УДК 533.9

ФОТОЭЛЕКТРОННАЯ ПУШКА ДЛЯ ФОРМИРОВАНИЯ СИСТЕМЫ СГУСТКОВ ЗАДАННОЙ КОНФИГУРАЦИИ

М.Л. ПЕТРОСЯН, М.А. АКОПОВ, Ю.А. ГАРИБЯН, Э.М. ЛАЗИЕВ, Р.А. МЕЛИКЯН, Ю.Р. НАЗАРЯН, М.К. ОГАНЕСЯН, Г.М. ПЕТРОСЯН, Л.М. ПЕТРОСЯН, В.С. ПОГОСЯН, Г.Х. ТОВМАСЯН

Ереванский физический институт

(Поступила в редакцию 15 июня 2005 г.)

Приведены описание фотоэлектронной пушки, предназначенной для формирования отдельных или двойных сгустков электронов с энергией 1 МэВ, и результаты предварительного исследования ее параметров. Подобные конфигурации электронных сгустков используются при исследовании новых методов ускорения с применением кильватерных волн в плазме.

1. Введение

Фотоэлектронная пушка предназначена для получения одиночных или двойных электронных сгустков со следующими параметрами: энергия электронов до 1 МэВ, длина сгустков 30-100 пс, расстояние между сгустками 5-20 см, ток в первом сгустке до 100 А, ток во втором сгустке до 10 А. Подобные конфигурации электронных сгустков необходимы при исследованиях новых методов ускорения, в частности, при ускорении с помощью кильватерных волн в плазме. В этом методе первый, наиболее сильноточный сгусток возбуждает в среде ускоряющее поле, в котором и ускоряется второй сгусток. Естественно, что для подбора подходящей фазы и для оптимального ускорения второго сгустка необходимо иметь возможность регулировать соотношение зарядов в сгустках и расстояние между ними.

В настоящее время более распространены ВЧ фотоэлектронные пушки [1-4], однако такая схема не может обеспечить комбинацию двух сгустков с необходимыми параметрами. В этом отношении более подходит ускоритель прямого действия, как в работе [5]. Однако, в этой установке длительность ускоряющего напряжения составляет порядка 2 нсек, что недостаточно для формирования двух сгустков с регулируемым расстоянием между ними. Кроме того, требуется очень быстрая и точная синхронизация всех параметров установки. Выполнение указанных требований сравнительно легко может быть обеспечено использованием ускорителя прямого действия с фотокатодом, управляемым лазерным лучом.

2. Фотоэлектронная пушка

В данной работе предлагается схема ускорителя прямого действия с питанием от высоковольтного импульсного источника микросекундного диапазона. Источник представляет собой импульсный безжелезный трансформатор, помещенный в металлический бак с газом под давлением до 10 атм. Схема импульсного трансформатора с ускорительной трубкой показана на рис.1. Она аналогична конструкциям импульсных трансформаторов ускорителей серии ЭЛИТА, разработанных в Новосибирске [6].

Рис.1. Схема ускорителя электронных сгустков с фотокатодом. 1 – бак для газа, 2 – первичная обмотка импульсного трансформатора, 3 – вторичная обмотка импульсного трансформатора, 4 – высоковольтный электрод, 5 – фотокатод, 6 – изоляционные кольца ускоряющей трубки, 7 – электроды ускоряющей трубки, 8 – вакуумная камера, 9 – зеркало, 10 – электронный пучок, 11 – вакуумный патрубок, 12 – лазерный пучок. 13 – фокусирующая линза из постоянного магнита, 14 – электромагнитная фокусирующая линза.

Ускорительная трубка помещена в центральной части импульсного трансформатора. Результаты численного расчета распределения магнитного поля внутри импульсного трансформатора показывают, что экранировка магнитного поля центральной части трансформатора ускорительной трубкой уменьшает коэффициент передачи энергии из первичного <u>на</u> вторичный контур всег<u>о на</u> несколько процентов.

Основные параметры источника высоковольтного напряжения следующие: напряжение первичной обмотки до 20 кВ, напряжение вторичной обмотки до 2 МВ, ток первичной обмотки 500 А, длительность импульса напряжения 5 мксек, величина емкости вторичной цепи 2000 пФ.

Ускорительная трубка, разработанная и изготовленная у нас, состоит из 10 секций, между которыми расположены диски для формирования электрического поля требуемой конфигурации.

Изоляционные кольца ускорительной трубки изготовлены из органического стекла,

которые склеены с электродами с помощью поливинилацетатного клея, который имеет сравнительно малое газовыделение в вакууме.

