УДК 621.384

РАБОТЫ ПОСЛЕДНИХ ЛЕТ И ОСНОВНЫЕ НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ В ОБЛАСТИ ФИЗИКИ ПУЧКОВ И УСКОРИТЕЛЬНОЙ ТЕХНИКИ В ЕРФИ

Э.М. ЛАЗИЕВ^{1,2}, В.Ц. НИКОГОСЯН¹

¹Ереванский физический институт им. А.И. Алиханяна, Армения

²Ереванский государственный университет, Центр синхротронного излучения CANDLE

(Поступила в редакцию 4 марта 2009 г.)

Приведен краткий обзор работ, выполненных в $Ep\Phi H$ в области физики пучков заряженных частиц и ускорительной техники за последние 10–12 лет. В заключительной части излагаются основные направления планируемых исследований.

1. Введение

В конце 1980-х годов в Ереванском физическом институте им. А.И. Алиханяна была завершена разработка программы и начата модернизация Ереванского электронного синхротрона [1], согласно которой предполагалось усовершенствовать систему инжекции электронов в синхротрон на базе нового 120 МэВ-ного сильноточного линейного ускорителя, ВЧ-систему и др. В результате синхротрон мог приобрести новое качество, что сохранило бы его конкурентоспособность еще лет на двадцать. В рамках реализации этой программы была разработана и создана часть оборудования, которое является неплохой базой, на использование которой были нацелены расчетнотеоретические работы по актуальным проблемам в области физики пучков и ускорительной физики, а также адаптации ускорительных установок ЕрФИ под решение ряда прикладных задач. Не претендуя на полноту охвата, ниже приводится изложение некоторых, наиболее интересных с нашей точки зрения, результатов.

2. Исследования в области новых методов ускорения

В середине 70-х годов во многих ускорительных центрах начались интенсивные исследования новых методов ускорения, поскольку стало ясно, что традиционная ускорительная техника не удовлетворяет требованиям современной физики элементарных частиц из-за резкого возрастания масштабов и стоимости ускорителей с ростом энергии ускоряемых частиц. Ереванский физический институт принял самое активное участие в этих исследованиях (см., например, [2]).

2.1. Схема двухпучкового ускорения в пассивных ускоряющих структурах [3]

В схемах двухпучкового ускорения имеются два пучка: генераторный, который возбуждает ускоряющую волну в структуре, в поле которой ускоряется второй пучок. На рис.1 схематически показан предложенный нами ускоряющий модуль, представляющий собой бицилиндрический резонатор с двухсвязным поперечным сечением, с помощью которого может быть реализована схема двухпучкового ускорения. Здесь **q**1 — генераторный пучок, возбуждающий ускоряющий модуль, **q**2 — ускоряемый пучок. В процессе исследования был разработан метод расчета мембранных функций такого модуля [4] и было показано, что при соответствующем выборе **r**1, **r**2 и **d** напряженность продольной компоненты электрического поля квази Е-моды волны вдоль оси **z**2 в несколько раз может превышать напряженность поля вдоль оси **z**1. Был изготовлен прототип модуля и выполненные радиотехнические измерения подтвердили этот результат (см. рис.2).

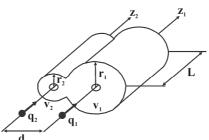


Рис.1. Схематическое представление бицилиндрического ускоряющего модуля.

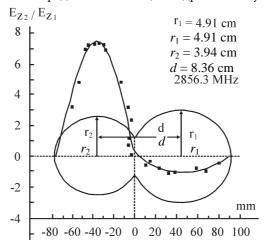


Рис.2. Расчетные (сплошная кривая) и измеренные (точки) значения напряженности поля в прототипе модуля. Параметры прототипа приведены на рисунке.

