УДК 621.384

О ВОЗМОЖНОСТИ МОДУЛЯЦИИ ПЛОТНОСТИ ЗАРЯДА ЭЛЕКТРОННОГО СГУСТКА В ПОЛЕ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ

М.А. ХОДЖОЯН

Ереванский физический институт им. А.И.Алиханяна

(Поступила в редакцию 21 февраля 2007 г.)

Рассмотрены проблема модуляции плотности электронов в линейном сгустке после его взаимодействия с линейно-поляризованной монохроматической электромагнитной волной, а также возможность наблюдения этого эффекта. Показано, что при больших напряженностях электромагнитной волны можно добиться значительных величин глубины модуляции.

1. Введение

Получение плотных электронных сгустков сверхкороткой длины является весьма актуальной проблемой в создании ЛСЭ, в частности, в терагерцовой области частот. Одним из возможных путей достижения этой цели является модуляция по плотности сравнительно длинного сгустка, когда он взаимодействует с сильной электромагнитной волной линейнополяризованного луча лазера, и когда достаточно глубокая модуляция распределения заряда по плотности может служить хорошим обоснованием для деления сгустка (реализации chopping-a (slicing)).

В работе [1] исследовался эффект развертки линейного электронного сгустка в поле плоской монохроматической волны высокой напряженности и была показана возможность поперечной растяжки электронного сгустка и определения распределения его плотности по его развернутому изображению в плоскости, поперечной к движению скорости. В настоящей работе мы ставим цель исследовать изменения плотности заряда в сгустке вдоль его длины после его взаимодействия с линейно-поляризованной плоской монохроматической волной высокой напряженности (полем лазера).

2. Алгоритм наблюдения модуляции

Установка, с помощью которой предлагается исследовать взаимодействие электронного сгустка с монохроматической электромагнитной волной, в принципе совпадает с устройством, предложенным в работе [1], где рассматривалась развертка электронного сгустка.

Электромагнитную волну выберем поляризованной вдоль оси у:

$$E_y = H_z = E_0 \cos(kx - \omega t + \varphi_0).$$
⁽¹⁾

Подставляя выражения для полей в уравнения движения, имеем:

$$\frac{dx}{dt} = c \frac{p_x}{\sqrt{m_0^2 c^2 + p_x^2 + p_y^2}}, \qquad \frac{dy}{dt} = c \frac{p_y}{\sqrt{m_0^2 c^2 + p_x^2 + p_y^2}},$$
(2)

$$\frac{dp_x}{dt} = eE_y \frac{p_y}{\sqrt{m_0^2 c^2 + p_x^2 + p_y^2}}, \qquad \frac{dp_y}{dt} = eE_y \left(1 - \frac{p_x}{\sqrt{m_0^2 c^2 + p_x^2 + p_y^2}}\right).$$
(3)

Введя параметр $\eta = \omega t - kx$ и перейдя затем от дифференцирования по времени к дифференцированию по η , как это было сделано в работах [2,3], для решения системы уравнений (2),(3), полагая что в момент вхождения сгустка в систему $p_{y0} = 0$ и $x_0 = 0$, $y_0 = 0$ (поперечные размеры сгустка пренебрежимо малы), получаем

$$x = \frac{2B}{k} \left[p_{x0} + \frac{Be^2 E_0^2}{2\omega^2} \left(1 + 2\sin^2 \varphi_0 \right) \right] \eta +$$

$$Be^2 E_0^2 \left[s_{0} \sin \varphi_{0} \cos(\varphi + \varphi_{0}) - 2\sin^2 \varphi_{0} - \sin^2 (\varphi + \varphi_{0}) \right]$$
(4)

$$+\frac{Be}{2k\omega^{2}}\left[8\sin\varphi_{0}\cos(\eta+\varphi_{0})-3\sin2\varphi_{0}-\sin2(\eta+\varphi_{0})\right],$$

