УДК 535.14

ПЕРЕПУТЫВАНИЕ СОСТОЯНИЙ И КВАНТОВЫЕ РАСПРЕДЕЛЕНИЯ В ИМПУЛЬСНОМ РЕЖИМЕ ОПТИЧЕСКОГО ПАРАМЕТРИЧЕСКОГО ГЕНЕРАТОРА

Н.О. АДАМЯН¹, Г.Ю. КРЮЧКЯН^{1,2}

¹Ереванский государственный университет, Армения

²Институт физических исследований НАН Армении, Аштарак

(Поступила в редакцию 11 ноября 2007 г.)

Исследованы свойства перепутанных состояний света Эйнштейна–Подольского–Розена (ЭПР) во временной области на основе анализа дисперсий квадратурных амплитуд мод поля излучения и функций Вигнера. Как источник ЭПР состояний рассмотрен невырожденный оптический параметрический генератор под действием последовательности лазерных импульсов с гауссовской временной огибающей.

1. Введение

Оптический параметрический генератор (ОПГ) является одним из наиболее эффективных источников генерации световых пучков в перепутанных состояниях [1,2]. Наиболее хорошо исследован ОПГ под действием непрерывного лазерного поля, а перепутанные квантовые состояния с непрерывными переменными (так называемые состояния Энштейна–Подольского–Розена (ЭПР)) исследованы, в основном, в спектральной области. В указанном режиме большинство схем или протоколов квантовых коммуникаций на основе сжатых и ЭПР состояний света также продемонстрированы в спектральной области.

Наряду с такими исследованиями, в последние годы начали развиваться работы по исследованию ЭПР состояний световых пучков, а также по разработке квантовых протоколов во временной области [3-8]. Так, генерация и регистрация сжатых состояний света во временной области была продемонстрирована в [3-5]. Генерация и регистрация двухмодовых сжатых состояний, которые являются реализацией ЭПР состояний, приведена в [8]. Квантовая теория пульсирующего ОПГ под действием лазерного поля с модулированной по времени амплитудой приведена в работах [7,9], где также исследованы ЭПР состояния света во временной области.

Настоящая работа является продолжением статьи [7] и посвящена исследованию ОПГ в режиме надпороговой генерации под действием последовательности импульсов с гауссовской временной огибающей. Подробно исследуются ЭПР состояния и квантовые распределения (распределения квадратурных амплитуд и функции Вигнера) во временной области. Работа построена следующим образом. В разделе 2 описываются особенности пульсирующего ОПГ для случая гауссовских импульсов. Раздел 3 посвящен исследованию ЭПРперепутанности и сжатия разности чисел фотонов коррелированных мод субгармоник. В разделе 4 исследуются функции Вигнера ЭПР-перепутанных пучков света.

Оптическая параметрическая генерациия под действием гауссовских импульсов

В этом разделе мы следуем квантовой теории ОПГ с модулированной во времени амплитудой [7]. Рассмотрим схему ОПГ под действием последовательности лазерных импульсов с гауссовской огибающей по времени. Соответствующая амплитуда лазерного поля равна

$$E_{L}(t,z) = E_{0L}f(t) \ e^{-i(\omega_{L}t - k_{L}z)},$$
(1)

$$f(t) = \sum_{n = -\infty}^{\infty} e^{-(t - n\tau)^2 / T^2},$$
(2)

где T – длительность каждого импульса и τ – временной интервал между ними. Такая схема основана на параметрическом взаимодействии трех мод в круговом резонаторе. Так как задача является нестационарной, мы используем описание параметрического взаимодействия с помощью немонохроматических операторов мод поля излучения b_1 , b_2 и b_3 (см., напр., [10-12]). Мода накачки (b_3) на центральной частоте $\omega_3 = \omega_L$ возбуждается полем накачки (1), которое приводит к возникновению двух мод генерации (b_1 и b_2) с взаимно-перпендикулярными поляризациями и на центральных частотах $\omega_1 = \omega_2 = \omega_L/2$. Мы также полагаем режим, в котором мода накачки не истощается и который реализуется, если $\gamma_3 >> \gamma_1, \gamma_2$ (γ_i – коэффициенты затухания мод в резонаторе). В этом случае связь поля накачки с модой b_3 описывается следующим членом в гамильтониане:

$$H_0 = i\hbar\chi f(t)(b_3^+ - b_3);$$
(3)