На основе результатов, изложенных выше, была предложена схема эксперимента на пучке линейного ускорителя ЛУЭ-20 [3]. К сожалению, эксперимент на пучке не был выполнен по независимым от авторов причинам. Здесь же отметим, что стимулом для развития работ по двухпучковому ускорению явились выполненные в ЕрФИ широко известные работы М.Л. Тер-Микаеляна, Г.М. Гарибяна, А.Ц. Аматуни и др., энергично поддержанные А.И. Алиханяном. С этой точки зрения представляет интерес работа [5], в которой рассматривается корреляция между переходным и черенковским излучениями. Проблема эта представляет не только академический интерес, но и имеет прикладное значение, поскольку эти два вида излучения являются основными механизмами возбуждения пассивных электродинамических структур движущимися зарядами.

2.2. Ускорение электронов "полосками" лазерного излучения [6,7]

Практически сразу же после создания и развития лазеров, как мощных источников электромагнитного излучения, родились идеи их использования при ускорении заряженных частиц. В ЕрФИ пионерами этого направления стали Ф. Арутюнян, В. Туманян, И. Гольдман, В. Арутюнян, Ю. Орлов и другие.

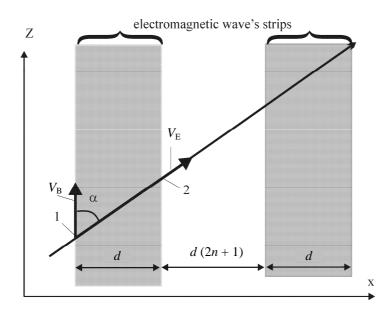


Рис.3. Схема ускорения частиц "полосками" электромагнитных волн.

В 1990 г. А. Аматуни и М. Петросян предложили схему ускорения "пространственно-модулированной" электромагнитной волной дальнейшем, в развитие этой идеи была рассмотрена схема ускорения частиц «полосками» линейно-поляризованной электромагнитной [7],распространяющейся под малым углом 🏻 по отношению к направлению движения частицы (рис.3). Ори этом ширина полоски электромагнитной волны, частицы направлением движения угол между И направлением

электромагнитной волны, скорость частицы и длина волны электромагнитного поля выбираются таким образом, чтобы за время движения частицы в зоне электромагнитного поля электрическое поле не меняло своего направления. Это требование выполняется при условии, что $d=\lambda\sin\alpha/2(1-\cos\alpha+1/2\gamma^2)$, где d— ширина полоски, λ — длина лазерной волны, γ — лоренц-фактор электронного пучка.

Была рассмотрена возможность компенсации поперечных составляющих электрического и магнитного полей волны внешним магнитным полем или второй волной. Рассматривалась также возможность многократного ускорения многими полосками, расстояние между которыми должно равняться (2n+1) d.

2.3. Ускорение электронов в плазме

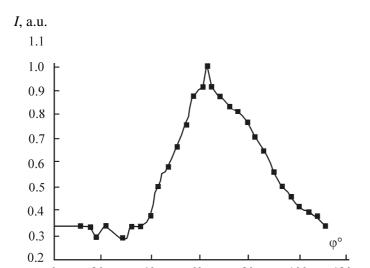
Идеи о возможности использования продольных кильватерных волн, возбуждаемых движущимися в плазме сгустками электронов, для ускорения заряженных частиц были предложены еще в 50-х годах. Интерес к PWA (Plasma Wakefield Accelerator) возродился в середине 80-х годов в серии теоретических работ, выполненных в SLAC, ЕрФИ и UCLA. Расчетно-теоретические работы в ЕрФИ в основном были выполнены группой А. Аматуни, С. Элбакян, Э. Сехпосян (см., например, работу [8]), а экспериментальная проверка – группой М. Петросяна [9].

В схеме PWA первый, более сильноточный сгусток возбуждает в плазме продольные кильватерные волны, а второй сгусток, находящийся в соответствующей фазе плазменной волны, ускоряется. В теоретических работах предсказывалась возможность получения темпа ускорения несколько Γ 9В/м.

