УДК 621.373.1

ЭФФЕКТИВНАЯ ГЕНЕРАЦИЯ ТЕРАГЕРЦОВОГО ИМПУЛЬСА В КРИСТАЛЛЕ НИОБАТА ЛИТИЯ С ИНТЕГРИРОВАННОЙ СОГЛАСУЮЩЕЙ ПРИЗМОЙ

Ю.О. АВЕТИСЯН, А.О. МАКАРЯН, К.Х. ХАЧАТРЯН, В.Р. ТАТЕВОСЯН

Ереванский государственный университет

(Поступила в редакцию 8 января 2008 г.)

Приведены результаты экспериментального исследования черенковской генерации терагерцового (ТГц) импульса при распространении фемтосекундного лазерного импульса в кристалле ниобата лития с кремниевой призмой в качестве выходного устройства связи. Применение кремниевой призмы позволяет существенно снизить затухание ТГц волн благодаря уменьшению длины пути распространения ТГц импульса в нелинейном кристалле. Результаты экспериментального исследования находятся в удовлетворительном согласии с теоретическими расчетами.

Терагерцовые (ТГц) электромагнитные волны, охватывающие частоты 1–10 ТГц, занимают промежуточную область спектра между длинноволновым инфракрасным и сверхвысокочастотным (СВЧ) диапазонами. ТГц волны представляют большой интерес для фундаментальной физики и решения многих прикладных задач в телекоммуникации, химии, биологии и медицине [1]. Вплоть до последнего десятилетия, несмотря на проникновение методов и аппаратуры, присущих как оптическому, так и СВЧ диапазонам, ТГц участок спектра оставался слабо изученным и технически очень плохо оснащенным. Одним из главных сдерживающих факторов было отсутствие удобных и эффективных источников излучения. В последние годы был разработан широкий класс ТГц источников, обладающих рядом достоинств и недостатков [2]. Одним из наиболее распространенных способов получения широкополосного ТГц излучения (или, иначе говоря, ТГц-импульса) является черенковский механизм генерации от распространяющейся нелинейной поляризации в кристалле. Возможность такой генерации была теоретически предсказана Г. Аскарьяном [3] и экспериментально подтверждена измерениями в СВЧ [4] и ТГц [5] областях спектра.

В настоящем исследовании мы рассмотрим черенковскую генерацию ТГц-импульса в кристалле ниобата лития. Хотя LiNbO₃ характеризуется высоким поглощением ТГц волн, однако он обладает большой нелинейной восприимчивостью, высокой лучевой прочностью и, кроме того, групповая скорость распространения оптического импульса $u = c/n_g$ в ниобате лития превосходит фазовую скорость генерируемой волны $v = c/m_{\text{THz}}$ во всем ТГц участке спектра. Так, на частоте 1 ТГц показатель преломления LiNbO₃ составляет $m_{\text{THz}} = 5.17$ [6], тогда как в оптическом диапазоне на длине волны $\lambda = 0.8$ мкм групповой

показатель преломления $n_g = 2.3$. Поскольку черенковское излучение распространяется в кристалле под углом Θ с = arccos(n_g/n_{THz}) = 63,6°, превосходящим угол полного внутреннего отражения, то обычно образцу придают форму призмы (рис.1а). При этом, однако, ТГц излучение, генерируемое вдали от выходной поверхности образца, сильно поглощается в кристалле, что приводит к снижению выходной мощности.

В настоящей работе для уменьшения влияния ТГц поглощения в кристалле предлагается концентрировать оптический пучок по возможности близко к боковой поверхности образца прямоугольной формы и использовать кремниевую призму для эффективного вывода генерируемого ТГц-импульса из кристалла (рис.1б). Целесообразность применения призменных устройств связи экспериментально уже была показана при неколлинеарной генерации монохроматического ТГц излучения в оптическом параметрическом генераторе [7]. К достоинствам кремния относятся очень низкое поглощение в ТГц области частот и незначительное френелевское отражение на границе раздела с кристаллом ниобата лития.

Рис.1. Схематическое представление генерации черенковского излучения в образцах призменной формы (А) и прямоугольной формы с согласующей кремниевой призмой (Б).

