УДК 539.172

# ИЗОМЕРНЫЕ ОТНОШЕНИЯ ФРАГМЕНТОВ ФОТОДЕЛЕНИЯ <sup>238</sup>U и <sup>232</sup>Th

Н.А. ДЕМЕХИНА<sup>1</sup>, Г.С. КАРАПЕТЯН<sup>2</sup>

<sup>1</sup>Ереванский физический институт, Армения <sup>2</sup>Ереванский государственный университет, Армения

(Поступила в редакцию 11 июля 2007 г.)

Определены экспериментальные значения изомерных отношений осколков фотоделения <sup>238</sup>U и <sup>232</sup>Th при максимальной энергии тормозного излучения 50 и 3500 МэВ. Результаты измерений позволили оценить величины средних угловых моментов первичных фрагментов и провести сравнение с литературными данными.

#### 1. Введение

Изучение процесса деления позволяет исследовать динамику сильно возбужденных ядер при переходе от седловой точки к точке разрыва. Измерения массовых и зарядовых распределений фрагментов деления, их энергий возбуждения и угловых моментов дают информацию о конфигурации делящейся системы, а также о механизме деления [1-3].

Сведения об угловом моменте делящейся системы и образующихся осколков могут быть получены из данных о выходах высокоспиновых состояний продуктов деления. В эксперименте обычно измеряют отношение выходов высокоспиновых и низкоспиновых состояний (изомерные отношения, ИО). Результаты измерений представляют суммарный эффект нескольких процессов. Известно, что девозбуждение тяжелого ядра, образованного в результате первичного взаимодействия, происходит путем испускания частиц, в основном, нейтронов или деления. Эти процессы протекают последовательно в несколько этапов в зависимости от энергии возбуждения, на каждой ступени остаточное ядро может разделиться или испустить нейтрон [4]. В результате первичные фрагменты деления, образующиеся из разных делящихся ядер, имеют широкий спектр угловых моментов и энергий возбуждения. Девозбуждение первичных осколков происходит путем испарения нейтронов и каскада Пквантов до заселения конечных состояний с разными значениями спинов. Нейтроны и Ікванты уносят определенный угловой момент и энергию, меняя, таким образом, начальные распределения первичных фрагментов. Известно, что большинство осколков образуются в состояниях с более высокими угловыми моментами, чем спины делящихся ядер. Обычно предполагают [5-7], что деформация осколков деления за счет вращения и кручения является источником генерации высоких угловых моментов.

Измерение изомерных отношений и определение на основе этих данных угловых

моментов первичных фрагментов позволяет восстановить в рамках статистических моделей [8,9] характеристики осколков, образованных вблизи точки разрыва. В ранних работах расчет углового момента с использованием значений изомерных отношений был проведен для ядер <sup>95</sup>Nb и <sup>134</sup>Cs, полученных при делении мишеней Pb, Bi, Th и U в области энергий протонов, фотонов и α-частиц 15–157 МэВ [10,11], а также ядер <sup>120,126</sup>Sb при делении урана протонами с энергиями 159 МэВ – 18,2 ГэВ [12]. В более поздних работах образование изомерных пар исследовалось при делении тепловыми нейтронами [13-15], фотонами [5,16-18] и протонами низких [7,19] и высоких [9] энергий.

При делении <sup>232</sup>Th быстрыми нейтронами и α-частицами [6,15] наблюдалась зависимость ИО от энергии возбуждения делящейся системы. Влияние энергии возбуждения на вероятность образования продуктов в различных спиновых состояниях может сказаться двояким способом: во-первых, спин первичного фрагмента деления увеличивается с ростом энергии возбуждения из-за вклада более высоких степеней свободы в коллективное движение; во-вторых, различие в энергии возбуждения обуславливает различие в процессе девозбуждения: при испарении нейтронов и у-квантов более широкое спиновое распределение получается для фрагментов с большей энергией возбуждения. Но это различие может корректироваться при более детальном рассмотрении.

Цель настоящей работы – исследование изомерных состояний фрагментов фотоделения <sup>238</sup>U и <sup>232</sup>Th в области низких и промежуточных энергий фотонов методом активационного анализа, а также расчет средних угловых моментов первичных осколков и сравнение с опубликованными данными.

#### 2. Методика измерений и расчета выходов

Облучение мишеней <sup>238</sup>U и <sup>232</sup>Th (толщиной 75 мкм и 20 мкм, соответственно) проводилось на фотонном пучке Ереванского электронного синхротрона при энергиях ускоренных электронов 50 и 3500 МэВ. Электронный пучок трансформировался в фотоны при торможении в материале вольфрама (~0,1 рад.). Интенсивность фотонного пучка определялась квантометром Вильсона и составляла (10<sup>11</sup> экв.кв./с для энергии электронов 50 МэВ. и (10<sup>9</sup> экв.кв./с для 3500 МэВ.