Возбуждение кильватерных волн в плазме последовательностью сгустков пучка микротрона было экспериментально исследовано в [9-11]. наблюдения эффекта суммирования волн от нескольких сгустков необходимо было использовать идентичные сгустки, особенно по количеству заряда в сгустках, чтобы начальный энергетический разброс сгустка был меньше, чем ожидаемое изменение энергии электронов, а также, чтобы амплитуда возбуждаемой волны от одного сгустка была намного меньше максимального значения амплитуды поля волны в плазме. Это дает возможность наблюдать пропорциональное увеличение амплитуды кильватерной волны в зависимости от числа сгустков. Эти требования обеспечивались в эксперименте на пучке микротрона. Основное преимущество микротрона состоит в том, что при сравнительно высокой монохроматичности пучка ~(3×10⁻³) и при относительно низкой энергии электронов (7.5 МэВ) можно провести более точные измерения влияния плазменных волн на энергетический спектр электронного пучка, т.к. относительный прирост энергии будет заметнее. Основные параметры электронного пучка и плазмы приведены ниже.

Электронный пучок: энергия электронов 7.5 МэВ, длина сгустков 5 мм, расстояние между сгустками $^{\sim}11$ см, длительность цуга сгустков 1.5 мкс, плотность электронов в сгустке $^{\sim}10^8$ см $^{-3}$, энергетический разброс $^{\sim}3\times10^{-3}$, заряд в сгустке 10 пК. Плазма: длительность разряда 40 мкс, импульсный ток в разряде

 $^{\sim}3$ А, напряжение источника питания 20 кВ, давление газа в камере 10^{-1} – 10^{-2} торр, плотность 10^8 – 10^{11} см⁻³, длина плазменной камеры 1 м, диаметр плазменной камеры 5 см.


При приведенных значениях параметров пучка и плазмы напряженность поля кильватерной волны, возбужденной в плазме одним сгустком, будет равна ~1В/см, и, следовательно, прирост энергии составит ~100 эВ. Разрешение магнитного спектрометра равно 10^{-3} или 7.5 кэВ при энергии электронов 7.5 МэВ. Таким образом, спектрометр будет способен регистрировать изменение спектра при сложении кильватерных волн, возбужденных ~100 сгустками. Если не учитывать затухание, то при суперпозиции волн, возбужденных всеми 4000 сгустками, темп ускорения мог бы составить ~0,4 МэВ/м. Результаты измерения спектра электронов после прохождения через плазму подтвердили эффект сложения волн от последовательности ~100 сгустков, что соответствует напряженности поля кильватерной волны ~1500 В/см.

2.4. Когерентное взаимодействие релятивистских электронных сгустков с плазмой СВЧ разряда

Интересные результаты были получены в эксперименте, выполненном Γ . Оксузяном и др. [12]. Последовательность электронных сгустков с энергией 20 МэВ или 50 МэВ с частотой следования 2797.3 М Γ ц инжектировалась в плазменную камеру. Плазменная камера представляла собой стеклянную трубку диаметром 8 см длиной $^{\sim}40$ см. Плотность плазмы измерялась с помощью радиоинтерферометра на длине волны 3 см, а также по отсечке зондирующего сигнала. Спектр электронов на выходе из плазменной камеры анализировался с помощью магнитного спектрометра. Эксперимент проводился как на распадающейся плазме, так и на плазме СВЧ разряда.

На первом этапе эксперимента — при прохождении электронного пучка через распадающуюся плазму — было наблюдено, что энергия электронов, прошедших через плазму, изменяется. Так, при энергии электронов на входе в камеру 50 МэВ и плотности плазмы $^{\sim}4410^{11}$ см $^{-3}$ прирост энергии составил 0,6 МэВ, а при энергии электронов, равной 20 МэВ и плотности плазмы $^{\sim}10^{11}$ см $^{-3}$ наблюдалось смещение максимума энергетического спектра на $^{\sim}200$ кэВ.

