УДК 538.945

ЗАВИСЯЩИЕ ОТ ЭКРАНИРОВАНИЯ ПАРАМЕТРЫ СВЕРХПРОВОДЯЩЕГО СОСТОЯНИЯ БИНАРНЫХ СПЛАВОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

A.M. BOPA

Пармешвари 165, Бхудж-Катч, Гуджарат, Индия

(Поступила в редакцию 25 марта 2008 г.)

С помощью модельного потенциала исследованы зависящие от экранирования параметры сверхпроводящего состояния бинарных сплавов 3*d*-переходных металлов, а именно, константа электрон-фононной связи λ , куло-новский псевдопотенциал μ , температура перехода T_c , показатель изотопического эффекта α и эффективное взаимодействие $N_0 V$. Обнаружено существенное влияние различных обменных и корреляционных функций на величины λ и μ . Полученные результаты качественно согласуются с имею-щимися экспериментальными данными.

1. Введение

В последние годы сверхпроводимость продолжает оставаться динами-чески развивающейся областью физики твердого тела; продолжают осваи-ваться новые материалы и растет спрос на новые приборы для тонких техни-ческих применений. Многие металлы и аморфные сплавы являются сверх-проводниками с критической температурой T_C в интервале 1–18 К. Даже у некоторых сильно легированных полупроводников были обнаружены сверх-проводящие свойства [1-13]. Многими авторами [1-13] для вычисления параметров сверхпроводящего состояния (ПСС) металлических комплексов успешно использовалась теория псевдопотенциала. Ряд авторов использо-вали известную модель псевдопотенциала для расчетов ПСС металлических комплексов. В последнее время, с помощью формализма однопараметри-ческого модельного потенциала [3-11], нами изучались ПСС некоторых металлов, бинарных сплавов индия, щелочных металлов, медноцирконие-вых металлических стекол, сплавов переходных 5*d*-металлов и ряда других металлических стекол. Изучение ПСС бинарных сплавов на основе сверх-проводников может значительно способствовать определению их примене-ний; исследование зависимости температуры перехода T_C от состава ме-таллических элементов полезно для разработки новых высокотемпературных сверхпроводников. При применении псевдопотенциалов к бинарным сплавам предполагается наличие псевдоионов с усредненными свойствами, которые заменяют три типа ионов в бинарных системах, и газа свободных электронов, находящегося между ними. Взаимодействие электрона с псевдо-ионом учитывается псевдопотенциалом, а взаимодействие между электронами включается в функцию

диэлектрического экранирования. Для правильного предсказания сверхпроводящих свойств сплавов очень существенен подходящий выбор псевдопотенциала и экранирующей функции [3-11].

Для изучения ПСС бинарных сплавов 3*d*-переходных металлов, а именно, константы электрон-фононной связи λ , кулоновского псевдопо-тенциала µ['], температуры перехода T_C , показателя изотопического эффекта α и эффективного взаимодействия N_0V , мы используем в данной работе известный модельный потенциал пустого ядра (ПЯ) Ашкрофта [14]. Для выяснения влияния различных обменных и корреляционных функций на вышеотмеченные свойства мы использовали пять различных видов локаль-но-полевых поправочных функций, предложенных Хартри (Х) [15], Тейлором (Т) [16], Ичимару–Уцуми (ИУ) [17], Фаридом и др. (Ф) [18] и Саркаром и др. (С) [19]. При исследованиях ПСС бинарных сплавов 3*d*-переходных металлов мы впервые используем более эффективные, недавно развитые локально-полевые поправочные функции, т.е. функции ИУ, Ф и С. Здесь мы используем однопараметрический локальный модельный потенциал ПЯ Ашкрофта для описания электрон-ионных взаимодействий. Форм-фактор W(q) модельного потенциала ПЯ определяется в пространстве волновых чисел (в ат. ед.) как [14]

$$W(q) = \frac{-8\pi Z}{\Omega_0 q 2\epsilon(q)} \cos(qr_c), \tag{1}$$

где через *Z*, Ω₀, ε(*q*) и *r*_c обозначены соответственно валентность, атомный объем, диэлектрическая функция Хартри и параметр модельного потенциала для бинарных сплавов на основе 3*d*-переходных металлов.