Выходы радиоактивных осколков деления измерялись в режиме off-line на полупроводниковом сверхчистом Ge детекторе. Разрешение и эффективность спектрометра определялись с использованием калибровочных источников <sup>57,60</sup>Co, <sup>137</sup>Cs и мониторных реакций: Al( $\gamma$ ,2pn)<sup>24</sup>Na, <sup>12</sup>C( $\gamma$ ,n)<sup>11</sup>C, <sup>238</sup>U( $\gamma$ ,n)<sup>237</sup>U. Разрешение детектора составляло 0,2% для энергии *E* (1000 кэВ и значение абсолютной эффективности регистрации 5,3х10<sup>-3</sup> на расстоянии 2 см от детектора. Измерения  $\gamma$ -спектров были начаты через 10 мин после окончания облучения и продолжались в течение года. Подробности процедуры расчета выходов приведены в [20–22].

## 3. Обсуждение

В табл.1 и 2 представлены выходы и ИО независимых продуктов деления ядер  $^{238}$ U и  $^{232}$ Th при двух граничных энергиях тормозного спектра. Данные, полученные при  $E_{ymax} = 50$ 

МэВ для изомерного отношения <sup>148m,g</sup>Pm, хорошо согласуются с результатами ранее проведенных измерений при делении ядра <sup>235</sup>U тепловыми нейтронами [15] и с данными <sup>131m,g</sup>Te, <sup>132m,g</sup>I фотоделения <sup>238</sup>U при  $E_{max} = 70$  МэВ [17] и 16 МэВ [5].

Изомерные отношения фрагментов в реакциях деления быстрыми нейтронами, протонами и α-частицами сравнительно выше [6,7,15,23-25]. Авторы этих работ объясняют такой факт влиянием углового момента, вносимого падающей частицей, на спиновые распределения первичных фрагментов деления.

В области низких энергий (*E*<sub>ymax</sub> = 50 МэВ) поглощение фотонов имеет дипольный характер и описывается широким резонансом, известным в литературе как гигантский резонанс. Фотопоглощение на <sup>238</sup>U и <sup>232</sup>Th приводит к образованию составных ядер с энергией возбуждения ~18 МэВ спином и <sup>239</sup>Pu (*J* = 1. При рассмотрении различных делящихся ядер, например, 1/2), <sup>235</sup>U (*J* = 7/2), <sup>233</sup>U (*J* = 5/2), изомерные отношения меняются незначительно [5,17,25]. Полученные в настоящей работе результаты показали, что изомерные отношения при делении ядер <sup>238</sup>U и <sup>232</sup>Th мало отличаются, несмотря на то, что вероятность образования осколков в этих ядрах различна. Можно предположить, что характеристики начального ядра не играют существенной роли в процессе образования различных спиновых состояний осколков. Так как при этом спины конечных продуктов деления оказываются существенно выше, чем спины делящихся ядер, обычно в теоретических моделях [7-9,16,18] предполагается, что генерация высокоспиновых состояний происходит за счет деформации и кручения осколков при движении от точки седла до точки разрыва, а также при кулоновском отталкивании фрагментов после разделения.

Из данных, приведенных в табл.1 и 2, видно, что при увеличении выходов фрагментов деления с ростом энергии падающих фотонов ИО практически не растут, хотя все измерения указывают на относительное увеличение ИО (в пределах точности измерения (10%).

Согласно модельным расчетам [15,26,27], увеличение энергии падающих фотонов сопровождается увеличением энергии возбуждения и углового момента образующегося составного ядра. Влияние роста энергии возбуждения и углового момента делящихся ядер на величину ИО конечных продуктов исследовалось в ряде работ при энергиях 10–500 МэВ падающих протонов [7,9,11,23-25,28], нейтронов с энергией до 14 МэВ [6,8] и  $\alpha$ -частиц с энергией 26-42 МэВ [10,15]. Результаты экспериментов противоречивы: наряду с утверждением авторов [9,23-25] о слабой зависимости ИО от энергии возбуждения есть данные, указывающие на обратный эффект [6-8,10,11,15]. В работе [9] при делении ядра <sup>181</sup>Та протонами энергией от 100 до 500 МэВ изомерные отношения практически не зависят от падающей энергии. Авторы объясняют этот факт насыщением заселения высокоспиновых состояний осколков и конкуренцией различных каналов в предравновесной стадии процесса.