эффективный гамильтониан параметрического взаимодействия второго типа $\omega_3 \rightarrow \frac{\omega_L}{2}(\uparrow) + \frac{\omega_L}{2}(\rightarrow)$ имеет вид

$$H_{eff} = i\hbar \frac{k\chi f(t)}{\gamma_3} (e^{i\Phi_k} b_1^+ b_2^+ - e^{-i\Phi_k} b_1 b_2), \qquad (4)$$

а уравнение для матрицы плотности мод субгармоник выглядит следующим образом:

$$\frac{\partial \rho}{\partial t} = \frac{1}{i\hbar} \Big[H_{eff}, \rho \Big] + \sum_{i=1}^{3} (2b_i \rho b_i^+ - b_i^+ b_i \rho - \rho b_i^+ b_i) + \frac{k^2}{\gamma_3} (2b_1 b_2 \rho b_1^+ b_2^+ - b_1^+ b_1 b_2^+ b_2 \rho - \rho b_1^+ b_1 b_2^+ b_2).$$
(5)

Здесь b_n (n = 1, 2, 3) являются дискретными операторами, которые выражаются через

непрерывные операторы рождения и уничтожения фотонов:

$$b_n = \int d\omega f_n(\omega) a(\omega) \tag{6}$$

с помощью модовой функци
и $f_n(\omega)$ и удовлетворяют обычным коммутационным соотношениям

$$\begin{bmatrix} b_n, b_m^+ \end{bmatrix} = \delta_{nm}, \qquad \begin{bmatrix} b_n, b_m \end{bmatrix} = 0.$$
⁽⁷⁾

Параметр χ пропорционален амплитуде E_{0L} и выражает связь поля $E_L(t,z)$ с модой b_3 , а величина k определяет параметрическую связь. Дальнейшие результаты, касающиеся вычисления степени ЭПР-перепутанности и функций Вигнера, получены на основе теории модулированной по времени ОПГ [7], которая используется для случая гауссовских импульсов. Как показывают вычисления, пульсирующий ОПГ (так же, как и непрерывный) имеет порог генерации $\chi_{\rm th} = (\gamma \gamma_3 / \sqrt{\pi}k)(\tau/T)$ в случае $\gamma_1 = \gamma_2 = \gamma$. Режим выше порога генерации реализуется при $\chi > \chi_{\rm th}$.

3. Двухмодовое сжатие для случая пульсирующего ОПГ

К настояшему времени наиболее распространенный критерий ЭПР- перепутанности записывается как условие двухмодового сжатия [13]. Это условие формулируется следующим образом:

$$V = \frac{1}{2} \left(V \left(X_1 - X_2 \right) + V \left(Y_1 + Y_2 \right) \right) < 1,$$
(8)

где $V(x) = \langle x^2 \rangle - \langle x \rangle^2$ есть дисперсия квадратурных амплитуд двух мод субгармоник $X_k = X_k(\theta_k) = (b_k^+ e^{-i\theta_k} + b_k e^{i\theta_k})/\sqrt{2}, \ Y_k = X_k(\theta_k - \pi/2), \ (k = 1, 2).$

Как известно, величина интегрального сжатия V ограничена для случая ОПГ под действием монохроматического поля накачки и достигает только 50% от уровня квантовых флуктуаций, т.е. 0,5 < V < 1 (см., например, [14-16]). Ранее было показано, что для ОПГ под действием модулированного по времени поля накачки уровень двухмодового сжатия может быть намного меньше 50%, но только для определенных временных интервалов. Ниже показано, что аналогичная ситуация имеет место для ОПГ под действием гауссовских лазерных импульсов.

Наше исследование основано на уравнениях, полученных в работе [7], которые для случая гауссовских импульсов приводятся к виду

$$\frac{d}{dt}\langle n_{+}\rangle = \left[2\varepsilon(t) - 2\gamma - \lambda\right]\langle n_{+}\rangle - \lambda\langle n_{+}^{2}\rangle - 2\varepsilon(t)\langle R\rangle + \lambda\Delta, \qquad (9)$$

$$\frac{d}{dt}\langle R \rangle = -\left[2\varepsilon(t) + 2\gamma + \lambda\right]\langle R \rangle - \lambda\langle n_+ R \rangle - 2\varepsilon(t) + \lambda\Delta, \qquad (10)$$

$$\frac{d}{dt}\Delta = -4\gamma\Delta - 2\gamma\langle n_+\rangle \tag{11}$$

где $\langle n_+ \rangle = \langle b_1^+ b_1 \rangle + \langle b_2^+ b_2 \rangle, \qquad \langle R \rangle = \langle b_1^+ b_1 \rangle + \langle b_2^+ b_2 \rangle - \langle b_1 b_2 \rangle + \langle b_1^+ b_2^+ \rangle, \qquad \Delta = \langle (b_1^+ b_1 - b_2^+ b_2)^2 \rangle,$

