УДК 548.0

НАКЛОННОЕ ПРОХОЖДЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ЧЕРЕЗ СЛОИ С ОДНОРОДНОЙ И НЕОДНОРОДНОЙ СПИРАЛЬНОЙ СТРУКТУРОЙ

О.С. ЕРИЦЯН, А.А. ПАПОЯН, О.М. АРАКЕЛЯН, К.В. ПАПОЯН, О.В. ПИКИЧЯН

Ереванский государственный университет

(Поступила в редакцию 29 апреля 2005 г.)

Методом сложения слоев получено точное решение задачи наклонного прохождения электромагнитной волны через слой со спиральной структурой при постоянном и переменном в пространстве шаге спирали. Рассмотрены поляризационные и энергетические характеристики.

1. Введение

Взаимодействие электромагнитной волны со средами со спиральной структурой, на которое было уделено большое внимание в связи с интересом к оптике холестерических жидких кристаллов [1(3], не перестает быть актуальной задачей. Это связано, в частности, с отсутствием точного решения при наклонном падении. Последний случай рассматривался в [1] и, при наличии магнитооптической активности, в [4]. Задача в [4], как и в [1], решена хотя и приближенно, но аналитически. Представляет интерес точное решение, могущее заполнить отмеченный выше пробел в теории оптических свойств спиральных сред. Оно получено в [5] численным методом на основании метода сложения слоев Амбарцумяна [6], первоначально сформулированного для интенсивностей, а в дальнейшем - для полей [7]. В настоящей работе, в отличие от [5], где изучены только энергетические характеристики при наклонном прохождении (этот вопрос рассмотрен здесь более обстоятельно, чем в [5]), рассматриваются также поляризационные характеристики и неоднородный твист-слой, для которого неприменим дифракционный подход даже приближенно.

2. Метод сложения слоев

Спиральную структуру представим как сложенные друг на друга тонкие анизотропные пластинки из одноосного кристалла, ось которого лежит в плоскости пластинок. При этом каждая из пластинок повернута относительно предыдущей вокруг своей нормали (ось z) на угол $d\psi$; при $d\psi/dz = \text{const}$ имеем спиральную структуру с

постоянным шагом спирали. Направление оси z будем называть направлением "слева направо". Пусть внешняя волна падает на стопку слева, причем плоскость падения совпадает с плоскостью xz. Обозначим тангенциальную компоненту волнового вектора падающей волны через k_x , которая одинакова для всех волн во всех пластинках, из-за независимости диэлектрической проницаемости от координаты x ($\varepsilon_{ij} = \varepsilon_{ij}(z)$). Введем амплитудные матрицы отражения и прохождения \hat{R}_a , \hat{T}_a *а*-ой пластинки при падении на нее волны слева. Введем также аналогичные матрицы \hat{R}_a , \hat{T}_a при падении волны справа, при том же значении k_x тангенциальной компоненты волнового вектора. С помощью матриц для двух пластинок построим матрицы \hat{R}_{a+b} , \hat{T}_{a+b} для пары пластинок a и b. Матрицы \hat{R}_{a+b} и \hat{T}_{a+b} выражаются через матрицы для отдельных пластинок следующим образом [6]:

$$\widehat{R}_{a+b} = \widehat{R}_a + \widetilde{\widehat{T}}_a \widehat{R}_b (\widehat{I} - \widetilde{\widehat{R}}_a \widehat{R}_b)^{-1} \widehat{T}_a, \qquad \widehat{T}_{a+b} = \widehat{T}_b (\widehat{I} - \widetilde{\widehat{R}}_a \widehat{R}_b)^{-1} \widehat{T}_a, \tag{1}$$

где \widehat{I} – единичная двумерная матрица.

Матрицы \hat{R}_{a+b} и \hat{T}_{a+b} выражаются следующими формулами:

$$\widetilde{\hat{R}}_{a+b} = \widetilde{\hat{R}}_b + \widehat{T}_b \widetilde{\hat{R}}_a (\widehat{I} - \widehat{R}_b \widetilde{\hat{R}}_a)^{-1} \widetilde{\hat{T}}_b, \quad \widetilde{\hat{T}}_{a+b} = \widetilde{\hat{T}}_a (\widehat{I} - \widehat{R}_b \widetilde{\hat{R}}_a)^{-1} \widetilde{\hat{T}}_b.$$
(1a)

Расчет прохождения через спиральную структуру выполнен нами на основании формул (1), (1а) путем их последовательного применения по мере добавления новых пластинок в стопку, которая рассматривается как пластинка "a", а вновь добавляемая – как пластинка "b".

3. Наклонное прохождение через слой со спиральной структурой

а) Энергетические характеристики

На рис.1 представлены частотные зависимости энергетического коэффициента отражения R при разных углах падения. Падающая волна (плоскость падения – плоскость *хz*) имеет эллиптическую поляризацию с компонентами амплитуды электрического поля $E_x = 1$, $E_y = i$. Шаг спирали $\sigma = 0,42$ мкм, компонента тензора диэлектрической проницаемости в направлении директора $\varepsilon_{\parallel} = 2,29$, в направлениях, перпендикулярных к директору, ($\varepsilon_{\perp} = 2,143$, толщина спирального слоя $d = 100 \sigma$.

При отклонении от нормального падения брэгговский столик искажается, а общий уровень осцилляций растет. С увеличением угла падения наблюдается смещение области дифракционного отражения в сторону больших частот. Объяснение этому явлению дано в [5].