2. Техника вычислений

Константа электрон-фононной связи λ вычисляется в настоящей работе из соотношения [3-11]

$$\lambda = \frac{m_b \Omega_0}{4\pi^2 k_F M \left\langle \omega^2 \right\rangle} \int_0^{2k_F} q^3 \left| W(q) \right|^2 dq.$$
⁽²⁾

Здесь m_b – зонная масса, M – ионная масса, k_F есть фермиевский волновой вектор и W(q) – экранированный псевдопотенциал. Эффективный средний квадрат фононной частоты $\langle \omega^2 \rangle$ вычисляется с помощью соотношения Батлера [20] $\langle \omega^2 \rangle^{l/2} = 0.69\theta_D$, где θ_D – дебаевская температура бинарных сплавов 3d-переходных металлов.

Вводя обозначение $X = q/2k_F$ и учитывая, что $\Omega_0 = 3\pi^2 Z/(k_F)^3$ получим уравнение (2) в следующем виде:

$$\lambda = \frac{12m_b Z}{M\left\langle \omega^2 \right\rangle} \int_0^1 X^3 \left| W(X) \right|^2 dX, \qquad (3)$$

где *W*(*X*) экранированный псевдопотенциал ПЯ [13] бинарных сплавов 3*d*-переходных металлов.

Кулоновский псевдопотенциал µ^{*} дается выражением [3-11]

$$\mu^* = \frac{\frac{m_b}{\pi k_F} \int_0^1 \frac{dX}{\varepsilon(X)}}{1 + \frac{m_b}{\pi k_F} \ln\left(\frac{E_F}{10\theta_D}\right) \int_0^1 \frac{dX}{\varepsilon(X)}}.$$
(4)

Здесь *E_F* – энергия Ферми, (*X*) – модифицированная диэлектрическая функция Хартри, которая записывается в виде [15]

$$\varepsilon(X) = 1 + (\varepsilon_H(X) - 1)(1 - f(X)),$$
 (5)

где $\varepsilon_H(X)$ – статическая диэлектрическая функция Хартри [15], а f(X) – локально-полевая поправочная функция. В настоящем исследовании для выяснения влияния обменных и корреляционных эффектов используются локаль-но-полевые поправочные функции (X) [15], (T) [16], (ИУ) [17], (Ф) [18] и (С) [19].

После вычисления λ и µ^{*}, точка перехода T_C и показатель изотопического эффекта исследуются по формулам Макмиллана [3-11]

$$T_{C} = \frac{\theta_{D}}{1.45} \exp\left[\frac{-1.04(1+\lambda)}{\lambda\mu^{*}(1+0.62\lambda)}\right],$$
(6)

$$\alpha = \frac{1}{2} \left[1 - \left(\mu^* \ln \frac{\theta_D}{1.45T_C} \right)^2 \frac{1 + 0.62\lambda}{1.04(1 + \lambda)} \right].$$
(7)

Эффективное взаимодействие N₀V изучается по формуле [3-11]

$$N_0 V = \frac{\lambda - \mu^*}{1 + \frac{10}{11}\lambda}.$$
 (8)

3. Результаты и обсуждение

Исходные параметры и константы, использованные в наших вычис-лениях, приведены в таблице 1. В таблицу 2 сведены вычисленные значения ПСС, а именно, константа электрон-фононной связи λ , кулоновский псев-допотенциал μ^{*} , температура перехода T_{C} , показатель изотопического эффекта - и эффективное взаимодействие $N_{0}V$, для бинарных сплавов 3*d*-переходных металлов при различных концентрациях; приведены также имеющиеся экспериментальные результаты [21-23].