 $\varepsilon(t) = \frac{\chi k}{\gamma_3} \sum_{n=-\infty}^{\infty} e^{-(t-n\tau)^2/T^2}$. Здесь параметр $\lambda = k^2/\gamma_3$ определяется отношением параметра не-

линейности k^2 к коэффициенту затухания моды ω_3 , $\gamma_1 = \gamma_2 = \gamma$, величина $\langle n_+ \rangle$ описывает сумму средних чисел фотонов двух мод, $\langle R \rangle$ описывает эффект корреляции между модами, а величина Δ связана с дисперсией флуктуаций разности чисел фотонов.

В линейном по квантовым флуктуациям приближении выражение (8) вычисляется как $V(t) = 1 + \langle \delta R \rangle$.

Рис.1. Среднее число фотонов (а) и степень двухмодового сжатия (b) для ОПГ в режиме генерации выше порога в зависимости от безразмерного времени при следующих замечаниях: $\lambda = 10^{-8} \gamma$, $\chi = 1.1 \chi_{\rm th}, \ \tau = 6 \gamma^{-1}, \ T = 0.6 \gamma^{-1}$.

Выражения для чисел фотонов $n_1(t) = n_2(t) = n(t)$, $n_i(t) = \langle b_i^+ b_i \rangle$ (i = 1, 2) и дисперсии V(t) приведены на рис.1. Пунктирная линия на рис.1b показывает степень сжатия для стационарного режима, который реализуется для случая ОПГ под действием непрерывного лазерного поля, т.е. для временных интервалов $T >> \gamma^{-1}$, $\tau \to 0$ и при $\chi = \chi_{th}$. Из рис.1b четко

видно, что дисперсия удовлетворяет критерию "сильного" ЭПР-перепутывания V < 1/2 для определенных временных интервалов. Интересно, что это имеет место для временных интервалов, где число фотонов достигает больших величин. Например, для $n_{\rm max} = 6,5 \times 10^7$ дисперсия равна V = 0,35 и максимальному сжатию $V_{\rm min} = 0,146$ соответствует среднее число фотонов $n = 2,5 \times 10^6$.

Рассмотрим теперь корреляцию чисел фотонов, которая, как известно [17-19], измеряется обычно разностью чисел фотонов $\Delta = <(b_1^+b_1^-b_2^+b_2^-)^2 >$. Используя уравнение (11), для нормированной дисперсии $G(t) = \Delta(t)/2 \langle n(t) \rangle$ получаем

$$G(t) = \frac{2}{\langle n(t) \rangle} \int_{-\infty}^{0} d\tau e^{4\gamma\tau} \langle n(t+\tau) \rangle.$$
(12)

Для случая обычного ОПГ со стационарной амплитудой f(t) = 1 и $\langle n(t) \rangle = (\chi k - \gamma \gamma_3)/k^2$ и, следовательно, G(t) = 1/2. Этот результат совпадает с результатом работы [20]. Перейдем теперь к случаю пульсирующего ОПГ. Как показывает анализ уравнений (9)–(11) и (12), величины G(t) и V(t) совпадают для широкой области параметров при $\lambda \langle n \rangle <<1$. Этот результат показывает, что измерение степени ЭПР-перепутывания V(t) во временной области можно проводить более простым образом, чем техника гомодинирования, а именно, путем измерения корреляции чисел фотонов на основе функции G(t).