Рис.1. Частотная зависимость энергетического коэффициента отражения от среды с параметрами: $\varepsilon_{\parallel} = 2,29$, $\varepsilon_{\perp} = 2,143$, толщина слоя $d=100 \sigma$, шаг спирали, $\sigma = 0,42$ мкм, угол падения $\theta = 0^{\circ}$ (a), $\theta = 30^{\circ}$ (b), $\theta = 45^{\circ}$ (c), $\theta = 75^{\circ}$ (d).

б) Поляризационные характеристики

На рис.2 приведены зависимости эллиптичности поляризации отраженной (**3**г) и прошедшей (**э**t) волн от эллиптичности поляризации падающей волны при нормальном падении. В падающей волне $E_y = 1$, $E_x = i \cdot e$; по оси абсцисс отложена величина *e*. На рис.3 приведены те же зависимости при угле падения $\theta = 75^{\circ}$. В падающей волне $E_s = 1$, $E_p = i \cdot e / \cos \theta$; по оси абсцисс отложена величина *e*.

Рис.2. Зависимость эллиптичности поляризации отраженной (а) и прошедшей (b) волны от эллиптичности поляризации падающей волны при нормальном падении. Параметры среды: $\varepsilon_{\parallel} = 2,29$, $\varepsilon_{\perp} = 2,143$, толщина слоя d = 0,42 мкм, шаг спирали $\sigma = 0,42$ мкм, частота волны $\omega = 3 \cdot 10^{15}$ Гц.

Рис.3. То же, что и на рис.2, но при угле падения $\theta = 75^{\circ}$.

Ход кривых существенно меняется при переходе от случая нормального падения к наклонному. Замечается уменьшение минимальных значений **э**г и **э**t при переходе к наклонному падению.

4. Прохождение через неоднородный твист-слой

Для случая толстых слоев дифракционная теория может быть применена к случаю наклонного падения, но, как было отмечено выше, она применима только приближенно. В случае, когда В слое не содержится так много шагов спирали, чтобы дифракционное отражение сформировалось (условие формирования $\Delta \varepsilon (d / \sigma) >> 1$, где $\Delta \varepsilon$ - анизотропия тензора ε_{ii} , d - толщина слоя, σ - шаг спирали), дифракционная теория не может быть применена вообще. Метод сложения слоев применим также к этому случаю. На рис.4 и 5 приведены кривые частотной зависимости коэффициента отражения спирального слоя со следующими параметрами: дифференциальный шаг спирали на левой границе слоя имеет значение 7,7 мкм и линейно меняется, принимая на правой границе значение, равное 0,42 мкм, d = 0,42 мкм, $\varepsilon_{\parallel} = 2,1,=2,1, \epsilon_{\perp} = 1,5,1,5$. Компоненты поля падающей волны заданы следующим образом: $E_y = 0$, $E_x = 1$. Углы падения на рис.4 и 5 соответственно равны 0° и 30°. Как и в случае толстых слоев, у твист-слоя также наблюдается смещение области дифракционного отражения в сторону больших частот при увеличении угла падения. Наблюдается также снижение максимумов при переходе от нормального падения к наклонному.

Рис.4. Частотная зависимость энергетического коэффициента отражения от твистслоя при нормальном падении. Параметры твист-слоя: ε_{\parallel} =2,1, ε_{\perp} =1,5, дифференциальный шаг спирали меняется от 7,7 мкм до 0,42 мкм, толщина слоя d = 0,42 мкм.

Приведенные выше результаты могут служить основой для постановки новых экспериментов с более детальным сопоставлением с результатами расчетов на основе метода сложения слоев.

ЛИТЕРАТУРА

1. В.А. Беляков, А.С. Сонин. Оптика холестерических жидких кристаллов. М., Наука, 1982.

- 2. П.Де Жен. Физика жидких кристаллов. М., Мир, 1977.
- 3. С.Чандрасекар. Жидкие кристаллы. М., Мир, 1980.
- 4. В.А.Киеня, И.В.Семченко. Кристаллография. 39, 514 (1994).
- 5. О.С.Ерицян, А.А.Папоян, О.М.Аракелян. Изв. НАН Армении, 41, 281 (2006).
- 6. В.А.Амбарцумян. Изв. АН Арм. ССР, Естественные науки, 1-2, 31 (1944).

7. **О.В.Пикичян.** Сообщения Бюраканской обсерватории, **B LV**, 5 (1984).

ԷԼԵԿՏՐԱՄԱԳՆԻՍԱԿԱՆ ԱԼԻՔԻ ԹԵՔ ԱՆՑՈՒՄԸ ՀԱՄԱՍԵՌ ԵՎ ԱՆՀԱՄԱՍԵՌ ՊԱՐՈՒՐԱՅԻՆ ԿԱՌՈՒՑՎԱԾՔՈՎ ՄԻՋԱՎԱՅՐԻ ՇԵՐՏՈՎ

ל. ש. הרף אונע, אונע אונע, אוגע, אונע, אונע, אוגע, אוגע, אוגע, אוגע, אוגע, אוגע, אוגע, אוגע, א

Շերտերի գումարման մեթոդով Ճշգրիտ լուծված է էլեկտրամագնիսական ալիքի թեք անցման խնդիրը պարուրային կառուցվածքով շերտի միջով՝ պարույրի հաստատուն և փոփոխական քայլի դեպքում։

OBLIQUE TRANSMISSION OF ELECTROMAGNETIC WAVE THROUGH HOMOGENEOUS AND INHOMOGENEOUS HELICAL LAYERS

H.S. ERITSYAN, A.A. PAPOYAN, H.M. ARAKELYAN, K.V. PAPOYAN, H.V. PIKICHYAN

The problem of electromagnetic wave transmission through a helical homogeneous and inhomogeneous layers for oblique incidence is solved.