УДК 539.12

ОСОБЕННОСТИ УСТАНОВКИ ДЛЯ ИССЛЕДОВАНИЯ ДВУХЧАСТИЦНЫХ ЭКСКЛЮЗИВНЫХ РЕАКЦИЙ ПРИ БОЛЬШИХ ПЕРЕДАННЫХ ИМПУЛЬСАХ

А.А. ШАГИНЯН

Ереванский физический институт им. А.И. Алиханяна, Армения

(Поступила в редакцию 4 апреля 2008 г.)

Представлена методика постановки экспериментов по эксклюзивному рассеянию электронов и фотонов на нуклонах при переданных импульсах порядка 10 ГэВ². Описаны многоканальные детекторы, позволяющие реали-зовать эксклюзивные эксперименты с использованием светимости на уровне 10^{39} см⁻²/с.

1. Введение

Исследование партонной структуры нуклонов представляет собой одно из основных направлений физики адронов. Многочисленные экспе-рименты проводятся методами инклюзивного и эксклюзивного рассеяния электронов и фотонов на нуклонах. Инклюзивное рассеяние при больших переданных импульсах в режиме КХД-скейлинга дает информацию о "продольной" структуре нуклонов, в то время как эксклюзивное рассеяние дает информацию о "поперечной" структуре. Возникающая трехмерная картина нуклона представляет большой интерес для исследования в рамках предложенного недавно подхода GPD (general parton distribution) [1,2].

Исследование эксклюзивных процессов является особенно инте-ресным в области больших переданных импульсов выше 1-2 ГэВ², где пионный вклад в изучаемые процессы исчезает и доминируют кварковые степени свободы. В то же время, выполнение экспериментов в области больших переданных импульсов осложняется малой величиной сечения эксклюзивных процессов. Так, например, сечение упругого рассеяния элек-трона на протоне уменьшается с ростом переданного импульса как $1/Q^{14}$ (при фиксированной энергии пучка электронов).

В данной работе мы описываем созданные многоканальные детек-торы, которые позволили провести исследование эксклюзивных процессов при высоких переданных импульсах, и излагаем ряд оригинальных идей, во-площенных в их конструкциях и электронике. Успешный эксперимент требует оптимального выбора аппаратуры для обеспечения выделения эксклю-зивного процесса, максимальной светимости и большого телесного угла установки.

Группа сотрудников Ереванского физического института, прово-дившая эксперименты на ускорителе ЕрФИ, принимает активное участие в проектировании и

создании многоканальных детекторов в зале А в Амери-канском научном центре CEBAF (Лаборатория Джефферсона). В экспе-риментальном проекте [3] Войцеховским был сформулирован подход к постановке экспериментов с максимальной светимостью и многоканаль-ными детекторами, который использует принципиальную особенность эксклюзивных процессов, заключающуюся в кинематической связи характе-ристик начальных и конечных частиц в изучаемом процессе. Например, при упругом рассеянии электронов на протонах векторы импульсов конечных частиц лежат в одной плоскости с направлением падающего пучка элек-тронов, а полярный угол рассеянного электрона однозначно связан с полярным углом направления импульса протона отдачи. Другая прин-ципиальная особенность эксклюзивных процессов заключается в величине энергий вторичных частиц. В рассеянии электрона на протоне на фиксированный полярный угол в энергия электрона в случае упругого рассеяния имеет максимальное значение. Это позволяет проводить предвари-тельный отбор процесса упругого рассеяния электрона методом калориметрирования энергии электрона. Еще одно важное обстоятельство, облег-чающее постановку экспериментов, мы обнаружили в экспериментах [4]. А именно, энергетический спектр сигналов с электромагнитного калориметра имеет экспоненциальную форму, как следует из рис.1. Таким образом, многоканальный калориметр с высоким координатным разрешением и высоким энергетическим разрешением позволяет уже на этапе триггера проводить частичное выделение процесса упругого рассеяния.

Рис.1. Зависимость скорости счета триггера калориметра от уровня порога.