C	7		Ω₀,	k₽,	М,	0 1/	$(c_2)^2$ (c_1) 2 10 ¹⁶	
Сплавы	Z	<i>rc</i> , a.u.	(a.u.) ³	a.u.	a.m.u.	θ <i>D</i> , K	$\langle \omega^2 \rangle$ (a.u.) ² x10 ¹⁶	
Tio.80V0.20	4.20	0.7116	113.11	1.0321	48.51	403.60	3.13218	
Tio.70V0.30	4.30	0.6880	110.68	1.0478	48.81	395.40	3.00620	
Ti0.50V0.50	4.50	0.7135	105.83	1.0798	49.42	379.00	2.76199	
Ti0.25V0.75	4.75	0.7692	99.77	1.1213	50.18	358.50	2.47128	
Ti0.15V0.85	4.85	0.7987	97.34	1.1384	50.48	350.30	2.35952	
V0.90Cr0.10	5.10	0.6402	92.43	1.1778	51.05	370.00	2.63237	
V0.90Cr0.10	5.20	0.6386	91.16	1.1909	51.15	400.00	3.07655	
V0.90Cr0.10	5.25	0.6270	90.53	1.1975	51.2	425.00	3.47314	
V0.80Cr0.20	5.40	0.6584	88.62	1.2174	51.36	450.00	3.89376	
V0.75Cr0.25	5.50	0.6790	87.35	1.2308	51.47	470.00	4.24756	
V0.60Cr0.40	5.60	0.6628	86.08	1.2442	51.57	513.20	5.06428	
V0.50Cr0.50	5.80	0.7170	83.54	1.2715	51.78	571.60	6.28244	
V0.40Cr0.60	5.90	0.6913	82.27	1.2853	51.89	600.80	6.94071	
V0.20Cr0.80	5.95	0.6813	81.70	1.2919	51.93	613.94	7.24763	
V0.10Cr0.90	4.20	0.7116	113.11	1.0321	48.51	403.60	3.13218	
V0.055Cr0.945	4.30	0.6880	110.68	1.0478	48.81	395.40	3.00620	

Табл.1. Исходные параметры и другие константы.

Табл.2. Параметры сверхпроводящего состояния сплавов 3*d*-переходных металлов.

		1 1	1	1 /				1 11		
C	ПСС		Настоя	щие резу	ультаты		0	Процентиальное	Отклонение	
Сплавы	ncc	Х	Т	ИУ	Φ	С	Эксперимент	влияние (%) [*]	(%) **	
	λ	0.53	0.71	0.74	0.74	0.63	0.54 [21]	18.55-39.95	1.69-37.59	
$Ti_{0.80}V_{0.20}$	μ	0.13	0.14	0.14	0.14	0.13	-	7.64-8.84	-	
	$T_C(\mathbf{K})$	3.50	8.82	9.83	9.90	6.33	3.5 [21]	-	0.14-182.74	
	α	0.37	0.41	0.42	0.42	0.40	-	-	-	
	N_0V	0.27	0.35	0.36	0.36	0.32	-	-	-	
Ti _{0.70} V _{0.30}	λ	0.61	0.82	0.86	0.86	0.73	0.62 [21]	18.07-39.82	0.94-38.52	
	μ*	0.12	0.13	0.13	0.14	0.13	-	7.56-8.69	-	
	$T_C(\mathbf{K})$	6.14	12.79	13.96	14.04	9.71	6.14 [21]	-	0.03-128.68	
	α	0.41	0.43	0.44	0.44	0.43	-	_	-	
	N_0V	0.31	0.39	0.41	0.41	0.36	-	-	-	
	λ	0.65	0.86	0.89	0.89	0.76	0.65 [21]	17.24-37.11		
	μ^*	0.12	0.13	0.13	0.13	0.13	-	7.31-8.46	-	
$Ti_{0.50}V_{0.50}$	$T_C(\mathbf{K})$	7.31	13.78	14.86	14.91	10.90	7.30 [21]	-	0.08-104.28	
	α	0.42	0.44	0.44	0.44	0.44	-	_	-	
	N_0V	0.33	0.41	0.42	0.42	0.38	-	-	-	
	λ	0.65	0.84	0.86	0.87	0.76	0.65 [21]	16.12-32.79	0.12-37.28	
	μ*	0.12	0.13	0.13	0.13	0.12	-	7.08-8.18	-	
$Ti_{0.25}V_{0.75}$	$T_{C}(\mathbf{K})$	7.16	12.69	13.54	13.56	10.39	7.16 [21]	-	0.05-89.33	
	α	0.43	0.44	0.45	0.45	0.44	_	_	_	
	N_0V	0.33	0.40	0.41	0.41	0.38	-	-	-	