$$=\frac{2BeE_{0}\sin\varphi_{0}}{2BeE_{0}\cos(\eta+\varphi_{0})}\cos(\eta+\varphi_{0})\cos(\eta+\varphi$$

$$y = -\frac{2BeE_0 \sin \phi_0}{k\omega} \eta - \frac{2BeE_0}{k\omega} \Big[\cos(\eta + \phi_0) - \cos \phi_0 \Big],$$
(5)

$$p_{x} = p_{x0} + \frac{Be^{2}E_{0}^{2}}{\omega^{2}} \left[\sin(\eta + \phi_{0}) - \sin\phi_{0}\right]^{2}, \qquad (6)$$

$$p_{y} = \frac{eE_{0}}{\omega} \left[\sin\left(\eta + \varphi_{0}\right) - \sin\varphi_{0} \right], \qquad (7)$$

где

$$B = \frac{\sqrt{m_0^2 c^2 + p_{x0}^2} + p_{x0}}{2m_0^2 c^2} = \frac{\gamma_0 + \sqrt{\gamma_0^2 - 1}}{2m_0 c} , \qquad (8)$$

 γ_0 — Лоренц-фактор электрона до взаимодействия, и для достаточно больших энергий

$$B \approx \frac{\gamma_0}{m_0 c} \,, \tag{8a}$$

 $η = ωτ_f - kx_f$ есть пространственно-временной интервал между координатой электрона x_f и начальной точкой взаимодействия (зеркала). $τ_f$ – длительность взаимодействия, а $φ_0$ – начальная фаза некоторого выбранного электрона, когда он начинает взаимодействовать с полем электромагнитной волны. Отметим, что эти результаты совпадают с формулами, полученными в [4], где решение задачи проводилось методом Гамильтона–Якоби для случая, когда электрон в среднем покоится. Для всех электронов в сгустке, не имеющем поперечных размеров (линейный сгусток), интервал $η = ωτ_f - kx_f$ есть постоянная величина и определяется координатой точки наблюдения x_f . Если выбрать

$$\eta = \omega \tau_f - k x_f = 2\pi n \,, \tag{9}$$

то в точке наблюдения $x_f(\tau_f)$ все электроны сгустка будут иметь те же значения импульса, которые они имели до взаимодействия. В дальнейшем мы выберем n = 1, т.е. $\eta = \omega \tau_f - kx_f = 2\pi$, откуда определим промежуток времени нахождения частиц в области взаимодействия $\tau_f = 2\pi/\omega + kx_f/\omega$. Из уравнения (4), в случае, когда $\eta = 2\pi$, имеем

$$x_f = \frac{2B}{k} \left[p_{x0} + \frac{Be^2 E_0^2}{2\omega^2} \left(1 + 2\sin^2 \varphi_0 \right) \right] 2\pi$$
(10)

и, следовательно,

$$\tau_f = \frac{2\pi}{\omega} \left\{ 1 + 2B \left[p_{x0} + \frac{Be^2 E_0^2}{2\omega^2} \left(1 + 2\sin^2 \varphi_0 \right) \right] \right\}.$$
 (10a)

Выражение (10а) можно представить в виде

$$\tau_f = \tau_0 + \tau_1 \sin^2 \varphi_0, \qquad (106)$$

где

$$\tau_0 = \frac{2\pi}{\omega} \left[1 + 2B \left(p_{x0} + \frac{B^2 e^2 E_0^2}{2\omega^2} \right) \right] \qquad \text{M} \qquad \tau_1 = \frac{4\pi B^2 e^2 E_0^2}{\omega^3} \,. \tag{10b}$$