2. Калориметр для эксперимента по упругому рассеянию фотонов на протонах

Комптоновское рассеяние дает важную информацию о структуре нук-лонов, дополнительную к информации, получаемой в упругом рассеянии электронов. Эксперимент по комптоновскому рассеянию на протоне ис-пользует тормозной пучок гамма-квантов, жидководородную мишень, маг-нитный спектрометр для регистрации протона отдачи и многоканальный калориметр, который был создан специально для эксперимента по реальному комптоновскому рассеянию (РКР) [3].

Многоканальный калориметр [4] из блоков свинцового стекла, построенный группой ЕрФИ, использовался в эксперименте РКР – эксперимент Е99–114 Лаборатории Джефферсона. Калориметр представляет собой матрицу 22х32 из блоков свинцового стекла с поперечным сечением 4х4 см² и длиной 40 см. Энерговыделение в каждом блоке определялось по сигналу с ФЭУ 84-3. Координаты попадания частиц определялась по методу "центра тяжести". Данный калориметр представляет значительный интерес в связи с большим количеством элементов и успешным опытом работы в эксперименте при высокой светимости, а также эффективной организацией триггера, использующего полную энергию ливня. В тестовых измерениях коор-динатное разрешение достигало 5–6 мм для электронов с энергией 1 ГэВ, что с избытком обеспечило требования эксперимента. Энергетическое разрешение калориметра достигало 5–6% для электронов с энергией 1 ГэВ в начале эксперимента РКР. Эта величина ухудшилась до 10% по мере накопления радиационных повреждений.

В калориметре блоки были уложены в стальную раму, где две толстые алюминиевые пластины обеспечивали вертикальную и горизонтальную ориентацию. После сборки каждый слой был сжат по горизонтали. Окончательно сложенная матрица была также прижата сверху. Сила была при-ложена на свинцовые стекла через деревянные бруски с резиновой прокладкой. Вертикальная алюминиевая пластина была установлена перпендикулярно горизонтальной пластине с помощью юстировочных болтов.

Триггер калориметра был построен на базе групп из восьми блоков, сформированных в виде "4x2". Каждая такая группа вместе с тремя со-седними группами использовалась для формирования триггерного сигнала первого уровня Т1 (см. рис.2). Монте-карловское моделирование и резуль-таты тестового измерения показали, что утечка энергии ливня за границы групп 32-х блоков не превышает 3% в центральной части калориметра, составляющей 85% его полной площади.

Периферийные блоки не включались в схему организации триггера. Всего в калориметре было выделено 75 групп "4х2", которые, перекрываясь, формировали 56 сигналов Т1. Каждый из сигналов Т1 подавался на дискриминатор. Логическое "или" упомянутых дискриминаторов формировало окончательный триггерный сигнал калориметра. Схема электроники и высоковольтного оборудования построена с использованием 100-метровой кабельной трассы, что позволило оперативно перемещать калориметр при из-менении кинематики эксперимента.

Рис.2. Организация триггера для калориметра РКР. Принцип суммирования с двумя уровнями для триггера калориметра: 75 первичных групп из восьми блоков и 56 групп из четырех перекрываюшихся, последние формируют сумму из 32-х сиг-налов, помеченных как S01–S56. В выделенном примере суммы 02, 03, 07 и 08 формируют сигнал S02.

Физические результаты эксперимента позволили установить механизм РКР [5]. Рис.3 показывает распределение γ –p событий по параметрам δY и E_{γ} , где E_{γ} – энергия фотона, определенная калориметром, а δY – разница между расчетной и измеренной в калориметре вертикальной координатой фотона. Расчет координаты делался в предположении об упругом рассеянии фотона на протоне, исходя из энергии и угла вылета протона из мишени. События вблизи δY = 0 и энергии фотона 1.2 ГэВ принадлежат процессу РКР (узкий пик на рис.36). События, сосредоточенные в боковых ветвях на рис.3а, отвечают процессу фоторождения нейтрального пиона, которые ки-нематически и требует высокого координатного и энергического разрешения калориметра. Особенно важно координатное разрешение при большой энергии конечного фотона, когда пионное распределение сжимается.