	λ	0.65	0.82	0.85	0.85	0.75	0.65 [21]	15.46-13.99	0.23-33.09
		0.12	0.13	0.13	0.13	0.12	-	6 90-8 01	_
T; V	μ	7.02	12.15	12.00	12.01	10.05	7.02.[21]	0.70-0.01	0.06.92.02
1 1 _{0.15} V 0.85	$I_C(\mathbf{K})$	7.02	12.15	12.89	12.91	10.05	7.02 [21]	-	0.00-83.93
	α	0.43	0.44	0.45	0.45	0.44	-	-	-
	N_0V	0.33	0.40	0.41	0.41	0.37	-	-	-
	λ	0.51	0.66	0.69	0.69	0.59	0.53 [21], 0.28 [22]	14.60–34.75	0.08–30.89
	μ^*	0.12	0.12	0.13	0.13	0.12	0.20 [22]	6.80-7.84	-
$Ti_{0.15}V_{0.85}$ $V_{0.90}Cr_{0.10}$ $V_{0.80}Cr_{0.20}$ $V_{0.75}Cr_{0.25}$ $V_{0.60}Cr_{0.40}$ $V_{0.50}Cr_{0.50}$ $V_{0.40}Cr_{0.60}$ $V_{0.20}Cr_{0.80}$							3.21 [21],		
	$T_C(\mathbf{K})$	3.21	7.41	8.18	8.22	5.21	3.21 [22], 2.6 [23], 2.5 [23]	_	0.07–156.07
	α	0.39	0.42	0.42	0.42	0.41	-	-	-
Ti _{0.15} V _{0.85} V _{0.90} Cr _{0.10} V _{0.80} Cr _{0.20} V _{0.75} Cr _{0.25} V _{0.75} Cr _{0.25} V _{0.60} Cr _{0.40} V _{0.60} Cr _{0.40} V _{0.40} Cr _{0.60}	N_0V	0.27	0.34	0.35	0.35	0.30	_	-	-
	λ	0.45	0.58	0.61	0.61	0.52	0.48 [21], 0.26 [22]	14.29–34.19	3.30-30.30
	u*	0.12	0.12	0.13	0.13	0.12	0.19 [22]	6.78-7.81	-
$Ti_{0.15}V_{0.85}$ $V_{0.90}Cr_{0.10}$ $V_{0.80}Cr_{0.20}$ $V_{0.75}Cr_{0.25}$ $V_{0.60}Cr_{0.40}$ $V_{0.50}Cr_{0.50}$ $V_{0.40}Cr_{0.60}$	$T_C(\mathbf{K})$	1.90	5.21	5.85	5.89	3.40	1.90 [21], 1.90 [22]	_	0.03–209.87
	α	0.36	0.40	0.40	0.40	0.38	-	_	_
	N _c V	0.24	0.30	0.31	0.31	0.27		-	
	1101	0.27	0.50	0.51	0.51	0.27	0.45 [21]		
	λ	0.42	0.55	0.57	0.57	0.48	0.32 [22]	14.06–34.29	5.69–26.56
V G	μ	0.12	0.15	0.13	0.13	0.12	0.19[22]	0.84-7.80	-
$Ti_{0.15}V_{0.85}$ $V_{0.90}Cr_{0.10}$ $V_{0.80}Cr_{0.20}$ $V_{0.75}Cr_{0.25}$ $V_{0.60}Cr_{0.40}$ $V_{0.50}Cr_{0.50}$ $V_{0.40}Cr_{0.60}$ $V_{0.20}Cr_{0.80}$	$T_C(\mathbf{K})$	1.36	4.23	4.81	4.85	2.60	1.36 [21], 1.36 [22]	-	0.07-256.60
	α	0.33	0.38	0.39	0.39	0.36	—	-	-
	N_0V	0.22	0.28	0.29	0.29	0.25	-	-	-
$Ti_{0.15}V_{0.85} = \frac{7}{7}$ $V_{0.90}Cr_{0.10} = \frac{7}{7}$ $V_{0.80}Cr_{0.20} = \frac{7}{7}$ $V_{0.60}Cr_{0.40} = \frac{7}{7}$ $V_{0.60}Cr_{0.40} = \frac{7}{7}$ $V_{0.40}Cr_{0.50} = \frac{7}{7}$	λ	0.35	0.45	0.46	0.46	0.40	0.38 [21], 0.38 [22]	13.83–32.35	7.68–22.18