4. Изучение ЭПР-перепутывания посредством функции Вигнера

В настоящем разделе численно вычисляется функция Вигнера для одной из мод пульсирующего ОПГ. Эта функция выражается через редуцированную по одной моде матрицу плотности $\rho_{1(2)} = Tr_{2(1)}(\rho)$, где полная матрица плотности ρ удовлетворяет уравнению (5) и имеет следующий вид:

$$W_i(r,\theta) = \sum \langle m | \rho_i | n \rangle W_{nm}(r,\theta), \quad (i = 1, 2).$$
(13)

Здесь r, θ являются полярными координатами в комплексной фазовой плоскости, $|n\rangle$, $|m\rangle$ – фотонные состояния Фока и $W_{nm}(r,\theta)$ – матричные элементы характеристической функции Вигнера. Для обычного ОПГ одномодовая функция Вигнера вычислена в [21]. Мы вычисляем функцию Вигнера для ЭПР-световых пучков, которые формируются на светоделителе модами субгармоник (1) и (2). На выходе из резонатора поля субгармоник записываются как $b_i^{out}(t) = \sqrt{2\gamma}b_i(t)$ (i = 1, 2), а после 50%-ного светоделителя получаются два поля следующего вида:

$$b_A = \sqrt{2\gamma(b_1 + b_2)}, \qquad (14)$$

$$b_B = \sqrt{2\gamma} (b_1 - b_2) \,. \tag{15}$$

Мы вычисляем функции Вигнера $W_A(\alpha)$ и $W_B(\alpha)$ для комбинированных комплексных безразмерных переменных $\alpha = \alpha_1 + \alpha_2$ либо $\alpha = \alpha_1 - \alpha_2$, которые соответствуют операторам $b_A / \sqrt{2\gamma}$, $b_B / \sqrt{2\gamma}$. Используется численный метод "диффузии квантового состояния" для решения уровнения (5) для матрицы полтности. Результаты по временной

эволюции функций Вигнера $W_B(\alpha)$ в течение каждого из импульсов приведены на рис.2, где указаны также распределения вероятностей P(X), P(Y) ($X = \text{Re}\alpha$, $Y = \text{Im}\alpha$) квадратурных амплитуд. Отметим также, что результаты для моды А получаются простым поворотом фигур на рис.2 на $\pi/2$.

Рис.2. Эволюция по времени функции Вигнера для трансформированных координат при следующих значениях параметров: $\lambda = 0.05\gamma$, $\chi = 1, 3\chi_{\text{th}}$, $\tau = 4\gamma^{-1}$, $T = \gamma^{-1}$, (a) $t = t_c - T$; (b) $t = t_c$; (c) $t = t_c + T$; (d) $t = t_c + 2T$.

Отметим, что распределение вероятностей $P(X,\phi)$ квадратурной амплитуды $X(\phi) = (be^{-i\phi} + b^+ e^{i\phi})/\sqrt{2}$ может быть получено интегрированием функции Вигнера

$$P(x,\phi) = \int_{-\infty}^{\infty} dp W(x\cos\phi - p\sin\phi, x\sin\phi + p\cos\phi).$$
(16)

Таким образом, на рис.2 показаны распределения вероятностей квадратурных амплитуд P(X) = P(x, 0) и $P(Y) = P(x, \pi/2)$.

Отметим, что в начальном временном интервале импульса (рис.2а) функция Вигнера близка к гауссовской и является максимально сжатой для интервала $t = t_0 + n\tau$ ($n \in Z$). После

временного интервала $t = t_0 + n\tau + 0.75T$ начинают проявляться два дополнительных пика (puc.2c,d). Таким образом, puc.2b иллюстрирует максимальную степень ЭПР-перепутанности или максимальное сжатие, которая, очевидно, больше, чем стационарный предел, т.е. V < 1/2. Это легко заметить, если обратиться к распределению P(Y), приведенному на puc.2b. Действительно, степень сжатия, т.е. дисперсия V определяется шириной распределения P(Y), которое в этом случае очень узкое.

Работа проведена при поддержке грантами NFSAT/CRDF No. UCEP-02/07 и ANSEF No. 666-PS-Opt.