Рис.3. а) Распределение событий по энергии фотона в калориметре в зависимости от разницы между ожидаемой и измеренной координатой для РКР события. б) Распределение событий по разнице между ожидаемой и измеренной в калориметре координатой фотона для РКР события.

3. Многоканальный нейтронный детектор

Эксперимент GEN Лаборатории Джефферсона E02–013 [6] поставлен для измерения электрического форм-фактора нейтрона. В этом случае регистрируются рассеянный электрон и нейтрон отдачи. Мы реализовали мно-гоканальную систему в обоих плечах эксперимента. Для регистрации электронов был построен магнитный спектрометр "BigBite" с телесным углом 100 мср, триггер которого организован с помощью многоканального калориметра из блоков свинцового стекла (описан в следующем разделе). Нейтронное плечо эксперимента – "BigHAND" построено из нескольких сотен сцинтилляционных счетчиков. Детектор был закрыт со стороны мишени двумя слоями антисовпадательных счетчиков V1, V2 (см. рис.4). Вся система счетчиков была защищена от мишени слоем свинца толщиной 5 см и со

всех остальных сторон – слоем железа толщиной 2.5 см. Нейтронное плечо орга-низовано в виде семи стенок N1–N7 (рис.4). Каждая стенка состояла из 40–45 счетчиков. Вертикальные стенки собраны из кассет, каждая из которых включает 5–10 нейтронных счетчиков. Было использовано три разных типа кассет: 1 – содержит 10 счетчиков размером 10х10х160 см³, 2 – содержит 5 счетчиков размером 5х15х180 см³, 3 – содержит 5 счетчиков размером 10х20х180 см³. Использованное разбиение стенки на кассеты решило две важные задачи. Во-первых, это позволило смонтировать детекторы заранее и быстро собрать установку в экспериментальном зале. Во-вторых, кассета содержит 10 счетчиков и поддерживает их. Таким образом, исключается возможность потери режима полного внутреннего отражения при собирании света, которое может произойти, если большое число счетчиков сдавливает нижние счетчики.

Рис.4. Изображение события №10723 захода 4425 в нейтронном плече. Цифры по оси Y показывают номер блока, а по оси X– детекторные плоскости нейтронного плеча. Цифры в поле детек-тора показывают амплитуду сигналов (см. текст).

Для организации триггера нейтронный детектор был разбит по вертикали на 15 групп. В каждую группу входят счетчики из семи вертикальных стенок, расположенные по вертикали в пределах 60 см, что покрывает возможную ширину адронного ливня. Сумма сигналов всех счетчиков в группе использовалась для формирования триггера. Во избежание потерь эффективности, соседние группы перекрывались на 30 см.

Вертикальная сегментация нейтронных счетчиков позволяет определить вертикальную координату попадания нейтрона в детектор с точностью 3-5 см. Горизонтальная координата попадания нейтрона опре-деляется с точностью 5-6 см по разнице времен прихода световых сигналов на левый и правый фотоэлектронные умножители нейтронных счетчиков. Нейтронный детектор, расположенный на расстоянии 12 м от мишени, позволяет весьма точно определить угол вылета нейтрона и сделать оценку его импульса по величине времени пролета. На рис.4 для иллюстрации показано одно событие, зарегистрированное во время эксперимента Е02–013. Цифры показывают величину сигналов соответствующих ФЭУ, опре-деленных по аналого-цифровому преобразователю (АЦП). Цифры представ-лены наклоном в случае, когда время появления соответствующего сигнала лежит вне диапазона реальных совпадений (20 нс). Цифры, ориентированные горизонтально, показывают амплитуду сигналов, имеющих время срабатывания в диапазоне реальных совпадений. Хорошо прослеживается цепочка срабатываний на уровне счетчиков №14–15, отвечающих треку протона высокой энергии. Антисовпадательные счетчики на левой стороне тоже сработали.