|                    | Y                       |                                                         |                                                |                                                         |  |  |  |  |
|--------------------|-------------------------|---------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|--|--|--|--|
|                    | (мбн/экв. кв.)          |                                                         |                                                |                                                         |  |  |  |  |
|                    | 2                       | <sup>38</sup> U                                         | <sup>232</sup> Th                              |                                                         |  |  |  |  |
|                    | $E$ Dmax = 50 M $\ni$ B | $E_{\text{Dmax}} = 3500 \text{ M} \Rightarrow \text{B}$ | $E_{\text{Dmax}} = 50 \text{ M} \Rightarrow B$ | $E_{\text{Dmax}} = 3500 \text{ M} \Rightarrow \text{B}$ |  |  |  |  |
| <sup>85g</sup> Sr  | ≤ 0.06                  | $0.12\pm0.014$                                          | ≤ 0.029                                        | $0.035 \pm 0.007$                                       |  |  |  |  |
| <sup>85m</sup> Sr  | $0.10\pm0.012$          | $0.19\pm0.02$                                           | $0.11 \pm 0.011$                               | $0.12\pm0.012$                                          |  |  |  |  |
| <sup>91g</sup> Y   | $1.29\pm0.19$           | $2.16\pm0.22$                                           | _                                              | -                                                       |  |  |  |  |
| <sup>91m</sup> Y   | $0.89 \pm 0.13$         | $1.56\pm0.16$                                           | -                                              | _                                                       |  |  |  |  |
| <sup>95g</sup> Nb  | $0.65 \pm 0.07$         | $1.18\pm0.12$                                           | $0.26\pm0.026$                                 | $0.58 \pm 0.058$                                        |  |  |  |  |
| <sup>95m</sup> Nb  | $1.30 \pm 0.20$         | $2.41 \pm 0.24$                                         | $0.54 \pm 0.081$                               | $1.06 \pm 0.106$                                        |  |  |  |  |
| <sup>95g</sup> Tc  | ≤ 0.14                  | $0.34\pm0.045$                                          | $0.051 \pm 0.01$                               | $0.17\pm0.034$                                          |  |  |  |  |
| <sup>95m</sup> Tc  | $0.18\pm0.03$           | $0.42\pm0.08$                                           | $0.10\pm0.015$                                 | $0.31 \pm 0.062$                                        |  |  |  |  |
| <sup>96g</sup> Tc  | $0.041\pm0.008$         | $0.12\pm0.024$                                          | -                                              | _                                                       |  |  |  |  |
| <sup>96m</sup> Tc  | 0.11 ± 0.02             | $0.29\pm0.06$                                           | -                                              | -                                                       |  |  |  |  |
| <sup>104g</sup> Ag | $0.28\pm0.042$          | $0.31\pm0.037$                                          | -                                              | _                                                       |  |  |  |  |
| <sup>104m</sup> Ag | $0.22\pm0.044$          | $0.30\pm0.05$                                           | -                                              | _                                                       |  |  |  |  |
| $^{120g}$ I        | $0.05 \pm 0.007$        | $0.06\pm0.006$                                          | $0.05\pm0.008$                                 | $0.11 \pm 0.011$                                        |  |  |  |  |
| <sup>120m</sup> I  | $0.14 \pm 0.018$        | $0.20\pm0.04$                                           | $0.08\pm0.016$                                 | $0.20\pm0.04$                                           |  |  |  |  |
| <sup>121g</sup> Te | $0.14 \pm 0.017$        | $0.44\pm0.053$                                          | $0.084 \pm 0.013$                              | $0.27 \pm 0.04$                                         |  |  |  |  |
| <sup>121m</sup> Te | $0.20\pm0.003$          | $0.64\pm0.096$                                          | $0.087 \pm 0.013$                              | $0.31 \pm 0.05$                                         |  |  |  |  |
| <sup>131g</sup> Te | $2.32\pm0.23$           | $2.82\pm0.42$                                           | $0.48\pm0.05$                                  | $1.11 \pm 0.13$                                         |  |  |  |  |
| <sup>131m</sup> Te | $3.16\pm0.32$           | $3.80\pm0.38$                                           | $0.62\pm0.06$                                  | $1.45 \pm 0.15$                                         |  |  |  |  |
| <sup>132g</sup> I  | $0.86 \pm 0.09$         | 1.15 ± 0.12                                             | $0.31 \pm 0.06$                                | 0.70 ± 0.12                                             |  |  |  |  |
| <sup>132m</sup> I  | $1.04 \pm 0.01$         | $1.43 \pm 0.14$                                         | $0.41 \pm 0.04$                                | 0.95 ± 0.10                                             |  |  |  |  |
| <sup>148g</sup> Pm | 0.11 ± 0.02             | $0.48 \pm 0.10$                                         | 0.11 ± 0.02                                    | $0.33 \pm 0.07$                                         |  |  |  |  |
| <sup>148m</sup> Pm | 0.31 ± 0.06             | $1.70 \pm 0.34$                                         | $0.25 \pm 0.05$                                | $0.80 \pm 0.02$                                         |  |  |  |  |