Обозначим координату некоторой частицы в сгустке через и. После взаимодействия с волной координата получит приращение $[\tau(u) - \tau(u + du)] v_{r0}$ и примет значение эта $dv = du + [\tau(u) - \tau(u + du)] v_{v0}$ (где du – расстояние между двумя соседними частицами; при этом, естественно, что если электрон, имеющий координату и, добирается до точки наблюдения позднее, чем электрон, имеющий координату u + du ($\tau(u) > \tau(u + du)$), то после взаимодействия это расстояние должно быть больше исходного расстояния, т.е. dv > du). Пусть распределение заряда в сгустке до его взаимодействия с полем лазера произвольно и дается выражением $\eta(u) = dN/du$, а после взаимодействия, т.е. в точке $x = x_f$, равно $\eta(v) = dN/dv$, где N – число зарядов в сгустке. В сгустке начало координат выберем так, чтобы электрону, имеющему координату u = 0 соответствовала бы фаза поля $\phi_0 = 0$, т.е. электрон, имеющий начальную координату u=0, будет взаимодействовать с максимумом электромагнитного поля, а v – координата электрона в сгустке после взаимодействия. Естественно, начальную определить фазу φ_0 при этом удобно как $\phi_0(u) = \omega t(u) = u \omega / v_{x0} = u \omega / c \beta_0 = k u / \beta_0$, где $k = \omega / c$, $\beta_0 = v_{x0} / c$. Тогда

$$dv = du - v_{x0}\tau_1 \sin\left(2\frac{ku}{\beta_0} + \frac{kdu}{\beta_0}\right) \sin\left(\frac{kdu}{\beta_0}\right).$$

Если допустить, что $k du/\beta_0 << 1$, то

$$dv = du \left(1 - \omega \tau_1 \sin \frac{2ku}{\beta_0} \right). \tag{11}$$

Интегрируя уравнение (11), можно получить связь между координатами заданного электрона до (*u*) и после взаимодействия (*v*):

$$v = u - \beta_0 c \tau_1 \sin^2 \frac{ku}{\beta_0} \,. \tag{12}$$

Таким образом, из заданного (начального) распределения заряда $\eta(u)$ получается следующее выражение для плотности распределения заряда в сгустке после взаимодействия с волной:

$$\eta(v) = \frac{dN}{dv} = \frac{dN}{du}\frac{du}{dv} = \frac{\eta(u)du}{\left(1 - \omega\tau_1 \sin\frac{2ku}{\beta_0}\right)du} = \frac{\eta(u)}{\left(1 - \omega\tau_1 \sin\frac{2ku}{\beta_0}\right)}.$$
(13)

Как видим, распределение заряда в сгустке после его взаимодействия с электромагнитной волной меняется обратно пропорционально фактору $1 - \omega \tau_1 \sin(2ku/\beta_0)$, т.е. эффект модуляции распределения заряда $\eta(u)$ в сгустке обусловлен величиной

$$\frac{4\pi\gamma_0^2 e^2 E_0^2}{m^2 c^2 \omega^2} = \operatorname{const} \times \gamma_0^2 \left(\frac{E_0}{\omega}\right)^2.$$
(14)

Выражение (14) соответствует утверждению, что глубина модуляции не зависит от числа частиц в сгустке, а эффект этой модуляции будет для заданной энергии частиц одинаков во всех случаях одинаковых отношений напряженности поля и частоты и определяется величиной τ_1 . Таким образом, существует широкий выбор числа и размера кластеров, удобных для математического моделирования задачи.

3. Математическое моделирование

Рассмотрим сгусток (см. рис.1) с гауссовским распределением [5] заряда в нем (полный заряд $Q = Ne = 2 \times 10^{-8}$ Кл, т.е. число электронов в сгустке равно $N \sim 10^{11}$) с кинетическими энергиями E = 50 МэВ или E = 75 МэВ. Сгусток движется вдоль оси x в поле плоской монохроматической электромагнитной волны с напряженностью в первом случае – $E_0 = 2 \times 10^8$ В/м

и частотой $\omega = 2\pi \times 10^{13}$ рад/сек, а во втором случае – $E_0 = 2 \times 10^9$ В/м и $\omega = 2\pi \times 10^{14}$ рад/сек.

