УДК 531.10

НУЛИ ЯНГА–ЛИ МОДЕЛИ ПОТТСА НА РЕШЕТКЕ ХУСИМИ

Р.Г. ГУЛГАЗАРЯН

Ереванский физический институт

(Поступила в редакцию 20 декабря 2005 г.)

Рассмотрено распределение нулей Янга–Ли ферромагнитной модели Поттса на решетке Хусими. Благодаря рекурсивной структуре решетки Хусими, применяя теорию динамических систем, исследованы нули Янга-Ли для различных значений параметра *Q* модели Поттса и координационного числа решетки. Найдены плотности распределения нулей Янга-Ли и соответствующие критические показатели.

1. Введение

Исследование фазовых переходов и критических явлений в магнетиках является одной из важных задач статистической физики. Известно, что термодинамические потенциалы системы можно найти, если известна статистическая сумма (с.с.) модели. К сожалению, нахождение точной формулы для с.с. представляет большую трудность и она может быть вычислена только для некоторых простых моделей. В частности, для моделей Изинга и Поттса во внешнем поле с.с. можно представить в виде полинома от активности ($\mu = e^h$, где h – магнитное поле). В 1952г. Ли и Янг [1] доказали, что нули с.с. ферромагнитной модели Изинга на комплексной плоскости активности распределены по единичной окружности с центром в начале координат (нули Янга-Ли). Согласно теории Янга-Ли, сингулярности термодинамических потенциалов отсутствуют в областях на комплексной плоскости, где нет нулей с.с. Другими словами, нули с.с. представляют из себя границу раздела стабильных фаз. В точке, где в термодинамическом пределе нули с.с. пересекают положительную полуось, наблюдается фазовый переход. Нули с.с. также исследуются на комплексной плоскости температуры – нули Фишера [2].

В последние годы нули Янга-Ли активно исследуются [3–6]. В [6] был разработан метод для нахождения нулей Янга-Ли в моделях с фазовым переходом первого рода на рекурсивных решетках и получена формула для вычисления плотности нулей Янга-Ли. Показано, что в для модели Поттса на решетке Бете (рис.1а) нули Янга-Ли лежат на дугах окружностей с центром в начале координат и радиусом, зависящим от температуры и параметра *Q*модели Поттса.

В данной работе исследуются нули ферромагнитной модели Поттса на решетке Хусими (рис.1б).

Рис.1. Решетки Бете (а) и Хусими (б) с координационным числом (= 3.

2. Модель Поттса

Гамильтониан модели Поттса во внешнем поле имеет вид

$$-\beta H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j) + h \sum_i \delta(\sigma_i, 0) , \qquad (1)$$

где $\beta = 1/kT$, переменные Поттса σ_i определены в узлах решетки (рис.16) и принимают значения $\sigma_i = 0, 1, 2, ..., Q - 1$. В данной работе рассматривается только ферромагнитный случай (J > 0). Суммирование в первой сумме (1) ведется по всем парам ближайщих соседних узлов, а во второй – по всем узлам решетки. Заметим, что модель Поттса при Q = 2 и $T \rightarrow 2T$ переходит в модель Изинга.

Используя рекурсивную структуру решетки Хусими, выведем рекуррентное уравнение для с.с. Разрезав решетку Хусими в центральном узле О, она разобъется на γ независимых ветвей. Обозначив через $g_N(\sigma_0)$ статистический вес одной из ветвей, для с.с. модели получим

$$Z = \sum_{\{\sigma\}} e^{-\beta H} = \sum_{\sigma_0} e^{h\delta(\sigma_0,0)} g_N^{\gamma}(\sigma_0) \quad .$$
⁽²⁾

Разрезая теперь верхнюю ветвь в узлах σ_1 и σ_2 (рис.16) и разбивая ее на $2(\gamma-1)$ независимых подветвей со статистическими весами $g_{N-1}(\sigma_1)$ и $g_{N-1}(\sigma_2)$, получим рекуррентное уравнение для $g_N(\sigma_0)$:

$$g_{N}(\sigma_{0}) = \sum_{\sigma_{1},\sigma_{2}} e^{J(\delta(\sigma_{1},\sigma_{0}) + \delta(\sigma_{2},\sigma_{0}) + \delta(\sigma_{1},\sigma_{2})) + h(\delta(\sigma_{1},0) + \delta(\sigma_{2},0))} g^{\gamma-1}{}_{N-1}(\sigma_{1}) g^{\gamma-1}{}_{N-1}(\sigma_{2}).$$
(3)

Вводя вспомогательную переменную $x_N = g_N(\sigma = 0)/g_N(\sigma \neq 0)$, получим рекуррентное уравнение для x_N , где $z = e^J$ и $\mu = e^h$:

$$x_{N+1} = f(x_N), \qquad f(x) = \frac{z^3 \mu^2 x^{2(\gamma-1)} + 2(Q-1) z \mu x^{\gamma-1} + (Q-1)(z+Q-2)}{z \mu^2 x^{2(\gamma-1)} + 2(z \mu + Q - 2) x^{\gamma-1} + z^3 + (Q-2)(2z+Q-1)}.$$
 (4)