Табл.1. Выходы продуктов деления <sup>238</sup>U и <sup>232</sup>Th.

|                   |                                                 | <sup>238</sup> U                                                                   |                     |                                                                                  | <sup>232</sup> Th     |                     |                       |  |
|-------------------|-------------------------------------------------|------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------|-----------------------|---------------------|-----------------------|--|
|                   |                                                 | $(Y_h/Y_l)_{ m 3kc}$                                                               | $(Y_h/Y_l)_{pacy.}$ | B(ħ)                                                                             | ( <i>Yh / Y</i> l)экс | $(Y_h/Y_l)_{pacy.}$ | <i>B</i> ( <i>ħ</i> ) |  |
| <sup>85</sup> Sr  | g (9/2 <sup>+</sup> )<br>m (1/2 <sup>-</sup> )  | $0.60\pm0.09$                                                                      | $0.57\pm0.20$       | $2.4\pm0.5$                                                                      | $0.26\pm0.04$         | $0.24\pm0.06$       | $2.5\pm0.4$           |  |
| <sup>91</sup> Y   | g (1/2 <sup>-</sup> )<br>m (9/2 <sup>+</sup> )  | $0.69 \pm 0.15$                                                                    | $0.72\pm0.30$       | $2.6\pm0.3$                                                                      | -                     | -                   | -                     |  |
| <sup>95</sup> Nb  | g (9/2 <sup>+</sup> )<br>m (1/2 <sup>-</sup> )  | $0.50\pm0.09$                                                                      | 0.49 ± 0.15         | $2.3\pm0.4$                                                                      | $0.46\pm0.08$         | 0.51 ± 0.08         | $3.0\pm0.5$           |  |
| <sup>95</sup> Tc  | g (9/2 <sup>+</sup> )<br>m (1/2 <sup>-</sup> )  | 0.77 ± 0.12                                                                        | $0.72\pm0.30$       | $2.6\pm0.3$                                                                      | $0.51 \pm 0.09$       | $0.60 \pm 0.09$     | $2.8\pm0.4$           |  |
| <sup>96</sup> Tc  | g (7 <sup>+</sup> )<br>m (4 <sup>+</sup> )      | 0.37 ± 0.11                                                                        | $0.39 \pm 0.10$     | $4.9\pm0.2$                                                                      | -                     | -                   | -                     |  |
| <sup>104</sup> Ag | $g(5^+)$<br>$m(2^+)$                            | 1.27 ± 0.25                                                                        | $1.34\pm0.30$       | $5.3\pm0.2$                                                                      | -                     | -                   | -                     |  |
| $^{120}$ I        | g (2 <sup>-</sup> )<br>m (4-8)                  | $2.80\pm0.70$                                                                      | $2.60\pm0.39$       | $5.8\pm0.9$                                                                      | $1.60\pm0.32$         | $1.61 \pm 0.40$     | $6.4 \pm 1.3$         |  |
| <sup>121</sup> Te | g (1/2 <sup>+</sup> )<br>m (11/2 <sup>-</sup> ) | $1.43\pm0.30$                                                                      | 1.35 ± 0.18         | $4.2\pm0.5$                                                                      | $1.04 \pm 0.19$       | 1.16 ± 0.23         | $4.3\pm0.9$           |  |
| <sup>131</sup> Te | g (3/2 <sup>+</sup> )<br>m (11/2 <sup>-</sup> ) | $\begin{array}{c} 1.36 \pm 0.20 \\ 1.08 \pm 0.25^a \\ 1.38 \pm 0.21^b \end{array}$ | 1.39 ± 0.30         | $\begin{array}{c} 4.0 \pm 0.7 \\ 4.1 \pm 1.5^{a} \\ 5.1 \pm 0.4^{b} \end{array}$ | $1.29 \pm 0.23$       | 1.31 ± 0.22         | $4.7 \pm 0.8$         |  |
| <sup>132</sup> I  | g (4 <sup>+</sup> )<br>m (8 <sup>-</sup> )      | $\begin{array}{c} 1.21 \pm 0.24 \\ 1.08 \pm 0.13^{a} \end{array}$                  | $1.20 \pm 0.14$     | $\begin{array}{c} 7.2 \pm 0.2 \\ 6.9 \pm 1.4^a \end{array}$                      | $1.31 \pm 0.24$       | 1.60 ± 0.32         | 7.5 ± 1.5             |  |
| <sup>148</sup> Pm | g (1 <sup>-</sup> )<br>m (6 <sup>-</sup> )      | $2.82 \pm 0.85 \\ 2.60 \pm 0.9^{c}$                                                | 3.02 ± 0.60         | $7.5 \pm 1.5$<br>$10.0 \pm 2.5^{\circ}$                                          | 2.27 ± 0.60           | 2.21 ± 0.44         | 7.8 ± 1.6             |  |