Представим распределение электронов в сгустке в виде разделенных друг от друга "кластеров", каждому из которых присваивается координата *и*. Если, например, взять число кластеров 2×10^5 , в каждом из которых 10^6 электронов, то размер такого кластера (длина) будет порядка $^{\sim}1.5 \times 10^{-9}$ м, что намного меньше длины волны (3×10^{-5} м), так что каждый кластер можно рассматривать как точечный заряд. Из 2×10^5 возможных мы выбрали 9 разных кластеров, расположенных вдоль всей длины сгустка и движущихся с 9-ю разными, равноотстоящими начальными фазами, с которыми они взаимодействуют с полем лазера

Рис.1. Начальное распределение заряда в сгустке.

Рис.2. Траектории частиц в области взаимодействия, когда начальная инжекционная энергия равна 50 МэВ, при $E_0 = 2 \times 10^9$ В/м, $\omega = 2\pi \times 10^{14}$ рад/сек.

Рис.3. Траектории частиц в области взаимодействия, когда начальная инжекционная энергия равна 75 МэВ, при $E_0 = 2 \times 10^9$ В/м, $\omega = 2\pi \times 10^{14}$ рад/сек.

На рис.2 и 3 изображены траектории этих 9-и частиц (кластеров), а цифры 1, 2, ..., 9 соответствуют начальным фазам каждого из них $[1-\pi, -3\pi/4, -\pi/2, -\pi/4, 0, \pi/4, \pi/2, 3\pi/4, \pi]$. Сравнение этих двух рисунков показывает, что область взаимодействия (от начала взаимодействия (зеркала) до точки наблюдения x_f) растет пропорционально γ_0^2 . При этом разные кластеры оказываются разбросанными на ничтожно малых расстояниях вдоль поперечной оси: в первом случае – на величину

 5.5×10^{-6} м, во втором – на 8.2×10^{-6} м.

Из рис.4-7 видно, что при $\gamma = 100$ и $\gamma = 150$ имеем разные глубины модуляции. В первом случае она составляет 0.96, во втором – 45.5 от максимума, когда $E_0 = 2 \times 10^8 \,\text{B/m}$ и $\omega = 2\pi \times 10^{13}$ рад/сек, и 0.64, 5.7, когда $E_0 = 2 \times 10^9$ В/м и $\omega = 2\pi \times 10^{14}$ рад/сек. Период модуляции каждый раз совпадает с длиной модулирующей волны и составляет, соответственно, 3×10^{-5} м и 3×10^{-6} м.

Рис.4. Распределение заряда в сгустке после взаимодействия с полем лазера в случае, когда энергия равна 50 МэВ, напряженность 2×10^8 В/м, а частота $2\pi \times 10^{13}$ рад/сек.

Рис.5. Распределение заряда в сгустка после взаимодействия с полем лазера в случае, когда энергия равна 75 МэВ, напряженность 2×10⁸ В/м, а частота 2π×10¹³ рад/сек.

 2×10^9 В/м, а частота $2\pi \times 10^{14}$ рад/сек.

-2 0 _4 $v \times 10^4$, m взаимодействия с полем лазера в случае,

напряженность 2×10⁹ В/м, а частота $2\pi \times 10^{14}$ рад/сек.

Результаты очевидны, потому что распределение после взаимодействия обратно пропорционально выражению $1-\omega \tau_1 \sin(2ku/\beta_0)$, которое уменьшается с возрастанием *B*, т.е. γ . Во всех случаях наблюдается увеличение числа кластеров в области максимума распределения.

Проведенные расчеты показывают, что при больших энергиях можно достигнуть глубоких значений модуляции, выбирая сравнительно слабые напряженности поля и низкие частоты, тогда как в случае сгустков с небольшими энергиями необходимы большие напряженности полей при низких частотах. Это объясняется тем, что глубина модуляции, вообще говоря, пропорциональна $\gamma_0^2 (E_0 / \omega)^2$. Отметим, однако, что с ростом частоты эффективность взаимодействия сгустка с волной уменьшается, в результате чего уменьшается глубина модуляции.