Хотя величина *x* не имеет физического смысла, термодинамические функции модели (такие, как намагниченность) в центральном узле можно выразить через *x*:

$$M = Z^{-1} \sum_{\sigma_0} \delta(\sigma_0, 0) \ e^{-\beta H} = \mu \ x^{\gamma} \left(\mu \ x^{\gamma} + Q - 1\right)^{-1} \ .$$
 (5)

Термодинамические свойства системы определяются устойчивыми фиксированными точками (ф.т.) рекуррентного уравнения (4). Ф.т. определяются из уравнения f(x) = x. Согласно теории динамических систем, ф.т. \bar{x} притягивающая, если $|\lambda| < 1$, где $\lambda = f'(\bar{x})$ и называется собственным значением ф.т.; отталкивающая, если $|\lambda| > 1$, и нейтральная, если $|\lambda| = 1$ [8]. При высоких температурах ($1 < z < z_c$) отображение (4) имеет только одну ф.т., которая соответствует парамагнитной фазе. При уменьшении температуры парамагнитная ф.т. постепенно теряет свою устойчивость и при температурах ниже критической ($z > z_c$) возникают две новые устойчивые ф.т., соответствующие двум различным намагниченностям ферромагнитной фазы.

3. Нули Янга-Ли и область метастабильности

Согласно [6,9], для моделей с фазовым переходом первого рода нули Янга-Ли лежат на линии сосуществования (раздела) двух фаз на комплексной плоскости активности. Фазовый переход первого рода определяется из условия равенства по модулю производных рекурсивной функции (4) в двух притягивающих фиксированных точках [9]. При этом очевидно, что необходимым условием фазового перехода первого рода является существование двух притягивающих ф.т. Нули Янга-Ли определяются из условия равенства по модулю производных рекурсивной функции (4) в двух притягивающих фиксированных точках [6]:

$$f(x_1) = x_1, \quad f(x_2) = x_2, \quad |f'(x_1)| = |f'(x_2)| \le 1.$$
 (6)

Известно, что для моделей Изинга и Поттса при температурах ниже критической температуры существует максимальное значение магнитного поля, ниже которого существуют метастабильные состояния [10]. Значение этого магнитного поля находится из условия существования нейтральной ф.т. [6]. Исследования показывают, что для модели Поттса на комплексной плоскости активности существует область метастабильности, внутри которой рекуррентное уравнение (4) имеет две притягивающие ф.т. Отсюда следует, что нули Янга-Ли всегда лежат внутри области метастабильности. Граница области метастабильности определяется из условия существования нейтральной ф.т., т.е. f(x) = x, |f'(x)| = 1. В случае модели Изинга (Q =2) области метастабильности и нули Янга-Ли показаны на рис.2. Сплошные линии соответствуют границе области метастабильности, а нули Янга-Ли (пунктирные линии) лежат на единичной окружности в согласии с теоремой Янга-Ли [1]. Из рис.2 видно, что при $T > T_c$ нули Янга-Ли распределены по дуге окружности и не пересекают положительную полуось. Края дуги в распределении нулей Янга-Ли называются точками граничной сингулярности. Для моделей на регулярных решетках плотность нулей Янга-Ли в точках граничной сингулярности имеет сингулярное поведение и соответствующие критические показатели связаны с классическими критическими показателями [11]. Если формально рассмотреть *х* как функцию от μ , то прямым расчетом можно показать, что точки граничной сингулярности соотвествуют сингулярностям $x(\mu)$. Причем условие сингулярности для $x(\mu)$ эквивалентно условию f(x) = x, f(x) = 1. Представляя рекурсивную функцию (4) как отношение двух полиномов, f(x) = P(x)/Q(x), получим: P(x) - xQ(x) = 0, P'(x) - Q(x) - xQ'(x) = 0. Отсюда видно, что в точках граничной сингулярности уравнение фиксированной точки имеет двояко вырожденные решения и обе эти ф.т. нейтральные. Аналогично, из условия существования критической точки: f(x) = x, f'(x) = 1, f''(x) = 0, получается, что в критической точке существуют три вырожденные нейтральные ф.т.

Рис.2. Нули Янга-Ли для модели Поттса (Q = 2) на решетке Хусими (y = 2).

Рис.3. Нули Янга-Ли модели Поттса (*Q*=3) на решетке Хусими с координационным числом γ = 3 (a) *T* < *T*_c (б) *T* > *T*_c (в,г) *T* >> *T*_c.

На рис.3 стрелками показаны нули Янга-Ли модели Поттса с Q = 3 на решетке Хусими с $\gamma = 3$. Отличительной особенностью нулей Янга-Ли на решетке Хусими является то, что при $Q \neq 2$ они не лежат на окружностях. Более того, при достаточно высоких температурах, намного больших температуры Кюри, область метастабильности разбивается на несколько частей, что в свою очередь ведет к дополнительному расщеплению нулей Янга-Ли. Однако эти явления происходят только на комплексной плоскости вдали от положительной полуоси и никак не влияют на физические свойства системы.