Табл.2. Изомерные отношения ( $Y_h$  / Y) и угловые моменты (B) продуктов деления <sup>238</sup>U и <sup>232</sup>Th при энергии  $E_{\text{Umax}} = 50$  MэB.

\*- данные из работы [17]; b - данные из работы [5]; c - данные из работы [15].

При облучении мишеней фотонами тормозного спектра с г<sup>ран</sup>ично<sup>й э</sup>нергией 3500 МэВ образующиеся составные ядра характеризуются широким спектром по энергиям и спинам. Оценки, полученные с использованием модельных данных о сечении фотопоглощения на ядрах 238U и 232Th [29,30], показали, что доля высоковозбужденных составных ядер в общем наборе образованных делящихся ядерных систем не превышает одной трети и делится, в основном, симметричным образом. [31,32]. Механизм деления, рассмотренный в [18], предполагает, что при симметричном делении первичные осколки образуются с малыми угловыми моментами, и поэтому в этой массовой области можно ожидать малую вероятность образования высокоспиновых состояний, т.е. низкие изомерные отношения. На рис.1 и 2 приведена зависимость изомерных отношений от массового числа осколков при двух граничных энергиях тормозного спектра. Как видно, с увеличением массы осколков наблюдается рост ИО. Указанный эффект, отмеченный в ряде работ [5,7], авторы связывают с ростом энергии возбуждения первичного осколка.



Рис.1. Зависимость изомерных отношений ( $Y_h$ /  $Y_l$ ) и множественности постделительных нейтронов (v<sub>p</sub>) от массы фрагментов деления <sup>238</sup>U: • –  $Y_h$ /  $Y_l$  при энергии  $E_{ymax}$  = 50 МэВ, • –  $Y_h$ /  $Y_l$  при энергии  $E_{ymax}$  = 3500 МэВ (левая шкала),  $\nabla$  –v<sub>p</sub> (правая шкала) [4,32].



Рис.2. Зависимость изомерных отношений ( $Y_h$ /  $Y_l$ ) и множественности постделительных нейтронов ( $v_p$ ) от массы фрагментов деления <sup>232</sup>Th: •  $Y_h$ /  $Y_l$  при энергии  $E_{ymax} = 50$  MэB,  $\circ - Y_h$ /  $Y_l$  при энергии  $E_{ymax} = 3500$  МэB (левая шкала),  $\nabla - v_p$  (правая шкала) [4,32].

Полная энергия возбуждения первичных фрагментов деления определяется из выражения [18]

$$E_{tot}^{*}(A_{1}, A_{2}) = Q(A_{1}, A_{2}) - E_{KE}(A_{1}, A_{2}), \qquad (1)$$

где  $Q(A_1,A_2)$  – энергия реакции, *Еке*( $A_1,A_2$ ) – суммарная кинетическая энергия фрагментов,  $A_1,A_2$  – массы сопряженных осколков. Распределение полной энергии возбуждения между осколками предполагается пропорциональным массам [5,7,15,26]:

$$E_{tot}^{*}(A_{1}, A_{2}) = E^{*}(A_{1}) + E^{*}(A_{2}) , \qquad (2)$$

$$E^{*}(A_{1})/E^{*}(A_{2}) = A_{1}/A_{2}.$$
 (3)

Авторы [4-6] считают, что тяжелые осколки образуются в сильнодеформированном виде и вследствие этого обладают более высокой энергией возбуждения, что приводит к увеличению числа испарительных нейтронов. На рис.1 и 2 приведена зависимость множественности испущенных нейтронов от массового числа осколка [4,32]. Как видно, в целом наблюдается сходство в характере изменения ИО и множественности постделительных нейтронов с массой фрагмента. Рост ИО в области  $A \sim 120$  и  $A \sim 148$  указывает на большую вероятность заселения высокоспинового состояния, как следствие испарения нейтронов из сильнодеформированных фрагментов с высокой энергией возбуждения. Характерная форма кривой объясняется также в ряде работ [4,26,27,31] влиянием оболоченных эффектов. В частности, фрагменты, образующиеся в массовой области A (131–132, характеризуются заполнением нейтронной оболочки N = 82 и, следовательно, малыми деформациями, низким возбуждением, малым числом испаряющихся нейтронов и, соответственно, малой вероятностью выхода высокоспинового состояния [16].