ЛИТЕРАТУРА

- 1. M.D.Reid, P.D.Drummond. Phys. Rev. Lett., 60, 2731 (1988); M.D.Reid. Phys. Rev. A, 40, 913 (1989).
- Z.Y.Ou, S.F.Pereira, H.J.Kimble, K.Peng. Phys. Rev. Lett., 68, 3663 (1992); S.F. Pereira, Z.Y.Ou, H.J.Kimble. Phys. Rev. A, 62, 042311 (2002).
- 3. J.Wenger, R.Tualle-Brouri, P.Grangier. Opt. Lett., 29, 1267 (2004).
- 4. J.Wenger, J.Fiurasek, R.Tualle-Brouri, N.J.Cerf, P.Grangier. Phys. Rev. A, 70, 053812 (2004).
- 5. J.Wenger, A.Ourjoumtsev, R.Tualle-Brouri, P.Grangier. Eur. Phys. J. D, 32, 391 (2005).
- 6. A.Dantan, J.Cviklinski, M.Pinard, Ph.Grangier. Phys. Rev. A, 73, 032338 (2006).
- 7. H.H.Adamyan, G.Yu.Kryuchkyan. Phys. Rev. A, 74, 023810 (2006).
- 8. N.Takei, N.Lee, D.Moriyama, et al. Phys. Rev. A, 74, 060101(R) (2006).
- 9. **G.Yu.Kryuchkyan, H.H.Adamyan**. Strong Entanglement of Bright Light Beams in Controlled Quantum Systems, ed. by V.M.Akulin, A.Sarfati, G.Kurizki, and S.Pellegrin, NATO Science Series II: Mathematics, Physics and Chemistry, vol.189, New York, Springer, 2005, p.105.
- 10. F.Grosshaus, P.Grangier. Eur. Phys. J. D, 14, 119 (2001); R.S.Benniuk, R.W.Boyd. Phys. Rev. A, 66, 053815 (2002).
- 11. T.Opatrny, N.Korolkova, G.Leuchs, e-print quantph/0204131.
- 12. M.Sasaki, S.Suzuki, e-print quant-ph/0512073.
- 13. L.M.Duan, G.Giedke, J.I.Cirac, P.Zoller. Phys. Rev. Lett., 84, 2722 (2000). R.Simon. Phys. Rev. Lett., 84, 2726 (2000).
- 14. D.F.Walls, G.J.Milburn. Quantum Optics. Berlin, Springer-Verlag, 1994.
- 15. M.O.Scully, M.S.Zubairy. Quantum Optics. Cambridge, Cambridge University Press, 1997.
- 16. G.Yu.Kryuchkyan, L.A.Manukyan. Phys. Rev. A, 69, 013813 (2004).
- 17. A.Heidmann et al. Phys. Rev. Lett., 59, 2555 (1987).
- 18. J.Mertz et al. Opt. Lett., 16, 1234 (1991).
- J.Cao et al. Opt. Lett., A 23, 870 (1998); H.B.Wang et al. Phys. Rev. Lett., 82, 1414 (1999); H.B.Wang. Europhys. Lett., 64, 15 (2003).
- 20. G.Yu.Kryuchkyan, K.G.Petrosyan, K.V.Kheruntsyan. Pis'ma ZhETF, 63, 502 (1996).
- 21. K.V.Kheruntsyan, K.G.Petrosyan. Phys. Rev. A, 62, 015801 (2000).

ՎԻՃԱԿՆԵՐԻ ԽՃՃՎԱԾՈՒԹՅՈՒՆԸ ԵՎ ՔՎԱՆՏԱՅԻՆ ԲԱՇԽՈՒՄՆԵՐԸ ՕՊՏԻԿԱԿԱՆ ՊԱՐԱՄԵՏՐԱԿԱՆ ԳԵՆԵՐԱՏՈՐԻ ԻՄՊՈՒԼՍԱՅԻՆ ՌԵԺԻՄՈՒՄ

Ն.Հ. ԱԴԱՄՅԱՆ, Գ.Յու. ԿՐՅՈՒՉԿՅԱՆ

Վիգների ֆունկցիաների և դաշտի Ճառագայթման մոդերի քառակուսային ամպլիտուդների դիսպերսիաի վերլուծության հիման վրա հետազոտված են լույսի Էյնշտեյնի— Պոդոլսկու–Ռոզենի (ԷՊՌ) խձձված վիձակների հատկությունները ժամանակային տիրույթում։ Որպես ԷՊՌ վիձակների աղբյուր դիտարկված է ոչ այլասերված օպտիկական պարամետրական գեներատոր ժամանակային գաուսյան պարփակող կորագծով լազերային իմպուլսների հաջորդականության ազդեցության տակ։

ENTANGLEMENT OF STATES AND QUANTUM DISTRIBUTIONS IN PULSED OPTICAL PARAMETRIC OSCILLATOR

N.H. ADAMYAN, G.Yu. KRYUCHKYAN

Properties of Einstein–Podolsky–Rosen (EPR) entangled states are studied within the framework of both the Wigner functions and quadrature amplitudes of generated modes in the time domain. As a source of EPR states a non-degenerate optical parametric oscillator driven by a sequence of laser pulses with Gaussian time-dependent envelops is considered.