При выборе материала фотокатода основным требованием была возможность работы катода при плохом вакууме, так как конструкция пушки не позволяла получение вакуума лучше, чем 10⁻⁶ Торр. С этой целью были исследованы изменения квантового выхода по времени для некоторых металлов при плохом вакууме. Для фотокатода выбран сплав магния с малым содержанием цинка и алюминия. Диаметр фотокатода равен 15 мм. Исследования квантового выхода фотокатода, облучаемого ртутной лампой ($\lambda = 255$ нм) и азотным лазером ($\lambda = 337$ нм), показали, что квантовый выход составляет 10⁻⁴ и 10⁻⁵ эл./фот., соответственно. Исследования квантового выхода фотокатода в зависимости от времени показали, что в течение недели он уменьшается на порядок.

Для освещения фотокатода и получения фототока до 100 А используется четвертая гармоника Nd:YAG лазера с неустойчивым конфокальным резонатором, работающим в режиме самосинхронизации мод. Резонатор образован 100%-ным выпуклым зеркалом с радиусом кривизны 2 м и вогнутой стеклянной подложкой с радиусом кривизны 4 м, служащей в качестве выходного зеркала. В качестве насыщающегося фильтра использован раствор красителя ¹3274 в дихлорэтане. Начальное пропускание фильтра 30%. При объеме активной среды [~]5 мм³ энергия цуга ультракоротких импульсов первой гармоники составляет 100 мДж, энергия максимального импульса в цуге 20 мДж, длительность импульсов [~] 40 пс. Для получения второй и четвертой гармоник использованы нелинейные оптические кристаллы КДП. Разделение гармоник на выходе лазера осуществляется кварцевой призмой. Для временной синхронизации лазерного импульса и запуска ускорителя электронных сгустков используется активно-пассивная модуляция, т.е. кроме насыщающегося фильтра, использована и ячейка Поккельса.

Рис.2. Блок-схема лазера, где 1 – фототропная ячейка, 2 – выходное зеркало, 3 – активный элемент Nd:YAG, 4 – ячейка Поккельса, 5 – стекла Брюстера, 6 – телескоп, 7 – кристалл второй гармоники, 8 – светофильтр C3C21, 9 – кристалл четвертой гармоники, 10 – блок питания лампы, 11 – формирователь высоковольтных импульсов, 12 – блок плавной задержки.

Схема лазерной установки приведена на рис.2. Система формирования временной микроструктуры лазерных импульсов (формирование двойных сгустков с заданными

параметрами) аналогична интерферометру Майкельсона. Амплитуда тока или величина заряда во втором сгустке выбирается коэффициентом отражения полупрозрачного зеркала, а расстояние между сгустками устанавливается сдвигом подвижной призмы.

Измерение всех физических величин и непрерывный контроль всех технологических параметров установки осуществляется с помощью системы контроля и управления для каждого импульса работы системы. Система основана на взаимодействии клиент–сервер. В основном это трехуровневая модель взаимодействия. На уровне программного обеспечения выбрана система DOOCS (Distributed Object Oriented Control System), разработанная в DESY для приложений HERA и TTF (TESLA Test Facility) [7].

3. Запуск и предварительное исследование фотоэлектронной пушки

Предварительное исследование режимов работы проведено при сравнительно низкой энергии электронного пучка. При энергии 0,5 МэВ заряд в сгустке достигает 2 нК, что соответствует току в сгустке порядка 40 А. Величина тока заметно не меняется в течение месяца. Так как квантовый выход фотокатода за это время может значительно уменьшиться, а ток не меняется, то можно предположить, что при данной напряженности поля ток ограничивается не квантовым выходом или интенсивностью лазерного пучка, а поверхностным зарядом катода. Такая закономерность наблюдается и в работе [8]. При поверхности катода 1.5 см² и величине ускоряющего напряжения 500 кВ поверхностный заряд на катоде составляет ~ 2,2 нК, что хорошо совпадает с измеряемой величиной заряда в электронном сгустке.

Результаты расчета распределения электрического поля и траектории электронов совпадают с результатами измерения поперечного сечения пучка на выходе ускорителя. Пучок достаточно хорошо формируется и на выходе имеет диаметр 7 мм.