Значения ИО, полученные в результате измерений, могут быть использованы для расчета среднего углового момента первичного осколка, который трасформируется путем испарения нейтронов и у-квантов в конечные продукты. Статистическая модель, с помощью которой обычно проводится такого типа анализ, была предложена в работе [33]. В настоящей работе такого типа расчеты проводились для определения ИО в области низких энергий. В рамках модели рассматривался процесс последовательного испускания нейтронов и у-квантов из первичного осколка деления, приводящий к конечному распределению в заселении высокоспинового и низкоспинового состояний. Основным элементом расчета при этом является плотность спинового распределения ядерных уровней, которая пропорциональна вероятности заселения ядерных состояний первичных осколков и задается в виде [10]

$$P(J_i) \sim (2J_i + 1)e^{-J_i(J_i + 1)/B^2}, \qquad (4)$$

где P(J) – вероятность образования первичного фрагмента со спином J, параметр B определяет ширину этого распределения и при больших значениях равен среднеквадратичному корню  $\sqrt{J^2} \approx B$ . Указанное распределение модифицируется в процессе изменения энергии возбуждения и углового момента первичного осколка за счет испускания нейтронов и каскада  $\gamma$ -квантов. Для проведения расчетов необходимо учесть коэффициент трансмиссии, множественность и энергию испускаемых нейтронов, а также количество, энергию и

мультипольность вылетающих ү-квантов.

Для расчета заселения уровней с определенным значением спина использовалась спиновая часть формулы Бете–Блоха:

$$P(J) \sim (2J+1)e^{-(J+0.5)^2/2\sigma^2},$$
(5)

где *P*(*J*) – вероятность заселения уровней со спином *J*, σ – параметр обрезания спина, который связан с моментом инерции ядра. При рассмотрении области низких энергий фотонов нейтроны испускаются в незначительном количестве и, в основном, в *S*-состоянии. Учитывая это обстоятельство, начальное спиновое распределение меняется мало, в ряде работ [9,15,17] предполагается, что влиянием испускания нейтронов на распределение спиновых состояний можно пренебречь.

Изменение энергии возбуждения фрагмента после каждого испущенного нейтрона рассчитывается по формуле

$$E_{ef}^{*} = E^{*}(A) - E_{n} - E_{KE}(n), \qquad (6)$$

где  $E_{ef}^*$  — остаточная энергия возбуждения,  $E^*(A)$  — энергия возбуждения первичного фрагмента,  $E_n$  — энергия связи нейтрона в ядре,  $E_{KE}(n)$  — средняя кинетическая энергия нейтрона. Согласно испарительной модели, нейтроны испускаются возбужденным ядром со средней энергией  $E_{KE}(n) = 2T$  (~1 МэВ), где T — ядерная температура [34], которая определяется из формулы

$$aT^2 - 4T = E_{ef}^* \,, \tag{7}$$

a – параметр плотности уровней, непосредственно определяемый через плотность одночастичных состояний на поверхности Ферми (в наших расчетах в качестве *a*-параметра использовалось значение a = A/8). Полная энергия возбуждения первичных фрагментов деления определялась из данных работы [27] с учетом зависимости  $E_{tot}^*$  ( $A_1,A_2$ ) от  $E_{k\ell}(A_1,A_2)$  для деления тяжелых ядер, для оценки  $E_{k\ell}(A_1,A_2)$  использовались данные [27,35,36]. Энергия возбуждения первичных фрагментов рассчитывалась с помощью (2),(3). Испарение нейтронов из первичных осколков рассматривалось до образования состояния с энергией возбуждения ниже энергии связи нейтрона. Далее процесс девозбуждения происходил путем испускания П-квантов в предположении *E*1- или *E*2-мультипольности. Согласно данным [6,15], доля *E*2-фотонов не превышает 10%. Вероятность заселения промежуточных спиновых состояний рассчитывалась по формуле (5). Полная множественность  $\gamma$ -переходов определялась в виде [37]

$$\overline{N}_{\gamma} = \frac{\sqrt{aE_{ef}^{*}}}{2} \tag{8}$$

или из выражения для средней энергии испускаемых фотонов [15]

$$E_{\gamma} = 4 \left[ \frac{E_{ef}^{*}}{a} - \frac{5}{a^{2}} \right]^{1/2}.$$
 (9)

Определение остаточной энергии возбуждения  $E_{ef}^*$  и, соответственно, энергии испускаемых у-квантов  $E_1$  проводилось на каждой ступени расчета. Предполагается, что последний "решающий" уровень, с которого происходит заселение основного или изомерного состояния, характеризуется энергией возбуждения  $E_{ef}^* \leq 2$  МэВ.

