pyr}$ >1000°С. На рис.2 представлены рентгеновские спектры трех образцов наночастиц никеля в углеродных матрицах, полученных при различных условиях пиролиза. Видно, что интенсивность широкого пика при 20 ≈ 26°, соответствующего графитированным углеродным нанокапсулам, существенно возрастает при увеличении T_{руг}. Два узких пика при больших значениях 20 соответствуют нанокристаллитам никеля с гранецентрированной кубической решеткой. Анализ ширины этих пиков позволяет оценить средний размер наночастиц по формуле Дебая–Шеррера. Полученные результаты находятся В удовлетворительном согласии с данными электронной микроскопии.

Вышеуказанные особенности более подробно представлены на рис.3, где приведены распределения наночастиц никеля по размерам для трех образцов, синтезированных при различных условиях пиролиза. Диаметры частиц определялись из СЭМ-изображений путем анализа размеров 150-200 наночастиц для каждого образца. Во всех трех случаях распределения не являются гауссовскими, а имеют логарифмически-нормальный характер, типичный для процесса коалесценции [1]. Очевидно, что в этом случае $d_{av} >$ d_{max}. На рис.4 показана зависимость среднего размера наночастиц от времени пиролиза для двух значений T_{руг}. Существенно, что частицы максимального размера могут быть получены при сравнительно низкой температуре пиролиза (~700°С) с достаточно большим временем t_{руг}: при таких условиях графитовые оболочки не могут существенно препятствовать коалесценции наночастиц. Это обстоятельство следует учитывать при синтезе металлических наночастиц с требуемыми размерами. Отметим, что зависимости, представленные на рис.4, существенно отличаются от данных по росту размеров наночастиц при обычной диффузии (см., например, графики в работах [1,28], где величина d_{av} монотонно зависит как от T_{pyr} , так и от t_{pyr} .

206

Рис.3. Распределение наночастиц никеля по размерам для трех образцов: 1) $T_{\rm pyr} = 700^{0}$ С, $t_{\rm pyr} = 30$ мин, $p \approx 10$ бар; 2) $T_{\rm pyr} = 700^{0}$ С, $t_{\rm pyr} = 300$ мин, $p \approx 10$ бар; 3) $T_{\rm pyr} = 1100^{0}$ С, $t_{\rm pyr} = 300$ мин, $p \approx 14$ бар.

Рис.4. Зависимость среднего размера наночастиц никеля от времени пиролиза при следующих условиях: (1) $T_{\rm pyr} = 700^{\circ}$ C, $p \approx 10$ бар и (2) $T_{\rm pyr} = 1100^{0}$ C, $p \approx 14$ бар.

Рис.5. Спектр ферромагнитного резонанса наночастиц никеля в углеродной матрице. Образец синтезирован при следующих условиях пиролиза: $T_{\rm pyr} = 700^{\circ}$ С, $t_{\rm pyr} = 30$ мин, $p \approx 10$ бар.

В спектрах магнитного резонанса наночастиц никеля в углеродных матрицах нами наблюдались широкие линии с *g*-фактором g = 2.12 и шириной $\Delta H = 500-1200$ Э, характерные для ферромагнитного резонанса наночастиц никеля сферической формы [1]. Один из типичных спектров показан на рис.5. Более подробное рассмотрение магнитных свойств полученных образцов будет дано в последующих публикациях.

4. Заключение

Методами пиролиза фталоцианина никеля нами получены и исследованы ферромагнитные наночастицы никеля в различных углеродных матрицах – в аморфном углероде, в графитированных капсулах и в углеродных нанотрубках. Меняя условия пиролиза, можно синтезировать наночастицы различного размера: от 5–10 нм до 500–600 нм. Они могут быть пригодны для использования в ряде областей – в частности, в биомедицине, биологии, магнитных красках, в наноэлектронике и т.д.

В заключение отметим, что разработанный нами метод пиролиза металлофталоцианинов эффективен для синтеза двойных металлических наносплавов, а также для получения глобулярных углеродных структур путем пиролиза безметального фталоцианина [29,30].

Авторы выражают благодарность О.А. Мирзаханяну за помощь при подготовке статьи.