На втором этапе эксперимента плазма создавалась достаточно мощным (~100 кВт) СВЧ импульсом в системе открытого резонатора, образованного открытым концом волновода и отражателем. Разряд в плазменной камере возбуждался СВЧ колебаниями, с помощью которых в ускорителе формировались и ускорялись электронные сгустки. Авторы утверждают, что взаимодействие электронных сгустков с периодической структурой СВЧ плазмы является когерентным. В подтверждение в статье приводятся результаты измерений зависимости тока электронного пучка с энергией 20 МэВ на выходе плазменной камеры от фазы возбуждения плазмы (рис.4).

0 20 40 60 80 100 120 φ°

Рис.4. Зависимость тока пучка ускоренных электронов (20 МэВ), прошедших через плазму, от фазы СВЧ волны. Плазма возбуждается СВЧ волной ($P_{puls} \sim 100 \; \text{кВт}$), а фаза изменяется относительно последовательности электронных сгустков, которые были сформированы и ускорены до 20 МэВ в ускоряющих секциях линейного ускорителя.

3. Формирование и диагностика электронных пучков

3.1. Формирование и диагностика субпикосекудных электронных сгустков

В последнее время во многих мировых ускорительных центрах внимание исследователей сфокусировано на проблеме формирования и диагностики ультракоротких (субпикосекундных) электронных сгустков. Этим задачам отвечают исследования, выполненные в ЕрФИ Э. Газазяном и др. [13].

Было рассмотрено взаимодействие движущегося электронного сгустка с полем монохроматической электромагнитной волны линейной поляризации. В этой постановке задачи был исследован эффект модуляции плотности заряда в сгустке, имеющем длину, существенно превышающую длину электромагнитной волны. Развертка ультракороткого сгустка позволяет судить о распределении заряда в начальном (неразвернутом) сгустке путем его восстановления по разработанному авторами алгоритму обратного преобразования развернутого изображения.

Методика получения строгого решения задачи о поведении электронов в линейном сгустке, движущемся в поле линейно-поляризованной плоской монохроматической электромагнитной волны, позволила установить связь между скоростями электронов до и после взаимодействия с электромагнитной волной и, соответственно, связь между распределением заряда в сгустке до и после такого взаимодействия. Эффекты развертки сверхкоротких (мкм) сгустков рассмотрены в [14,15].

3.2. Новый метод прецизионного измерения энергии электронного пучка

Данный метод был предложен и развит Р. Меликяном [16-18]. Метод позволяет измерять абсолютную энергию электронного пучка с относительной точностью $\pm 10^{-4}$ в широком интервале энергий от 0.5 до нескольких сот ГэВ посредством резонансного поглощения лазерных фотонов электронами в однородном статическом магнитном поле. Основные преимущества метода: существуют промышленные образцы необходимых полупроводниковых быстродействующих детекторов излучения высокой чувствительностью; метод позволяет измерять энергию электронов как неполяризованного, так и поляризованного пучка без заметной потери степени поляризации; существуют промышленные образцы необходимых лазеров; процесс измерения может проводиться непрерывно, не влияя на параметры электронного пучка.

4. Работы по ускорительной технике

Параллельно с расчетно-теоретическими работами в ${\rm Ep}\Phi {\rm H}$ был выполнен ряд работ по разработке и созданию современных устройств, востребованных в ускорительной технике. Из большого перечня отметим наиболее важные разработки