При проведении расчетов в настоящей работе в качестве начальных условий задавались средняя величина энергии возбуждения первичного осколка по данным [27], а также средняя множественность испущенных нейтронов, которая для легких осколков бралась равной 2, а для тяжелых фрагментов менялась от 2 до 3 [4,31]. Параметры обрезания спиновых распределений в выражении (5) после эмиссии нейтронов и у-квантов,  $\sigma_n$  и  $\sigma_y$  варьировались в пределах значений 2–5, указанных авторами [11,15,17]. Величина среднего углового момента первичного фрагмента деления вводилась как свободный параметр [5,7,15,17] и определялась из условия согласия расчетных и экспериментальных ИО. Из-за неопределенности значения спина и четности <sup>120m</sup>I значение спина для этого ядра бралось равным 5, ввиду лучшего соответствия расчетных и экспериментальных изомерных отношений.

В табл.2 приведены рассчитанные ИО и значения средних угловых моментов осколков деления <sup>238</sup>U и <sup>232</sup>Th при граничной энергии фотонов 50 МэВ. В пределах точности определения значения угловых моментов совпадают с данными, полученными при делении <sup>238</sup>U фотонами [5,17] и тепловыми нейтронами [15]. Результаты расчетов подтверждают рост угловых моментов с увеличением массового числа *А* осколка деления, включая область симметричного деления (высокоэнергетическое деление). Подобная тенденция роста замечена при делении протонами [7], быстрыми нейтронами [6] и γ-частицами [15], однако средние значения спинов, полученные в этих реакциях, существенно выше. Согласно заключению авторов [7], большая энергия возбуждения может быть вызвана существенной деформацией фрагментов при делении заряженными частицами, приводящей к возбуждению коллективных степеней свободы (вращению, кручению).

#### 4. Заключение

В результате проведенных измерений впервые были получены ИО для некоторых продуктов фотоделения <sup>238</sup>U и <sup>232</sup>Th, рассчитаны угловые моменты соответствующих первичных осколков деления. Близость значений ИО, полученных в настоящей работе и приведенных в литературе для тех же продуктов деления других актинидов при близких энергиях возбуждения, указывает на идентичность каналов образования высокоспиновых состояний, несмотря на различие мишеней и сечений образования.

Энергия падающих фотонов существенно не влияет на величину ИО, т.е. можно предположить, что энергия возбуждения не коррелирует с величиной углового момента первичного фрагмента деления. Увеличение ИО в процессах деления протонами и αчастицами в области промежуточных энергий указывает на роль деформации первичного фрагмента из-за кручения или вращения, а также свойствами ядерной системы в процессе образования осколков и непосредственно после разделения. Возможно, что процесс возбуждения такого типа степеней свободы при взаимодействии с фотонами промежуточных энергий не играет существенной роли.