	μ	0.12	0.12	0.13	0.13	0.12	0.19 [22]	6.86-7.88	-
$V_{0.60}Cr_{0.40}$	$T_C(\mathbf{K})$	0.37	1.69	2.00	2.01	0.91	0.37 [21], 0.37 [22]	-	0.03-443.27
Ti _{0.15} V _{0.85} V _{0.90} Cr _{0.10} V _{0.80} Cr _{0.20} V _{0.75} Cr _{0.25} V _{0.75} Cr _{0.25} V _{0.60} Cr _{0.40} V _{0.50} Cr _{0.50} V _{0.40} Cr _{0.60}	α	0.23	0.32	0.33	0.33	0.29	-	-	-
	N_0V	0.18	0.23	0.24	0.24	0.20	_	_	-
Ti _{0.15} V _{0.85} V _{0.90} Cr _{0.10} V _{0.80} Cr _{0.20} V _{0.75} Cr _{0.25} V _{0.60} Cr _{0.40} V _{0.50} Cr _{0.50} V _{0.40} Cr _{0.60} V _{0.20} Cr _{0.80}	λ	0.31	0.39	0.40	0.40	0.35	0.33 [21], 0.43 [22]	13.61-31.03	6.94–21.94
	μ [*]	0.12	0.12	0.13	0.13	0.12	018 [22]	6.77-7.80	_
$V_{0.50}Cr_{0.50}$	$T_{C}(\mathbf{K})$	0.10	0.69	0.84	0.85	0.32	0.10 [21]	_	0.30-747.40
	α	0.11	0.25	0.26	0.26	0.20	-	_	_
	N_0V	0.15	0.20	0.20	0.20	0.17	_	_	_
	λ	0.28	0.36	0.37	0.37	0.32	0.28 [21], 0.46 [22]	13.25-31.06	0.04–31.11
	μ [*]	0.12	0.13	0.13	0.13	0.12	0.18 [22]	6.74–7.85	_
V _{0.40} Cr _{0.60}	$T_C(\mathbf{K})$	0.03	0.33	0.43	0.43	0.13	<0.025 [21],	_	_
	~	-0.03	0.17	0.19	0.19	0.10	_	_	_
Ti _{0.15} V _{0.85} V _{0.90} Cr _{0.10} V _{0.80} Cr _{0.20} V _{0.75} Cr _{0.25} V _{0.75} Cr _{0.25} V _{0.60} Cr _{0.40} V _{0.60} Cr _{0.40} V _{0.40} Cr _{0.50}	N _c V	0.03	0.17	0.19	0.19	0.15	_	_	_
	1000	0.15	0.17	0.18	0.16	0.15	0.20[21]	_	_
Ti _{0.15} V _{0.85} V _{0.90} Cr _{0.10} V _{0.90} Cr _{0.20} V _{0.75} Cr _{0.25} V _{0.60} Cr _{0.40} V _{0.60} Cr _{0.40} V _{0.60} Cr _{0.50}	λ	0.20	0.25	0.26	0.26	0.23	0.56 [22]	12.59–28.14	0.05-28.20
	μ	0.12	0.13	0.13	0.13	0.12	0.18 [22]	6.82–7.84	-
	$T_C(\mathbf{K})$	0.00	0.00	0.00	0.00	0.00	<0.015 [22]	-	-
	α	-1.58	-0.57	-0.50	-0.50	-0.85	_	_	-
	N_0V	0.07	0.10	0.11	0.11	0.09	-	-	-
	λ	0.20	0.25	0.26	0.26	0.22	0.20 [21], 0.63 [22]	12.45-28.50	0.00–28.50
$V_{0.10}Cr_{0.90}$	μ [*]	0.12	0.13	0.13	0.13	0.12	0.18 [22]	6.73–7.84	_
	$T_C(\mathbf{K})$	0.00	0.00	0.00	0.00	0.00	<0.015 [22]	_	-