ЛИТЕРАТУРА

- 1. А.И.Гусев. Наноматериалы, наноструктуры, нанотехнологии. М., Физматлит, 2005.
- 2. И.С.Кирин, В.Я.Мишин, А.Б.Колядин. Ж. неорг. химии, 17, 348 (1972).
- 3. Р.А.Стукан, И.С.Кирин, В.Я.Мишин, А.Б.Колядин. Ж. неорг. химии, 17, 1923 (1972).
- 4. H.Araki, H.Kajii, K.Yoshino. Jap. J. Appl. Phys., 38, L836 (1999).
- 5. Y.Yang, S.Huang, H.He, A.W.H.Mau, L.Dai. J. Am. Chem. Soc., 121, 10832 (1999).
- 6. S.Huang, L.Dai, A.W.H. Mau. J. Phys. Chem. B, 103, 4223 (1999).
- 7. D.C.Li, L.Dai, A.W.H.Mau, Z.L.Wang. Chem. Phys. Lett., 316, 349 (2000).
- 8. M.Yudasaka, R.Kikuchi, Y.Ohki, S.Yoshinara. Carbon, 35, 195 (1997).
- 9. K.Suenaga, M.Yudasaka, C.Colliex, S.Iijima. Chem. Phys. Lett., 316, 365 (2000).
- 10. X.B.Wang, Y.Q.Liu, D.B.Zhu. Chem. Commun., 751 (2001).
- 11. X.B.Wang, Y.Q.Lin, D.B.Zhu. Chem. Phys. Lett., 340, 419 (2001).
- 12. X.B.Wang, Y.Q.Lin, D.B.Zhu. Adv. Mater., 14, 165 (2002).
- 13. N.S.Kim, S.Y.Bae, J. Park. Mat. Res. Soc. Symp. Proc., 800, AA3.5.1 (2004).
- 14. J.Song, M.Sun, Q.Chen, J.Wang, G.Zhang, Z.Xue. J. Phys. D: Appl. Phys., 37, 5 (2004).
- 15. L.Zhi, T.Gorelik, R.Friedlein, J.Wu, et al. Small, 1, 798 (2005).
- 16. R.A.Segura, W.Ibanez, R.Soto, S.Hevia, P.Haberle. J. Nanosc. Nanotechn., 6, 1945 (2006).
- 17. L.Zhi, U.Kolb, K.Müllen. New Carbon Materials, 21, 109 (2006).
- 18. C.Klinke, K.Kern. Nanotechnology, 18, 215601 (2007).
- 19. В.Э.Шароян, А.Р.Арутюнян. Изв. НАН Армении, Физика, 28, 43 (1993).
- 20. B.C. Liu, T.J. Lee, J.Park, et al. Chem. Phys. Lett., 377, 55 (2003).
- 21. A.Govindaraj, C.N.R.Rao. Pure Appl. Chem., 74, 1571 (2002).
- 22. S.Huang, L.Dai. J. Nanopart. Research, 4, 145 (2002).
- 23. A.R.Harutyunyan, G.Chen, P.C.Eklung. Appl. Phys. Lett., 82, 4794 (2003).
- 24. Y.Chen, J.Yu. Carbon, 43, 3183 (2005).
- 25. А.Е.Городецкий, Э.И.Евко, А.П.Захаров. ФТТ, 18, 619 (1976).
- 26. J. Jao, S. Seraphin, X. Wang, J.C. Withers. J. Appl. Phys.. 80, 103 (1996).
- 27. В.Б.Федоров, М.Х.Шоршоров, Д.К.Хакимова. Углерод и его взаимодействие с металлами. М., Металлургия, 1978.
- 28. K.W.Liu, F.Mucklich. Acta Mater., 49, 395 (2001).

- E.G.Sharoyan, A.S.Manukyan, A.A.Mirzakhanyan, G.R.Badalyan, H,G.Maloyan, R.V.Zakharyan, M.Kh. Nurijanyan, H.R. Asatryan. Proc. of the Conf. Laser Physics-2008, Ashtarak, Armenia, 2009, p.9.
- E.G.Sharoyan, A.S.Manukyan, A.A.Mirzakhanyan, G.R.Badalyan, E.A.Aghababyan, N.P.Harutyunyan. Proc. of the 7th Int. Conf. Semiconductor Micro- and Nanoelectronics, Tsakhcadzor, Armenia, 2009, p.195.

ՏԱՐԲԵՐ ԱԾԽԱԾՆԱՅԻՆ ՄԱՏՐԻՑՆԵՐՈՒՄ ՆԻԿԵԼԻ ՆԱՆՈՄԱՍՆԻԿՆԵՐԻ ՍՏԱՑՈՒՄԸ ԵՎ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

Ա.Ս. ՄԱՆՈՒԿՅԱՆ, Ա.Ա. ՄԻՐՉԱԽԱՆՅԱՆ, Գ.Ռ. ԲԱԴԱԼՅԱՆ, Գ.Հ. ՇԻՐԻՆՅԱՆ, Է.Գ. ՇԱՌՈՅԱՆ

Նիկելի ֆտալոցիանինի պինդֆազային պիրոլիզի մեթոդով ստացված են նիկելի ֆեռոմագնիսական նանոմասնիկներ տարբեր ածխածնային մատրիցներում։ Նմուշների կառուցվածքը, մորֆոլոգիան և մագնիսական հատկությունները հետազոտված են տեսածրող էլեկտրոնային մանրադիտման, էներգադիսպերսային միկրոանալիզի, ռենտգենյան դիֆրակցիայի և ֆեռոմագնիսական ռեզոնանսի մեթոդներով։ Յույց է տրված, որ նանոմասնիկների չափերը կարելի է փոխել ~10 նմ-ից մինչև ~500 նմ՝ կախված պիրոլիզի ջերմաստիձանից և տևողությունից։ Առաջարկված մեթոդը թույլ է տալիս սինթեզել մետաղական նանոմասնիկներ տարբեր ածխածնային մատրիցներում՝ ամորֆ ածխածնային թիթեղներում, գրաֆիտալին պատյաններում և ածխածնային նանոխողովակներում։

PREPARATION AND CHARACTERIZATION OF NICKEL NANOPARTICLES IN DIFFERENT CARBON MATRICES

A.S. MANUKYAN, A.A MIRZAKHANYAN, G.R. BADALYAN, G.H. SHIRINYAN, E.G. SHAROYAN

Using the solid-phase pyrolysis and chemical vapor deposition of nickel-phthalocyanine, we have fabricated ferromagnetic Ni nanoparticles in carbon matrices. The structure, morphology, and magnetic properties of samples were investigated by means of scanning electron microscopy, energy dispersive X-ray microanalysis, X-ray diffraction technique, and ferromagnetic resonance. It is shown that the sizes of nanoparticles can be varied from ~10 nm to ~500 nm depending on the temperature and time of pyrolysis. The used method allows us to synthesize metal nanoparticles in different carbon matrices: in amorphous carbon plates, in graphitic capsules, and in carbon nanotubes.