### ЛИТЕРАТУРА

- 1. F.-J.Hambsch, S.Oberstedt, G.Vladuca, A.Tudora. Nucl. Phys. A, 709, 85 (2002).
- 2. V.A.Rubchenya, J. Aysto. Nucl. Phys. A, 701, 127c (2002).
- 3. I.Tsekhanovich, N.Varapai, V.A.Rubchenya, et al. Phys. Rev. C, 70, 044610 (2004).
- 4. V.A.Rubchenya. Phys. Rev. C, 75, 054601 (2007).
- 5. О.А.Бесщейко, И.Н.Вишневский и др. Изв. РАН, серия физическая, 69, 658 (2005).
- 6. И.Н.Вишневский, В.Ю.Денисов, В.А.Желтоножский. Я<br/>  $\Phi,$  61, 1562 (1998).
- 7. M.Tanikawa, H.Kudo, et al. Z. Phys. A, 347, 53 (1993).
- 8. N.Patronis, C.T.Papadopoulos, S.Galanopoulos, et al. Phys. Rev. C, 75, 034607 (2007).
- 9. B.L.Zhuikov, M.V.Mebel, V.M.Kokhanyuk, A.S.Iljinov. Phys. Rev. C, 68, 054611 (2003).
- 10. H.Warhanek, R.Vandenbosch. J. Inorg. Nucl. Chem., 30, 669 (1964).
- 11. E.Hagebo. J. Inorg. Nucl. Chem., 25, 1201 (1963).
- 12. E.Hagebo. J. Inorg. Nucl. Chem., 29, 2515 (1967).
- H.O.Denschlag et al., in Proc. of the International Symposium on the Physics and Chemistry of Fission, Julich, 1979 (International Atomic Energy Agency, Vienna, 1980), vol.4II, p.153.
- P.Bocquet et al., in Proc. of the International Symposium on the Physics and Chemistry of Fission, Julich, 1979 (International Atomic Energy Agency, Vienna, 1980), vol.II, p.179.
- 15. D.C.Aumann, W.Guckel, E.Nirschl, H.Zeising. Phys. Rev. C, 16, 254 (1977).
- 16. D.De Frenne, B.Proot, H.Thierens, et al. Phys. Rev. C, 29, 1777 (1984).
- 17. E.Jacobs, H.Thierens, D.De Frenne, et al. Phys. Rev. C, 19, 422 (1979).
- 18. H.Thierens, B.Proot, D.De Frenne, E. Jacobs. Phys. Rev. C, 25, 1546 (1982).
- 19. M.Diksic, L.Yaffe. Can. J. Chem., 53, 3116 (1975).
- 20. Г.С.Карапетян. Ученые записки ЕГУ, №3, 31 (2006).
- 21. H.Baba, J.Sanada, H.Araki, et al. Nucl. Instrum. Methods A, 416, 301 (1998).
- 22. И.Адам, В.С.Пронских, А.Р.Балабекян и др. Препринт №10-2000-28, ОИЯИ, Дубна, 2000.
- 23. G.B.Saha, I.Tomita, L.Yaffe. J. Inorg. Nucl. Chem., 31, 3731 (1969).
- 24. C.L.Rao, G.B.Saha, L.Yaffe. J. Inorg. Nucl. Chem., 34, 2397 (1972).
- 25. C.Rudy, R.Vandenbosch, C.T.Ratcliffe. J. Inorg. Nucl. Chem., 30, 365 (1967).
- 26. Ю.Гангрский, Б.Марков, В.Перелыгин. Регистрация и спектрометрия осколков деления. М., Энергоатомиздат, 1992.
- 27. M.Strecker, R.Wien, P.Plischke, W.Scobel. Phys. Rev. C, 41, 2172 (1990).
- 28. G.B.Saha, L.Yaffe. J. Inorg. Nucl. Chem., 31, 1891 (1969).
- 29. A.Deppman et al. Phys. G: Nucl. Part. Phys., 30, 1991 (2004).
- 30. C.Cetina et al. Phys. Rev. C, 65, 044622 (2002).
- 31. H.Kudo, H.Muramatsu, H.Nakahara, et al. Phys. Rev. C, 25, 3011 (1982).
- 32. C.Chung, J.J.Hogan. Phys. Rev. C, 24, 180 (1981).
- 33. J.R.Huizenga, R.Vandenbosch. Phys. Rev., 120, 1305 (1960).
- 34. Дж.Блатт, В.Вайскопф. Теоретическая ядерная физика. М., изд. ИЛ, 1954.
- 35. Y.Patin, S.Cierjacks, J.Lachkar, et al. Nucl. Instrum. Methods, 160, 471 (1979).
- 36. A.Gavron. Nucl. Instrum. Methods, 115, 93 (1974).
- 37. **Н.А.Демёхина, А.С.Данагулян, Г.С.Карапетян**. ЯФ, **65**, 390 (2002).

# <sup>238</sup>U ԵՎ <sup>232</sup>Th ՖՈՏՈԲԱԺԱՆՄԱՆ ԲԵԿՈՐՆԵՐԻ ԻԶՈՄԵՐԱՅԻՆ ՀԱՐԱԲԵՐՈՒԹՅՈՒՆՆԵՐԸ

#### Ն.Ա. ԴԵՄՅՈԽԻՆԱ, Գ.Ս. ԿԱՐԱՊԵՏՅԱՆ

Չափված են <sup>238</sup>U և <sup>232</sup>Th ֆոտոբաժանման բեկորների էքսպերիմենտալ իզոմերային հարաբերությունները արգելակային Ճառագայթման 50 և 3500 ՄէՎ առավելագույն էներգիաների դեպքում։ Ստացված արդյունքները հնարավորություն տվեցին գնահատել առաջնային ֆրազմենտների միջին անկյունային մոմենտների արժեքները և համեմատել գրականության մեջ առկա տվյալների հետ։

# ISOMERIC YIELD RATIOS OF <sup>238</sup>U AND <sup>232</sup>Th PHOTOFISSION PRODUCTS

## N.A. DEMEKHINA, G.S. KARAPETYAN

The <sup>232</sup>Th and <sup>238</sup>U experimental photofission isomeric yield ratios were determined by using bremsstrahlung at the end-point energies of 50 and 3500 MeV. From the measured results the average angular momenta of primary fission fragments are estimated and the comparison with known data is made.