4. Заключение

Таким образом, основной особенностью этой установки являются, во-первых, применение фотокатода в новом типе ускорителя, а именно, в импульсном ускорителе прямого действия для получения комбинации сгустков заданной конфигурации, и во-вторых, комбинация сгустков задается лазерным пучком. Одним из центральных вопросов решения поставленной задачи было осуществление временной синхронизации работы лазера и ускоряющего напряжения. Формирование лазерного импульса субпикосекундного диапазона наиболее доступно с помощью фототропных красителей. Однако при этом имеется значительная временная нестабильность начального момента формирования пикосекундного импульса. Решение этой проблемы найдено в совместном применении активного и пассивного модуляторов добротности лазера. Следующим важным моментом является факт ограничения максимального тока пушки поверхностным зарядом катода. В этом случае существует оптимальное значение интенсивности лазерного пучка, при котором на поверхности катода еще остается достаточный заряд для второго сгустка электронов. Дальнейшая программа работ в основном будет посвящена исследованию этих процессов.

ЛИТЕРАТУРА

- 1. **K.Batchelor, I.Ben-Zvi,** et al. "Operational status of the Brookhaven National Laboratory Accelerator Test Facility". Proc. of the 1989 Particle Accelerator Conference, Chicago, 1989, p.273.
- R.Alley, V.Bharadwaj, J.Clendenin, et al. "The design for the LCLS rf photo-injector". SLAC-PUB-8054, January 1999.
- 3. **R.Bakker, M.V.Hartrott, E.Jaeschke,** et al. "First measurements at the photoinjector at DESY Zeuthen". Proc. of the 2002 European Particle Accelerator Conference, Paris, 2002, p.1873.
- 4. W.Gai, X.Li, M.Conde, J.Power, P.Schoessow. Nucl. Instr. and Meth. in Phys. Res., A410, 431 (1998).
- K.Batchelor, J.P.Farrell, I.Ben-Zvi, T.Srinivansan-Rao, J.Smedley, V.Yakimenko. Proc. of the 1998 European Particle Accelerator Conference, Stockholm, 1998, p.791.
- 6. E.A.Abramyan. "High-Current Transformer Accelerator". Novosibirsk, INPh 18-70, 1970.
- G.Grygiel, O.Hensler, K.Rehlich. "DOOCS: Distributed Object Oriented Control System on PC's and Workstations". ICALEPCS-97, Beijing, http://tesla.desy.de/doocs/ (1997).
- 8. B.Lebland. Nucl. Instr. and Meth. in Phys. Res., A317, 365 (1992).

SՐՎԱԾ ՁԵՎԱՉԱՓԻ ԹԱՆՁՐՈՒԿՆԵՐԻ ՁԵՎԱՎՈՐՄԱՆ ՀԱՄԱՐ ՆԱԽԱՏԵՍՎԱԾ ՖՈՏՈԷԼԵԿՏՐՈՆԱՅԻՆ ԹՆԴԱՆՈԹ

Մ.Լ. ՊԵՏՐՈՍՅԱՆ, Մ.Ա. ԱԿՈՊՈՎ, Յու.Ա. ՂԱՐԻԲՅԱՆ, Է.Մ. ԼԱԶԻԵՎ, Ռ.Ա. ՄԵԼԻՔՅԱՆ, Յու.Հ. ՆԱԶԱՐՅԱՆ, Մ.Կ. ՀՈՎՀԱՆՆԻՍՅԱՆ, Գ.Մ. ՊԵՏՐՈՍՅԱՆ, Լ.Մ. ՊԵՏՐՈՍՅԱՆ, Վ.Ս. ՊՈՂՈՍՅԱՆ, Գ.Խ. ԹՈՎՄԱՍՅԱՆ

Բերված են ֆոտոէլեկտրոնային թնդանոթի նկարագրությունը` նախատեսված 1 Մէվ էներգիայով, առանձին կամ կրկնակի էլեկտրոնային թանձրուկների ստեղծման համար, ինչպես նաև թնդանոթի պարամետրերի նախնական հետազոտության արդյունքները։ Էլեկտրոնային թանձրուկների նման ձևաչափերը կիրառվում են պլազմայի ալիքների միջոցով արագացման նոր մեթոդների հետազոտման ժամանակ։

PHOTOELECTRON GUN FOR FORMATION OF A SYSTEM OF BUNCHES WITH GIVEN CONFIGURATION

M.L. PETROSYAN, M.A. AKOPOV, Y.A. GARIBYAN, E.M. LAZIEV, R.A. MELIKYAN, Y.H. NAZARYAN, M.K. OGANESYAN, G.M. PETROSYAN, L.M. PETROSYAN, V.S. POGOSYAN, G.Kh. TOVMASYAN

The description of a photoelectron gun intended for formation of separate or double electron bunches with energy 1 MeV and results of preliminary study of its parameters are presented. Similar configurations of electron bunches are used in research of new methods of acceleration using wake fields in plasma.