Измерения поля ТГц генерации проводились на экспериментальной установке, блоксхема которой приведена на рис.2. Источником оптического излучения служит фемтосекундный лазер (Mai-Tai Spectra@Physics), генерирующий импульсы с длительностью ≈ 80 фс, периодом повторения 12 нс и средней мощностью 1.8 Вт. После прохождения через светоделительную пластину, большая часть (≈97%) оптического излучения направляется на кристалл LiNbO₃, а оставшаяся часть используется для запуска устройства регистрации поля терагерцового импульса (УРПТИ). Пара параболических металлических зеркал служит для улавливания, коллимированного распространения и затем для фокусировки ТГц пучка на УРПТИ. Принцип действия УРПТИ состоит в следующем. ТГц излучение, распространяясь через тонкую пластину GaAs (выращенного при низких температурах ~400°С), фокусируется на симметричной дипольной антенне (длиной около 45 мкм), расположенной на задней поверхности пластины. Действие ТГц импульса приводит к наведению разности потенциалов на концах антенны. Однако ток через антенну возникает только при одновременном облучении оптическим импульсом, запускающим процесс генерации свободных носителей заряда в полупроводниковой пластине. Таким образом, изменяя время прихода фемтосекундного оптического импульса (посредством подвижной оптической линии задержки), можно измерить различные мгновенные значения поля ТГц-импульса и, тем самым, определить его временную форму. Малое время жизни свободных носителей в низкотемпературно выращенном GaAs (0.3 пс [8]) позволяет осуществлять измерения формы ТГц-импульса с субпикосекундным разрешением. Для увеличения отношения сигнал/шум измерение тока антенны проводится в режиме синхронного детектирования (с постоянной времени ~300 мс) на частоте ~1 кГц, задаваемой механическим прерывателем.

Рис.2. Блок-схема экспериментальной установки.

Измерения временной зависимости импульса генерации E(t) проводились для образцов ниобата лития призменной формы (образец A, см. рис.1а) и прямоугольной формы с Si призмой (образец Б, рис.1б). Временные формы ТГц-импульсов, генерируемых обоими образцами, внешне близки друг к другу (рис.3). Однако пиковое значение импульса, получаемое с образцом Б, примерно в три раза больше, чем в случае с образцом А, т.е. использование Si призмы ведет к существенному росту выходной мощности ТГц излучения. Для более детального сравнения нами проводилось численное Фурье-преобразование временных зависимостей E(t), получаемых с использованием обоих образцов. Результаты

представлены на рис.4. Отметим, что наличие многочисленных линий поглощения в спектрах генерации не связано с характеристиками кристаллов LiNbO₃ или Si, а обусловлено поглощением ТГц излучения в парах воды, присутствующих в атмосфере.

Рис.3. Временная форма ТГц-импульса. Рис.4. Спектр излучения с образцов А

(сплошная линия) и Б (пунктирная).

Из сравнения спектров видно, что при использовании образца Б ширина полосы ТГц генерации существенно больше, главным образом, из-за роста спектральных составляющих в высокочастотной области. Как известно [6], потери в кристалле LiNbO3 резко возрастают с увеличением частоты. Таким образом, полученные спектрограммы указывают на уменьшение затухания ТГц волн в предложенной конфигурации образца с применением Si призмы.

Следует отметить, что измеряемая спектральная зависимость $E(\omega)$ определяется, как спектром генерации, так и амплитудно-частотной характеристикой (АЧХ) регистрирующего устройства $K(\omega)$. Пренебрегая частотной зависимостью АЧХ (т.е. считая $K(\omega)$ = const) и пользуясь результатами работы [9], имеем

$$E(\omega) \sim \omega^2 e^{-\omega^2 \tau_{eff}^2 / 4} e^{-\alpha(\omega)d} , \qquad (1)$$

где $\tau_{eff}^2 = \tau_0^2 + n_{\text{THz}}^2 r_0^2 \sin^2 \theta_C / 2c^2$ – эффективная длительность импульса, то – длительность оптического импульса, n – радиус гауссового оптического пучка, c – скорость света, $\alpha(\omega)$ – коэффициент поглощения поля ТГц излучения, *d* – средняя длина пути распространения ТГц волны в кристалле LiNbO₃.