Выделение процесса квазиупругого выбивания из ядра ³Не крити-ческим образом зависит от точного определения угловой корреляции между рассеянным электроном и нейтроном отдачи, поскольку фоновые события, как случайные, так и физический фон, имеют гораздо более широкую угловую корреляцию. Этот эксперимент имел скорость набора полезных событий в 100 раз выше, чем ранее проведенные эксперименты с поляризованными мишенями, в значительной степени благодаря большому числу каналов построенных детекторов.

4. Многоканальный калориметр в триггере спектрометра с большим аксептансом

Недавно коллаборацией GEN [7] в зале А построен магнитный спектрометр "BigBite" с большим телесным углом. В состав спектрометра входят дипольный магнит (максимальное магнитное поле 1.2 Т) и пакет детекторов. Последний включает три многопроволочные дрейфовые каме-ры, годоскоп пластмассовых сцинтилляционных счетчиков и многоканальный калориметр. Многоканальный калориметр на базе свинцового стекла применен в качестве триггера, а также для идентификации элек-тронов. Калориметр состоит из двух частей – радиатора и поглотителя. Ра-диатор сделан в виде матрицы 2х7 из блоков 8.5х8.5х34 см³ толщиной 8.5 см в направлении движения частиц. Поглотитель собран из таких же модулей в виде матрицы 7х27 толщиной 34 см в направлении распространения ливня. Свет в каждом блоке регистрировался с помощью ФЭУ-110. Рис.5 показывает событие, зарегистрированное в спектрометре. В калориметре амплитуда сигналов с ФЭУ отображена размером затемненных областей. Легко видеть, что в типичном событии в калориметре наблюдается только один кластер. Устойчивость калориметра к фону мягких частиц позволила проводить эффективную обработку экспериментальных данных, несмотря на высокую множественность в многопроволочных дрейфовых камерах (рис.5).

Рис.5. Изображения события в спектрометре BigBite. Показаны сработавшие проволоки в трёх многопроволочных дрейфовых камерах (Ch1, Ch2, Ch3) и энерговыделение в радиаторе и в поглотителе калориметра. Для наглядности плоскости детекторов повернуты на 90°. Площадь кружков в калориметре пропор-циональна величине сигналов. Максимальный сигнал в данном событии соответствует 0.80 ГэВ.

Годоскоп пластмассовых сцинтилляционных счетчиков, помещенных между радиатором и поглотителем, предназначен для определения времени попадания частиц. Временное разрешение годоскопа в эксперименте составило 0.25 нс. Нестандартное расположение годоскопа (после радиатора) позволило уменьшить чувствительность годоскопа к частицам низких энергий и, таким образом, многократно понизить скорость счета годоскопа. Рис.6 показывает структуру поглотителя, где мы применили сдвинутые слои, кото-рые позволили избежать накопления смещений, связанных с разбросом размеров стеклянных блоков. Для формирования триггерного сигнала кало-риметр разбит на 26 вертикальных групп. В каждую группу входят два слоя (4 счетчика) радиатора и два слоя (14 счетчиков) поглотителя. Группы перекрываются по вертикали. Суммарный сигнал с каждой группы пода-вался на дискриминатор. Порог триггера эксперимента GEN устанавливался на уровне 500–800 МэВ, в зависимости от кинематики измерения. Идентификация электронов проводилась по соотношению амплитуд сигна-лов в радиаторе и в поглотителе (см. рис.7). Распределение амплитуд сиг-налов в радиаторе имеет узкий пик от пионов и широкий максимум от элек-тронов. Форма распределения амплитуд в радиаторе для пионных событий определена с использованием треков положительной кривизны, среди кото-рых пионы доминируют. Форма распределения для электронных событий откалибрована на событиях упругого рассеяния электронов на водородной мишени. Отбор событий с амплитудой выше 450 каналов уже позволяет дос-таточно подавить пионный фон.

Рис.6. Схематическии вид поглотителя. 1 – пластина для вертикальной выставки; 2 – вставка, обеспечивающая сдвиг модулей; 3 – болт для юстировки; 4 – пластина для горизонтальной выставки.

Угловая корреляция между частицей, зарегистрированной в нейтронном детекторе, и электроном, зарегистрированным в магнитном спектрометре, позволяет выделить чистые события квазиупругого выбивания нейтронов из ядер ³Не при переданном импульсе 3.4 ГэВ².