	α	-1.58	-0.57	-0.49	-0.49	-0.86	-	-	-	
	N_0V	0.07	0.10	0.11	0.11	0.09	-	-	-	
	λ	0.20	0.25	0.26	0.26	0.22	0.20 [21], 0.88 [22]	12.30-28.55	0.00-28.55	
V _{0.055} Cr _{0.945}	μ*	0.12	0.13	0.13	0.13	0.12	1	6.73-7.76	1	
	$T_{C}(\mathbf{K})$	0.00	0.00	0.00	0.00	0.00	<0.015 [22]	-	-	
	α	-1.58	-0.57	-0.49	-0.49	-0.86	-	-	-	
	N_0V	0.07	0.10	0.11	0.11	0.09	-	-	-	

ентильное влияние различных локально-полевых поправочных функций по отношению к статической экранирующей функции Хартри.

"Отклонение от экспериментальных данных.

Вычисленные значения константы электрон-фононной связи - для бинарных сплавов 3d-переходных металлов с использованием пяти различ-ных локально-полевых поправочных функций и модельного потенциала ПЯ приведены в табл.2 вместе с экспериментальными данными [21,22]. Как ви-дим, Х-экранирование дает наименьшее значение λ, в то вреня как значе-ния, полученные с Ф-функцией, наибольшие. Из табл.2 видно также, что λ постепенно убывает от 0.8651 до 0.5309 при увеличении концентрации ванадия от 0.20 до 0.75, а при увеличении концентрации хрома от 0.20 до 0.945 λ все еще уменьшается. Рост или убывание µ с концентрацией хрома или ванадия указывает на постепенный переход от слабой к умеренной связи при взаимодействии электронов и фононов, что может быть отнесено на счет увеличения гибридизации sp-d электронов ванадия и хрома при уве-личении концентрации (x). Это может быть также обусловлено увеличением роли ионных колебаний в области, обогащенной 3d-переходными ме-таллами. Эти результаты находятся в качественном согласии с имеющимися экспериментальными данными [21,22]. В табл.2 дано также процентильное влияние на λ различных локально-полевых поправочных функций по отно-шению к функции Х-экранирования и процентное отклонение от экспери-ментальных данных [21,22].

Далее в таблице 2 представлены вычисленные величины кулоновского псевдопотенциала μ , ответственного за кулоновское взаимодействие между электронами проводимости, полученные с различными локально-полевыми поправочными функциями. Видно, что в бинарных сплавах 3*d*-переходных металлов значения μ лежат в интервале между 0.11 и 0.14, что согласуется с работой Макмиллана [21], где получено $\mu^* \approx 0.13$. Такие значения μ свидетельствуют о слабом экранирующем воздействии. В этом случае также наименьшие значения μ получаются с экранирующей Х-функцией, а наи-большие – с Ф-функцией. В литературе отсутствуют данные по μ . Сравне-ние величины μ с теоретическими или экспериментальными данными не приводятся, поскольку такие данные в литературе практически отсутствуют. Для этой величины приведены также процентильные влияния по отноше-нию к экранирующей Х-функциии. Результаты наших вычислений величи-ны μ^* качественно согласуются с имеющимися в литературе эксперимен-тальными данными [22].

Табл.2 содержит также расчетные значения температуры перехода T_c для бинарных сплавов 3*d*-переходных металлов с различными локально-полевыми поправочными функциями и экспериментальными результатами [21-23]. Можно отметить, что экранирующая Х-функция дает наинизшую, а Ф-функция – наивысшую температуру перехода. Наши результаты с Х-функцией хорошо согласуются с имеющимися экспериментальными данными из работ [21-23]. В табл.2 приведены также процентные отклонения от данных [21-23].