- 1. Фотоэлектронная пушка, разработанная в рамках эксперимента по возбуждению кильватерных волн в плазме [10]. Такая пушка позволяет получать одиночные или сдвоенные электронные сгустки со следующими параметрами: энергия электронов до 2 МэВ; длина сгустков 1–3 см; регулируемое расстояние между сгустками 5÷20 см; ток в первом сгустке до 100 А и ток во втором сгустке до 10 А. Подобная конфигурация электронных сгустков необходима при исследовании новых методов ускорения, в частности, при ускорении электронов в плазме.
- 2. Источники питания, разработанные и созданные в ЕрФИ в рамках «Соглашения о сотрудничестве между DESY и ЕрФИ» (Г. Мартиросян и др.), успешно эксплуатируются в системах питания ускорительных комплексов DESY [19]. По просьбе DESY в ЕрФИ были также разработаны и изготовлены источники питания нового поколения с цифровым дистанционным управлением, предназначенные для комплексов TTF/VUV-FEL, X-FEL.
- 3. Оптимизация конструкции виглера с постоянными магнитами для ускорительно-накопительных комплексов и коллайдеров_[20-22] (А. Бабаян и др.). При заданной величине апертуры виглера 32 мм и значении магнитного поля
- $B_{\!\scriptscriptstyle \perp}=1.63~{
 m T}$ оптимизирована конструкция виглер магнита для International Linear Collider (ILC), позволившая минимизировать нелинейность поля в рабочей области прохождения пучка. Предложенная модель виглер магнита позволила уменьшить неоднородность магнитного поля $\Delta B/B_0$ более чем на порядок при относительно небольших габаритных размерах. Работы по виглер магниту выполнены в коллаборации и при финансовой подержке DESY, а также в коллаборации с INFN-LNF (Frascati). По результатам выполненных работ ЕрФИ

включен в список институтов, участвующих в проектировании демпфирующего кольца для ILC.

4. Выполнены научно-исследовательские разработки, связанные с созданием проекта многоканального источника излучения е и у-пучками на базе линейного ускорителя ЛУЭ-75, являющегося инжектором Ереванского синхротрона [22]. Электронный пучок будет транспортироваться из кольцевого зала (отметка 0,0 м) на первый этаж помещения 1Р (отметка +1,5м), который будет переоборудован в экспериментальный зал с многоканальными е и упучками. Площадь экспериментального зала 20 м Ч 40 м достаточна для создания 6 независимых отдельных каналов транспортировки электронного пучка. Каждый канал будет оснащен необходимыми элементами магнитной оптики (поворотные магниты, квадрупольные линзы и др.) для формирования требуемых параметров пучков.

5. Другие работы

Ниже просто перечислен ряд работ, также выполненных сотрудниками ЕрФИ в области ускорительной физики и техники. В рамках гранта МНТЦ совместно с МРТИ (Москва) и Онкоцентром РА был разработан концептуальный проект Протонно-Терапевтического Комплекса (ПТК) на базе электронного синхротрона. В Проекте было показано, что в Ереванском синхротроне, наряду с сохранением электронной моды, можно реализовать ускорение протонов с целью их использования для лечения онкобольных. Ориентировочная стоимость проекта оценена около 20 млн. долларов. Было подготовлено Предложение о целесообразности сооружения регионального центра SESAME на площадке ЕрФИ. Предложение было представлено на заседание специальной комиссии ЮНЕСКО в декабре 1999 г. Группой С. Арутюняна был разработан и создан вибрационный датчик пучка, который нашел широкое применение в ряде ускорительных центров. Разработчикам была присуждена престижная премия Faraday Cup за 2008 г.

6. Перспективы

Теперь мы переходим к самому трудному разделу, где надо сказать о возможности сохранения и развития ускорительной физики в ЕрФИ. Мы убеждены, что это направление имеет будущее. Наша уверенность базируется на том, что, во-первых, пока еще сохранились квалифицированные кадры, способные сказать свое слово в этой области физики, во-вторых, имеется оборудование, которое может быть адаптировано под решение современных актуальных проблем, и, наконец, в-третьих, это позволит активизировать сотрудничество и коллаборацию с зарубежными ускорительными центрами. Здесь мы видим следующие конкретные пути:

1. Адаптировать линейный ускоритель электронов ЛУЭ-20 под драйвер терагерцового лазера на свободных электронах [23] и под производство изотопов медицинского назначения.