Рис.7. Распределение по амплитуде в радиаторе для событий, наб-ранных в измерении на мишени ³Не.

5. Многоканальные детекторы в будущих экспериментах

Таким образом, в данной работе показано, что многоканальные де-текторы, в особенности сегментированные калориметры, позволяют осу-ществить исследования эксклюзивных процессов при больших переданных импульсах.

Приведенные соображения и разработанная нами методика много-канальных детекторов послужили основой для ряда предложений будущих экспериментов в Лаборатории Джефферсона. Среди этих предложений: 1) измерение электрического формфактора нейтрона при переданном им-пульсе до 7 ГэВ² (используются "BigBite" и "BigHAND"). 2) измерение электрического форм-фактора протона при переданном импульсе до 15 ГэВ² [8] (используется калориметр, подобный описанному нами в разделе 2).

Автор благодарен членам коллаборации Зала А и персоналу Лаборатории Джефферсона за их вклад в реализацию экспериментов E99-114 и E02-013. Выражаю также признательность администрации Ереванского фи-зического института за постоянное внимание и поддержку этих проектов и сотрудникам группы ЕрФИ, участвовавшим в их реализации. Автор статьи признателен руководителям зала А и экспериментов E99-114, E02-013. Эта работа выполнена в рамках коллаборации ЕрФИ и зала А Лаборатории Джефферсона, США.

ЛИТЕРАТУРА

- 1. X.-D. Ji. Phys. Rev. Lett., 78, 610 (1997); A.V. Radyushkin. Phys. Rev., D56, 5524 (1997).
- 2. M. Burkardt. Int. J. Mod. Phys., A18, 173 (2003).
- 3. B. Wojtsekhowski et al. JLab experiment E99-114, http://www.jlab.org/exp_prog/proposals/99/PR99-114.pdf.
- 4. A. Shahinyan et al. "The electromagnetic calorimeter in JLab Real Compton Scattering Experiment", arXiv: 0704.1830.
- D.J. Hamilton et al. Phys. Rev. Lett., 94, 242001 (2005); A. Danagoulian et al. Phys. Rev. Lett., 98, 152001 (2007).
- B. Wojtsekhowski. Bull. Amer. Phys. Soc., Nuclear Physics Fall Meeting 2003. CB.010 "An experiment to measure GEN at very high Q2"; G. Gates et al. JLab experiment E02-013. http://hallaweb.jlab.org/experiment/E02-013.
- 7. **B. Wojtsekhowski** et al. Annual Report Hall A, p.69. http://hallaweb.jlab.org/ publiccations.
- 8. L. Pentchev et al. "Large Acceptance Proton Form Factor Ratio Measurement at 13 and 15 GeV² Using Recoil Polarization Method". http://www.jlab.org/exp_prog/ PACpage/PAC32.

Փոխանցված իմպուլսի մեծ արժեքների երկմասնիկային էքսկլյուզիվ ռեակցիաների հետազոտման սարքի յուրահատկությունները

Ա.Հ.Շահինյան

Ներկայացված է փոխանցված իմպուլսի 10 ԳէՎ² կարգի արժեքների դեպքում նուկլոնների վրա էլեկտրոնների և ֆոտոնների էքսկլյուզիվ ցրման գիտափորձի մեթոդիկան։ Նկարագրված են նաև բազմականալային դետեկտորները, որոնք հնարավորություն են տալիս իրականցնել էքսկլյուզիվ գիտափորձեր լուսատվության 10³⁹ սմ⁻²/վ արժեքների դեպքում։

FEATURES OF THE SETUP FOR INVESTIGATION OF TWO-PARTICLE EXCLUSIVE REACTIONS WITH HIGH TRANSFER MOMENTUM

A.H. SHAHINYAN

The technique of experimental design for electron and photon exclusive scattering on nucleons with transfer momentum values of the order of 10 GeV² is presented. The multichannel detectors providing the possibility to realize exclusive experiments with luminosity values of 10^{39} cm⁻²/s are described.