Подставляя параметры используемого лазерного сюда импульса то = 80 фс, ло = 30 мкм и зависимость α(ω) из данных литературы [6], мы получили, что измеряемый спектр генерации хорошо согласуется с расчетным при значении $d \approx 40$ мкм. Близкое соответствие радиуса оптического пучка л и среднего пути распространения ТГц на волны указывает удовлетворительное согласие между теоретическими И экспериментальными данными.

Таким образом, результаты исследования свидетельствуют об эффективной генерации широкополосного ТГц излучения в кристалле LiNbO3 с использованием кремниевой призмы в качестве выходного устройства связи. Результаты экспериментального исследования

находятся в хорошем согласии с теоретическими расчетами.

Авторы выражают благодарность Р.М.Мартиросяну за интерес к работе и ценные обсуждения.

ЛИТЕРАТУРА

- 1. M.Tonouchi. Nature Photon., 1, 97 (2007).
- 2. P.H.Siegel. IEEE Trans. Microwave Theory Tech., 50, 910 (2002).
- 3. **Г.А.Аскарьян**. ЖЭТФ, **42**, 1360 (1962).
- 4. Д.А.Багдасарян, А.О.Макарян, П.С.Погосян. Письма в ЖЭТФ, **37**, 498 (1983).
- 5. D.N.Auston, K.P.Cheung, J.A.Valdmanis, D.A.Kleinman. Phys. Rev. Lett., 53, 1555 (1984).
- 6. M.Schall, H.Helm, S.R.Keiding. Int. J. Infrared and MM waves, 20, 595 (1999).
- 7. K.Kawase, J.Shikata, H.Minamide, K.Imai, H.Ito. Appl. Opt., 40, 1423 (2001).
- 8. M.Tani et al. Jpn. J. Appl. Phys., 33, 4807 (1994).
- 9. J.A.L'huillier, G.Torosyan, M.Theuer, Y.Avetisyan, et al. Appl. Phys. B, 86, 185 (2007).

ՏԵՐԱՀԵՐՑԱՅԻՆ ԻՄՊՈՒԼՍԻ ԱՐԴՅՈՒՆԱՎԵՏ ԳԵՆԵՐԱՑՈՒՄԸ ՀԱՄԱՁԱՅՆԵՑՆՈՂ ՊՐԻԶՄԱՅՈՎ ՀԱՄԱԼՐՎԱԾ ԼԻԹԻՈՒՄԻ ՆԻՈԲԱԹԻ ԲՅՈՒՐԵՂՈՒՄ

Յու.Հ. ԱՎԵՏԻՍՅԱՆ, Ա.Հ. ՄԱԿԱՐՅԱՆ, Կ.Խ. ԽԱՉԱՏՐՅԱՆ, Վ.Ռ. ԹԱԴԵՎՈՍՅԱՆ

Բերված են լիթիումի նիոբաթի բյուրեղում ֆեմտովայրկյանային լազերային իմպուլսի միջոցով տերահերցային (SՀg) իմպուլսի չերենկովյան գեներացման ուսումնասիրման արդյունքները, երբ ոչ գծային բյուրեղը համալրված է սիլիցիումային պրիզմայով, որը կատարում է ելքային համաձայնեցնող համակարգի դեր։ Սիլիցիումային պրիզմայի օգտագործումը էապես նվազեցնում է ՏՀց ալիքների մարումը՝ ոչ գծային բյուրեղում անցած Ճանապարհի նվազեցման շնորհիվ։

EFFICIENT GENERATION OF TERAHERTZ PULSES IN LITHIUM NIOBATE CRYSTAL WITH INTEGRATED MATCHING PRISM

Yu.H. AVETISYAN, A.H. MAKARYAN, K.Kh. KHACHATRYAN, V.R. TADEVOSYAN

The results of experimental investigation of Cherenkov-type generation of terahertz (THz) pulses during femtosecond laser pulse propagation in a LiNbO₃ crystal with Si-prism output coupler are presented. The application of Si prism allows one to reduce significantly the THz-wave damping due to shortening path length of a THz pulse inside the nonlinear crystal.