- 2. На базе резервной триодной электронной пушки для ЛУЭ-20 и генераторно-ускоряющего модуля на частоту 466 МГц необходимо разработать и создать двухрезонаторный ВЧ ускоритель для технологических целей. По предварительным оценкам с помощью такого ускорителя могут быть получены следующие параметры электронного пучка: энергия электронов 0.5–1.5 МэВ, средний ток пучка 10–25 мА.
- 3. Исследовать излучение Смита–Парселла, на пучке микротрона с целью создания генераторов на базе ИСП.
- 4. Рассмотреть возможность создания ЛСЭ с использовнием генераторов и резонаторов системы ВЧ питания синхротрона на частоте 132 МГц.
- 5. На базе результатов, полученных в [12], и существующего работоспособного оборудования линейного ускорителя электронов ЛУЭ-75 с мощными (20 МВт, $\sim \! \! 3000$ МГц) клистронными генераторами исследовать возможность создания ускоряющего плазменного модуля с высоким градиентом ускорения.

Представляя свое видение проблем развития ускорительной физики в ЕрФИ в год 100-летнего юбилея Артема Исааковича Алиханяна, авторы преследовали цель выразить свою убежденность в том, что несмотря на трудные для института времена, ускорительная физика, зарождение которой было стимулировано Артемом Исааковичем, должна быть и развиваться.

В заключение выражаем искреннюю благодарность Э. Газазяну, М. Петросяну и Г. Оксузяну за полезные и принципиальные обсуждения.

ЛИТЕРАТУРА

- 1. **A.Amatuni, E.Laziev, V.Nikogossian, et al.** The Prospects of Improvement and Development of Accelerator Installations at Yerevan Physics Institute, Proc. of EPAC-88, Rome, June 7-11, 1988, vol.1, pp.305-307 (1988).
- 2. **А.Аматуни, Э.Лазиев, Г.Нагорский, М.Петросян, Э.Сехпосян, С.Элбакян.** Развитие новых методов ускорения в ЕрФИ, Научные сообщения ЕрФИ, 1989; ЭЧАЯ, **20**, в.5, сс.1-41 (1990); ЦНИИ Атоминформ (1990).
- 3. E.Begloyan, E.Gazazyan, V.Ivanyan, E.Laziev, V.Nikogossian, G.Oksuzian, V.Tsa-kanov, Yerevan Physics Institute Two-Beam Accelerator Experiment and Cherenkov Laser's Prototype Study, Proc. of the FEL 1999, II-45-II-46, North-Holland, 2000.
- 4. **М.Иванян.** Радиотехника и электроника, **44**, 401 (1999).
- E.D.Gazazyan, S.S.Elbakian, K.A.Ispirian, A.D.Ter-Poghosyan, Transition Radiation Formation Zone in a Waveguide. EPAC-2002, Paris, 3-7 June 2002, pp.978-980.
- 6. **А.Ц.Аматуни, М.Л.Петросян.** Вопросы атомной науки и техники, **6(16)**, 112 (1990).
- 7. **R.Melikian, M.Petrosyan, V.Pogosyan.** Acceleration of Charged Particles by Spatially Modulated Laser Wave, Proc. of the EPAC-04, Lucerne, Switzerland, 2004, p.527.
- **8. А.Ц.Аматуни, Э.В.Сехпосян, А.Г.Хачатрян, С.С.Элбакян**. Изв. НАН Армении, Физика, **28**, 8 (1993).
- 9. **М.Л.Петросян и др.** Изв. НАН Армении, Физика, **42**, 309 (2007).
- 10. **M. Petrosyan et al.** Experiments on Wake Field Acceleration in Plasma and the Program of the Further Works in YerPhI, Proc. of the 2005 Particle Accelerator Conference, May 16-20, Knoxville, Tennessee, USA, 2005, p.752.