Показатель изотопического эффекта а для бинарных сплавов 3*d*-переходных металлов, вычисленный нами, приведен в табл.2. Расчетные значения α проявляют слабую зависимость от диэлектрического экранирования, при этом наименьшее значение получается для Х-функции, а наибольшее – дла Ф-функции. Поскольку в литературе пока нет экспериментальных значений α, вычисленные нами значения могут использоваться для исследования ионных колебаний в сверхпроводящих сплавах. Они могут происходить из-за магнитных взаимодействий атомов в таких металлокомплексах. Константа электронфононной связи λ зависит от $D(E_F)$ – полной плотности состояний с энергией Ферми. Фотоэмиссионные измерения в бинарных металлических стеклах показывают, что *d*-полоса расщепляется на две компоненты: одна из них пересекает уровень Ферми и возникает от Аэлемента сплава, а другая, от В-элемента, находится ниже уровня Ферми. Относительные интенсивности этих двух компонент сильно меняются с концентрацией. Такое расщепление полосы – хорошо известное явление в концентрированных сплавах, в которых ядерные заряды компонент либо их обменные поля существенно отличаются. В этом случае каждая компонента сплава имеет свою *d*-полосу, минимально перекрывающуюся с 3*d*-полосой других компонент. Важно, что В-элемент сплава дает основной вклад в плотность состояний с энерией Ферми [24]. Поэтому с ростом концентрации В-элемента сплава магнитные взаимодействия атомов металлокомплекса усиливаются. Это может быть причиной отрицательных значений α в наших расчетах. Кроме того, взаимодействие электронов с решеткой рассмотрено в нашем случае не полностью, что также может обусловить отрицательность α. Поскольку локально-полевая поправочная Х-функция дает наилучший результат для λ и $T_{C_{1}}$ то можно считать, что значения α , полученные с таким экранированием, наилучшим образом учитывают роль ионных колебаний в сверхпроводящем поведении рассматриваемых систем. Отрицательные значения α получаются в сплавах V0.20Сго.80, V0.10Сго.90, и V0.055Сго.945, что свидетельствует о том, что электрон-фононная связь в этих металлокомплексах не объясняет полностью все особенности сверхпроводящего поведения этих систем. Других теоретических или экспериментальных данных для α, для проведения дополнительных сравнений, в литературе не имеется.

Значения эффективного взаимодействия N_0V приведены в таблице 2 с различными локально-полевыми поправочными функциями. Полученная величина N_0V показывает, что исследуемые бинарные сплавы 3d-переходных металлов относятся к сверхпроводникам со слабой связью. Эта величина также проявляет слабую зависимость от диэлектрического экранирования и имеет наименьшее значение с экранирующей Х-функцией и наибольшее – с Φ -функцией. В литературе отсутствуют теоретические либо экспериментальные данные по N_0V , поэтому в таблице нет соответствующих сравнений.

Из табл.2 видно, что из пяти функций экранирования Х-функция (статическая, без обмена и корреляций) [15] дает наименьшие значения ПСС, а Ф-функция [18] – наибольшие. Наши результаты с локально-поле-выми поправочными Т-, ИУ- и С-функциями находятся

между вышеотмеченными значениями. ИУ-, Ф- и С-функции могут давать разумные результаты для ПСС бинарных сплавов 3*d*-переходных металлов, также как и более часто используемые Х- и Т-функции. Эффект от локально-полевых поправочных функций играет важную роль в вычислениях $\lambda \mu$, что резко меняет T_c , α и N_0V . Таким образом, мы доказали возможность использования этих более перспективных локально-полевых поправочных функций. Вычислен-ные величины α и N_0V не дают каких-либо аномальных значений для бинар-ных сплавов 3*d*-переходных металлов.

Подчеркнем, наконец, важность привлечения точной формы псевдо-потенциала. Надо признать, что хотя эффект от псевдопотенциала велик также в сверхпроводниках с сильной связью, он играет решающую роль в сверхпроводниках со слабой связью, т.е. в тех веществах, которые принадлежат к границе раздела между сверхпроводящей и несверхпроводящей областями. Другими словами, малые изменения величины электронионного взаимодействия могут приводить к резким изменениям сверхпроводящих свойств рассматриваемого материала. В связи с этим важность точной формы псевдопотенциала представляется очевидной.

4. Заключение

Сравнение результатов наших вычислений с имеющимися экспериментальными данными является весьма обнадеживающим в случае бинарных сплавов 3*d*-переходных металлов, что подтверждает применимость модельного потенциала. Какие-либо специальные рекомендации затруднены, т.к. отсутствуют экспериментальные измерения по ПСС большей части бинарных сплавов *3d*-переходных металлов. Однако, сравнение с другими теоретическими данными подтверждает наши вычисления ПСС. В настоящее время нами проводятся подобные исследования других бинарных сплавов и металлических стекол.