4. Заключение

Как видим, эффективность взаимодействия электромагнитной волны с электронным сгустком увеличивается по мере роста энергий электронов (сгустка). Объяснение этого феномена заключается, по-видимому, в том, что с увеличением энергии частицы ее скорость все больше приближается к скорости распространения волны, что приводит к увеличению длительности взаимодействия волны со сгустком, когда волна распространяется в направлении движения сгустка. При этом для эффективной модуляции плотности заряда в сгустке существенным является условие (9), налагаемое на интервал взаимодействия, заключающееся в том, что из сгустка "выбрасываются" электроны, которые после взаимодействия приобретают поперечный импульс. Это приводит к некоторому перераспределению заряда вдоль длины сгустка.

Таким образом, нами показано, что принципиально возможна модуляция электронного сгустка в поле линейно-поляризованной электромагнитной волны до наблюдаемых значений глубин модуляции.

В заключение автор выражает благодарность проф. Э.Д.Газазяну и к.ф.-м.н. Д.К.Калантаряну за постановку задачи и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Э.Д.Газазян, Д.К.Калантарян, М.А.Ходжоян. Изв. НАН Армении, Физика, 41, 170 (2006).
- E.D.Gazazyan, K.A.Ispirian, M.K.Ispiryan, D.K.Kalantaryan, D.A.Zakaryan. Transversal deflection of electrons moving in parallel with linearly polarized laser beam and its application. PAC-05, Knoxville, Tennessee, USA, May 16-20, 2005. pp.4054-4056.
- E.D.Gazazyan, K.A.Ispirian, M.K.Ispiryan, D.K.Kalantaryan, D.A.Zakaryan. Femtosecond deflection of electron beam in laser fields and femtosecond oscilloscope. Advanced Radiation Sources and Applications. Proceedings of the NATO Advanced Workshop, Nor-Hamberd, Yerevan, Armenia, August 29 – September 2, 2004. NATO Sc. Ser II: Math., Phys., Chem., vol.199, 2005.
- 4. Л.Д.Ландау, Е.М.Лифшиц. Теория поля. М., Наука, 1988.
- 5. Г.Корн, Т.Корн. Справочник по математике. М., Наука, 1973.

ԷԼԵԿՏՐԱՄԱԳՆԻՍԱԿԱՆ ԴԱՇՏՈՒՄ ԷԼԵԿՏՐՈՆԱՅԻՆ ԹԱՆՉՐՈՒԿՈՒՄ ԼԻՑՔԻ ԽՏՈՒԹՅԱՆ ՄՈԴՈՒԼԱՑՄԱՆ ՀՆԱՐԱՎՈՐՈՒԹՅԱՆ ՄԱՍԻՆ

Մ.Ա. ԽՈՋՈՅԱՆ

Քննարկված է գծային թանձրուկում էլեկտրոնների բաշխվածության խտության մոդուլացման խնդիրը, ինչպես նաև այդ էֆեկտի դիտման հնարավորությունը։ Յույց է տրված, որ դաշտի բարձր լարվածություն ունեցող էլեկտրամագնիսական ալիքի դեպքում հնարավոր է հասնել մոդուլացման խորության մեծ արժեքների։

ON THE POSSIBILITY OF THE CHARGE DENSITY MODULATION OF AN ELECTRON BUNCH IN THE FIELD OF ELECTROMAGNETIC WAVE

M.A. KHOJOYAN

The problem of modulation of the electron bunch density distribution is considered, when this bunch interacts with a linearly polarized monochromatic electromagnetic wave, as well as a possibility to observe this effect. It is shown that one can achieve significant depths of the modulation at high intensities of the electromagnetic wave.