4. Плотность распределения нулей Янга-Ли

Плотность нулей Янга-Ли $g(R_{\mu}, \theta)$ вычисляется по формуле [6]

$$\lim_{r \to R_{\mu^{+}}} M(\mu) |_{\mu = re^{i\theta}} - \lim_{r \to R_{\mu^{-}}} M(\mu) |_{\mu = re^{i\theta}} = -4\pi g(R_{\mu}, \theta),$$
(7)

где R_{μ} и θ – радиус и фаза активности μ , а $M(\mu)$ – намагниченность (5). Типичный график плотности распределения нулей Янга-Ли для модели Поттса представлен на рис.4. Численно показано, что вблизи точек крайней сингулярности плотность нулей Янга-Ли стремится к нулю и имеет степенное поведение:

$$g(R_{\mu},\theta) \propto |\theta - \theta_{0}|^{\sigma}, \quad \sigma = \frac{1}{\delta} = \begin{cases} = \frac{1}{2}, \quad T > T_{c}, \\ = \frac{1}{2}, \quad T = T_{c}, \end{cases} \quad \theta_{0}(T) \propto (T - T_{c})^{\Delta}, \quad \Delta = \frac{3}{2} = \beta \delta, \end{cases}$$

где σ и Δ – критические показатели граничной сингулярности, а β и δ – классические критические показатели. Данные результаты находятся в хорошем согласии с ранее полученными результатами для бесконечномерных решеток [6,11].

Рис.4. Плотность нулей Янга–Ли модели Поттса (*Q*=2) на решетке Хусими (*y*=2), *R*_{*µ*}=1.

Автор выражает благодарность Н.С.Ананикяну за обсуждение статьи и ценные замечания. Работа выполнена при финансировании из гранта ANSEF No.PS46.

ЛИТЕРАТУРА

- 1. T.D. Lee, C.N.Yang. Phys. Rev., 87, 404, 410 (1952).
- 2. **M.E.Fisher**, Lectures in Theoretical Physics, ed. W.E.Brittin, Univ. of Colorado Press, Boulder, 1965, vol.7c, p.1.
- S.-Y.Kim, R.J.Creswick. Phys. Rev. E, 63, 066107 (2001); B.P.Dolan et al. J. Phys. A: Math. Gen., 34, 6211 (2001).
- 4. Р.Гулгазарян. Изв. НАН Армении, Физика, **37**, 211 (2002).
- 5. **R.G.Ghulghazaryan, N.S.Ananikian.** J. Phys. A: Math. Gen., **36**, 6297 (2003), and references therein.
- 6. **R.G.Ghulghazaryan, N.S.Ananikian, P.M.A.Sloot.** Phys. Rev. E, **66**, 046110 (2002), and references therein.
- 7. R.G.Ghulghazaryan, Intern. Journ. Mod. Phys. B, 14, 589 (2000); N.S.Ananikian,

R.G.Ghulghazaryan. Phys. Lett. A, 277, 249 (2000).

8. A.F.Beardon. Iteration of Rational Functions. Springer, New York, 1991.

9. M.Biskup et al. Phys. Rev. Lett., 84, 4794 (2000); J.L.Monroe. Phys. Lett. A, 188, 80 (1994).

10. F.Peruggi et al. J. Phys. A: Math. Gen, 16, 811 (1983); F.S. de Agular et al. J. Stat. Phys., 64, 673 (1991).

11. M.E.Fisher. Phys. Rev. Lett., 40, 1610 (1978).

ՀՈՒՍԻՄԻԻ ՑԱՆՑԻ ՎՐԱ ՍԱՀՄԱՆՎԱԾ ՓՈԹՍԻ ՄՈԴԵԼԻ ՑԱՆԳ–ԼԻԻ ԶՐՈՆԵՐԸ

Ռ.Գ. ՂՈՒԼՂԱԶԱՐՅԱՆ

Հետազոտված են Հուսիմիի ցանցի վրա սահմանված Փոթսի ֆեռոմագնիսական մոդելի Յանգ–Լիի զրոների բաշխվածությունը։ Կիրառելով դինամիկ համակարգերի տեսությունը՝ շնորհիվ Հուսիմիի ցանցի ռեկուրսիվ բնույթի, հետազոտված են Փոթսի մոդելի Յանգ-Լիի զրոները Փոթսի մոդելի *Q* պարամետրի և Հուսիմիի ցանցի կոորդինացիոն թվի տարբեր արժեքների համար։ Ստացված են Յանգ-Լիի զրոների բաշխման խտությունները և համապատասխան կրիտիկական ցուցիչները։

YANG-LEE ZEROS OF THE POTTS MODEL ON A HUSIMI LATTICE

R.G. GHULGHAZARYAN

The distribution of the Yang-Lee zeros of the ferromagnetic Potts model on a Husimi lattice is studied. Using the recursive structure of a Husimi lattice and the dynamical systems theory, the Yang-Lee zeros of the Potts model are investigated for different values of the parameter Q of the Potts model and coordination number of the Husimi lattice. Densities of the distribution of the Yang-Lee zeros and corresponding critical exponents are found.