ЛИТЕРАТУРА

- 1. A.V. Narlikar, S.N. Ekbote. Superconductivity and Superconducting Materials. New Delhi–Madras, South Asian Publishers, 1983.
- 2. P.B. Allen. Handbook of Superconductivity, ed. C.P. Poole, Jr. New York, Academic Press, 1999, p.478.
- 3. A.M. Vora, M.H. Patel, S.R. Mishra, P.N. Gajjar, A.R. Jani. Solid State Phys., 44, 345 (2001).
- 4. P.N. Gajjar, A.M. Vora, A.R. Jani. Mod. Phys. Lett. B, 18, 573 (2004).
- 5. A.M. Vora. Physica C, 450, 135 (2006); Physica C, 458, 21 (2007); Physica C, 458, 43 (2007).
- A.M. Vora. J. Supercond. Novel Magn., 20, 355 (2007); J. Supercond. Novel Magn., 20, 373 (2007); J. Supercond. Novel Magn., 20, 387 (2007); Phys. Scr., 76, 204 (2007).
- A.M. Vora. Comp. Mater. Sci., 40, 492 (2007); Chinese Phys. Lett., 24, 2624 (2007); J. Optoelec. Adv. Mater., 9, 2498 (2007); Front. Phys. China, 2, 430 (2007).
- 8. A.M. Vora, M.H. Patel, P.N. Gajjar, A.R. Jani. Pramana-J. Phys., 58, 849 (2002).
- 9. P.N. Gajjar, A.M. Vora, M.H. Patel, A.R. Jani. Int. J. Mod. Phys., B17, 6001 (2003).
- 10. P.N. Gajjar, A.M. Vora, A.R. Jani. Indian J. Phys., 78, 775 (2004).
- 11. A.M. Vora. J. Tech. Phys., 48, 3 (2007); J. Contemp. Phys. (Armenian Acad. Sci.), 43, 42 (2008).
- 12. V.Singh, H.Khan, K.S. Sharma. Indian J. Pure & Appl. Phys., 32, 915 (1994).
- 13. R.C. Dynes. Phys. Rev. B, 2, 644 (1970).
- 14. N.W. Ashcroft. Phys. Lett., 23, 48 (1966).
- 15. W.A. Harrison. Elementary Electronic Structure. Singapore, World Scientific, 1999.

- 16. R. Taylor. J. Phys. F: Met. Phys., 8, 1699 (1978).
- 17. S. Ichimaru, K. Utsumi. Phys. Rev. B, 24, 7386 (1981).
- 18. B. Farid, V. Heine, G. Engel, I.J. Robertson. Phys. Rev. B, 48, 11602 (1993).
- 19. A.Sarkar, D.Sen, H.Haldar, D.Roy. Mod. Phys. Lett. B, 12, 639 (1998).
- 20. W.H. Butler. Phys. Rev. B, 15, 5267 (1977).
- 21. W.L. McMillan. Phys. Rev., 167, 331 (1968).
- 22. K. Anders, E. Bucher, J.P. Maita, R.C. Sherwood. Phys. Rev., 178, 702 (1969).
- 23. F. Brouers, J. Van der Rest, H.R. Khan. J. Phys. F: Met. Phys., 14, 2625 (1984).
- 24. R. Hasegawa. Glassy Metals: Magnetic, Chemical and Structural Properties. Florida, CRC Press, 1980.

SCREENING-DEPENDENT SUPERCONDUCTING STATE PARAMETERS OF TRANSITION METALS BASED BINARY ALLOYS

A.M. VORA

Study of the screening-dependent superconducting state parameters viz. electron-phonon coupling strength λ , Coulomb pseudopotential μ^* , transition temperature T_C , isotope effect exponent α and effective interaction strength N_0V of 3*d*-transition metals-based binary alloys is made extensively using a model potential. A considerable influence of different exchange and correlation functions on λ and μ^* is found. The obtained results are in qualitative agreement with the available experimental data wherever exist.