- 11. P.Chen, J.M.Dawson, The Plasma Wake-Field Accelerator. SLAC-PUB-3601, March 1985.
- 12. Г.Оксузян, М.Иванян, А.Варданян. Физика плазмы, 27, 536 (2001).
- 13. **E.D.Gazazyan, D.K.Kalantaryan, M.A.Khojoyan.** On the Possibility of Electron Bunch Charge Density Modulation in Laser Beam. Proc. of the 43rd Japan Workshop on Accelerator Sciences. KEK, Tsukuba, Japan. October 29-30, 2007, pp.93-104.
- 14. **E.D.Gazazyan, K.A.Ispirian, M.K.Ispiryan, D.K.Kalantaryan, D.A.Zakaryan.** Transversal Deflection of Electrons Moving in Parallel with Linearly Polarized Laser Beam and Its Application. PAC 05, Knoxville, Tennessee, USA. May 16-20, 2005, pp.4054-4056.
- 15. **Д.К.Калантарян, М.А.Ходжоян.** Изв. НАН Армении, Физика, **41**, 170 (2006).
- 16. **D.P.Barber**, **R.A.Melikian**. Proc. 7th EPAC, Vienna. 2000, pp.996-998,.
- 17. **R.A.Melikian.** Meeting on Beam Energy Measurement. Zeuthen, June 06-08, 2007, http://www-zeuthen.desy.de/e_spec/june2007/robert_melikian.pdf.
- 18. **R.A.Melikian.** Workshop on Polarization and Beam Energy Measurement at the ILC, 9-11 April 2008, ILC-NOTE-2008-047, DESY-Report-08-099, SLAC-PUB-13296, July 15, 2008.
- 19. **J.-P.Jensen**, MKK. Fьnf Netcgerдte aus Eriwan vom YerPhI bei DESY eingetroffen. DESY Intern. Report, Juni 2000.
- 20. **A.Babayan, D.Melkumyan, V.Nikoghosyan**. Wiggler Magnet Optimization for Linear Collider Damping Ring, EUROTEV-Report-2006-011.
- 21. **А.З.Бабаян, Д.Ю.Мелкумян, В.Ц.Никогосян**. Изв. НАН Армении, Физика, **41**, 450 (2006).
- 22. **A.Babayan, M.Preger.** Large Aperture Permanent Magnet Wiggler for the ILC Damping Ring, EUROTEV-Report 2007-004.
- 23. **Э.О.Алексанян, Э.М.Лазиев, М.Л.Мовсисян**. Изв. НАН Армении, Физика, **43**, 375 (2008).

ԵՐՖԻ-ՈՒՄ ՓՆՋԵՐԻ ՖԻԶԻԿԱՅԻ ԵՎ ԱՐԱԳԱՑՈՒՑՉԱՅԻՆ ՏԵԽՆԻԿԱՅԻ ԲՆԱԳԱՎԱՌՈՒՄ ՎԵՐՋԻՆ ՏԱՐԻՆԵՐԻ ԱՇԽԱՏԱՆՔՆԵՐԸ ԵՎ ՀԻՄՆԱԿԱՆ ՈՒՂՂՈՒԹՅՈՒՆՆԵՐԸ

Է.Մ. ԼԱԶԻԵՎ, Վ.Ց. ՆԻԿՈՂՈՍՅԱՆ

Ներկայացված է վերջին 10–12 տարիների ընթացքում ԵՐՖԻ-ում լիցքավորված մասնիկների փնջերի ֆիզիկայի և արագացուցչային տեխնիկայի բնագավառում կատարված աշխատանքների համառոտ ակնարկը։

RECENT WORKS AND FURTHER LINE OF INVESTIGATIONS IN THE FIELD OF BEAM PHYSICS AND ACCELERATOR TECHNOLOGY AT YEREVAN PHYSICS INSTITUTE

E.M. LAZIEV, V.Ts. NIKOGOSYAN

A brief review of the recent works and further line of investigations in the field of beam physics and accelerator technology at Yerevan Physics Institute is presented.